Détecteurs CMOS

Magnus Mager (CERN)

LPNHE, 17/06/2015

Journée Thématique – Electronique Front-End associée aux détecteurs semi-conducteurs

Contents

- 1 Overview of silicon pixel detector technologies
- 2 Recent advancements in CMOS sensors
- 3 Physics motivations to use CMOS sensors
- 4 ALPIDE, the CMOS sensor for the ALICE ITS upgrade
- Outlook

Contents

- 1 Overview of silicon pixel detector technologies
- 2 Recent advancements in CMOS sensors
- 3 Physics motivations to use CMOS sensors
- 4 ALPIDE, the CMOS sensor for the ALICE ITS upgrade
- **5** Outlook

Silicon pixel detector technologies

Hybrid

[current ALICE Silicon Pixel Detector]

25 µm solder bump

- ▶ Two layers/chips assembly:
 - sensor chip
 - read-out chip
- ► They are interconnected using solder balls

CMOS (or MAPS)

[Technology for ALICE upgrade]

- Single chip
- Read-out circuitry shares space with collection electrode

Hybrid pixels

Pro's

- Sensor and read-out may use technologies optimised for each purpose
 - Higher radiation hardness
 - ► Faster read-out
 - Very high signal/noise

► Con's

- ► Larger material budget
- ▶ Larger pitch ($\in \mathcal{O}(100\,\mu\text{m})$)
- Worse performance at low momenta
 - More processing steps
- → Higher cost

25 µm solder bump

CMOS pixels

Pro's

- Minimal material
- ▶ Small pitch ($\in \mathcal{O}(20 \, \mu \text{m})$)
- Better performance at low momenta
 - Single chip, no extra processing steps
- → Lowest cost

► Con's

- ► Lower signal/noise
- ► Lower radiation tolerance
- ► Lower read-out speed
- Not suitable for "ATLAS/CMS/ILC" (at least as of today and for the inner layers)

Contents

- 1 Overview of silicon pixel detector technologies
- 2 Recent advancements in CMOS sensors
- 3 Physics motivations to use CMOS sensors
- 4 ALPIDE, the CMOS sensor for the ALICE ITS upgrade
- Outlook

STAR's Heavy Flavor Tracker (HFT)

- ► STAR is the first large scale HEP application of CMOS sensors, using the ULTIMATE (IPHC Strasbourg) chip:
 - AMS 0.35 μm imaging process
 - ▶ tailored to STAR

$STAR \rightarrow ALICE$

Increasing requirements on the sensor (selection):

STAR

- radiation hardness:
 - >150 krad (TID), >3 \times 10¹² n_{eq} /cm² (NIEL)
- ► integration time: <200 µs
- ► power consumption: <160 mW cm⁻²

ALICE

- radiation hardness:
 - >2.7 Mrad (TID), >1.7 \times 10¹³ $n_{\rm eq}/{\rm cm}^2$ (NIEL)
- integration time:
 - <30 μ s
- power consumption:

 $< 100 \, {\rm mW \, cm^{-2}}$

With respect to STAR, three technology features allowed to meet the tighter requirements of ALICE:

- ► Inclusion of a deep p-well
- Smaller structure sizes
- Availability of high-resistivity epitaxial layers

Deep p-well

- Traditionally, only one kind of transistor (PMOS or NMOS) was possible inside the active area
- ▶ In a p-type epitaxial layer, all n-wells (i. e. also those of PMOS transistors) compete for ionisation electrons
- By introducing a protective layer, the deep p-well, underneath, these can be shielded
- ► This allows the usage of NMOS and PMOS simultaneously, i. e. CMOS inside the pixel matrix

Smaller structure size

- Originally CMOS sensors were read out by 3T or 4T in-pixel circuits
- Nowadays, CMOS imaging processes allow much more, e. g. for ALPIDE:
 - 0.18 µm structure size
 - 6 metal layers
 - around 150 transistors in a 28 μm × 28 μm pixel

New read-out concepts

- New read-out concepts become possible due to high integration
- Power consumption can be reduced by:
 - not distributing a clock over the matrix
 - transferring only digital information
 - not transferring any information of not-hit pixels

Contents

- 1 Overview of silicon pixel detector technologies
- 2 Recent advancements in CMOS sensors
- 3 Physics motivations to use CMOS sensors
- 4 ALPIDE, the CMOS sensor for the ALICE ITS upgrade
- Outlook

Measurements of open charm

- lacktriangle Decay lengths of charm particles are very short: $c au\in\mathcal{O}(100\,\mu\text{m})$
- ▶ Heavy-ion collisions have a huge combinatorial background: $\mathcal{O}(10\,000)$ tracks in central collisions at LHC
- ► Topological identification, i. e. separation of primary and secondary vertices, is key for these analyses

Measurements of open charm $-D^0$ at STAR

- ► STAR's HFT reduces background by several orders of magnitude
- ▶ 10 % of data, first physics expected for Quark Matter 2015

CÉRN

Impact parameter resolution

Simplified model with only two tracking planes

$$\sigma_{d_0} \approx \sigma \sqrt{\frac{r_2^2 + r_1^2}{(r_2 - r_1)^2}} \oplus \frac{r_1}{p \sin^{3/2} \theta} 13.6 \,\text{MeV} \sqrt{X/X_0}$$
 (1)

with:

 r_i : radii of tracking planes

 σ : detector plane resolution

 X/X_0 : material budget

[see P. Welles, EDIT 2011 for details]

- Especially at low momenta, second term dominates
- → Go close, be light, have good intrinsic resolution!

Momentum resolution

Limiting factors

$$\frac{\sigma_p}{p^2} \sim \frac{\sigma}{BL^2} \tag{2}$$

with:

L: lever arm

B: magnetic field

 σ : spatial resolution

[see F. Ragusa, Italo-Hellenic School of Physics 2006, for details]

- ▶ Free parameter: spatial resolution
- → same considerations as before apply
- ► NB: high momentum tracks will typically be precisely tracked by outer detectors
- Key for low momentum measurements: low material

Material budget

- Reduction of material budget is key for low momentum particle measurements
- Material is composed of:
 - sensor
 - power distribution
 - cooling
 - mechanical support
- Lower power consumption can reduce this significantly

[ALICE ITS upgrade Inner Barrel]

Contents

- 1 Overview of silicon pixel detector technologies
- 2 Recent advancements in CMOS sensors
- 3 Physics motivations to use CMOS sensors
- 4 ALPIDE, the CMOS sensor for the ALICE ITS upgrade
- Outlook

ALICE ITS upgrade

- Main goal: replacement of ALICE Inner Tracking System (ITS) during LHC long shutdown II in 2018–2019
- ► Design objectives:
 - Increased spatial resolution:
 - $ightharpoonup \lesssim 5\,\mu m$ in longitudinal and transverse directions
 - Closer to interaction point:
 - ightharpoonup move to $r=23\,\mathrm{mm}$
 - Reduced material:
 - ▶ aiming at $\lesssim 0.3 \% X_0$ for innermost layers
 - additional benefit from thinner beam pipe
 - Increased read-out speed:
 - Record 50 kHz Pb–Pb collisions (minimum bias)

J. Phys. G **41** 087002

Detector design

- ▶ 7 layers of monolithic active pixel sensors (MAPS)
 - ▶ 3 layers in inner barrel with $X/X_0 \approx 0.3\%$ from r = 23 mm
 - ightharpoonup 2+2 layers in outer barrel with $X/X_0 pprox 1\,\%$ to $R=400\,\mathrm{mm}$
 - ▶ Total area of about 10 m²
- \blacktriangleright Coverage: $2\pi\times (|\eta|\leq 1.22)$ for 90 % most luminous region

Sensor requirements

Parameter	Inner Barrel	Outer Barrel
Sensor thickness	50 μm	50 µm
Spatial resolution	5 μm	10 μm
Dimensions	$15\mathrm{mm} imes30\mathrm{mm}$	$15\text{mm}\times30\text{mm}$
Power density	$300\mathrm{mWcm^{-2}}$	$100\mathrm{mWcm^{-2}}$
Time resolution	30 μs	30 µs
Detection efficiency	99 %	99 %
Fake hit rate*	10^{-5}	10^{-5}
TID radiation hardness**	2700 krad	100 krad
NIEL radiation hardness**	$1.7 imes10^{13}~1\mathrm{MeV}\mathit{n}_{eq}/\mathrm{cm}^{2}$	$10^{12}~1\mathrm{MeV}n_\mathrm{eq}/\mathrm{cm}^2$

^{*} per pixel and read-out

- → Perfect match for CMOS pixel sensors
- ► Two (pin-)compatible sensors are being developed:
 - ALPIDE (project baseline; more details here)
 - MISTRAL-O (more classical approach, optimised for outer barrel)

^{**} including a safety factor of 10, revised numbers wrt. TDR

Charge creation & collection

► Charge is created in the epitaxial layer

- Charge is created in the epitaxial layer
- ► Signal is shaped:
 - ▶ rise-time: <2 µs (defines timing resolution)</p>
 - total pulse length: 10 μs to 20 μs

continuously active

- Charge is created in the epitaxial layer
- Signal is shaped:
 - ▶ rise-time: <2 µs (defines timing resolution)</p>
 - total pulse length: 10 μs to 20 μs
- Front-end acts as delay line

- Charge is created in the epitaxial layer
- ► Signal is shaped:
 - ► rise-time: <2 µs (defines timing resolution)
 - total pulse length: 10 μs to 20 μs
- ► Front-end acts as delay line
- Signal is strobed into memory
 - either upon trigger
 - or with constant frequency (continuous/"trigger-less" operation)

- Charge is created in the epitaxial layer
- Signal is shaped:
 - rise-time: <2 μs (defines timing resolution)</p>
 - total pulse length: 10 μs to 20 μs
- Front-end acts as delay line
- Signal is strobed into memory
 - either upon trigger
 - or with constant frequency (continuous/"trigger-less" operation)
- Hit pixels are read out asynchronously

In-pixel front-end circuit

- ▶ One main current branch
- AC sensitive to negative charge input
- Non-linear dependence on input charge
- ightarrows Very low power consumption: $I_{
 m bias} = 20 \, {
 m nA}, \ I_{
 m thr} = 500 \, {
 m pA}$ (or: $pprox 40 \, {
 m nW}$ per pixel)

Read-out

- ► The matrix is read out asynchronously and sparsely by use of 512 priority encoders
- High speed serial point-to-point link with up to 1.2 Gb/s (8b/10b) for data read-out
- ▶ Serial bus for configuration and triggering (≈40 MHz)

[P. Yang et. al., NIM **A785** 61–85]

Full-scale prototype: pALPIDE-1

ALPIDE

- ► Pixel pitch: 28 μm × 28 μm
- ► Power consumption: <40 mW cm⁻²
- Diode: 4 different flavours
- Multiple-event memory: 1 register (ALPIDE: 3)
- Read-out: 8-bit 40 MHz parallel interface (ALPIDE: high-speed serial link)
- Peaking time: 2 μs
- Pulse length: 10 μs to 20 μs
- ▶ Fake-hit rate: $\ll 10^{-5}$ per pixel and event
- ▶ Detection efficiency: ≫99 %

pALPIDE-1: test beams

- Test beams are carried out using a telescope made entirely of pALPIDE-1
- Extensive campaign with beams at PS, SPS, PAL (Korea), BTF (Italy), DESY (Germany)
- ▶ In the following: results with $6 \, \text{GeV/c} \, \pi^-$ from CERN PS
- Tests before and after neutron irradiation

pALPIDE-1: test beams

- Test beams are carried out using a telescope made entirely of pALPIDE-1
- Extensive campaign with beams at PS, SPS, PAL (Korea), BTF (Italy), DESY (Germany)
- ▶ In the following: results with $6\,\mathrm{GeV/c}~\pi^-$ from CERN PS
- Tests before and after neutron irradiation
- Many thanks to our colleagues from the host institutes for their excellent support!

LPNHE, 17/06/2015

pALPIDE-1: spatial resolution

Spatial resolution

- ► Average cluster sizes of 1.5–3 pixels
- Spatial resolution of around 4.5 μm to 5.5 μm

pALPIDE-1: spatial resolution

Spatial resolution

Cluster size

- Average cluster sizes of 1.5–3 pixels
- Spatial resolution of around 4.5 μm to 5.5 μm
- Can use telescope tracking to study properties differential in track impinging point
 - ► Cluster size varies nicely leading to good intrinsic resolution

Contents

- 1 Overview of silicon pixel detector technologies
- 2 Recent advancements in CMOS sensors
- 3 Physics motivations to use CMOS sensors
- 4 ALPIDE, the CMOS sensor for the ALICE ITS upgrade
- Outlook

Preparing for ATLAS/CMS/ILC

- Future HEP collider experiments are more demanding, especially in terms of
 - ▶ radiation hardness ($\approx 10^{15} \text{ 1 MeV} n_{eq}/\text{cm}^2$)
 - speed (LHC: 25 ns bunch crossing)
- Several techniques are investigated to harden the detector against radiation
 - common goal: application of electric field to reach full depletion
- Besides the inner-most detection layers, there are other fields of applications:
 - ▶ Particle densities (and radiation levels) at layers further out is lower
 - Currently these areas are equipped with strip detectors
 - CMOS becomes an attractive alternative

Ways to increase radiation tolerance

Essentially boils down to apply high electrical fields

High Voltage CMOS PMOS NMOS Pixel deep n-well Drift Potential energy (e-) Depletion zone Signal-electrons

[I. Perić et. al., NIM A765 172-176]

- Deep n-well shields electronics
- This well also collects the charge
- Apply high voltage

Silicon on Isolator

[http://rd.kek.jp/project/soi/research.html]

- Oxide layer isolates electronics
- Apply high voltage

→ R&D also in the field of high-resistivity MAPS (like ALPIDE) to reach full depletion ongoing...

substrate

Summary and Outlook

Summary

- CMOS sensors are becoming attractive for certain HEP applications, due to their
 - minimal material budget
 - high granularity
 - moderate radiation tolerance
 - moderate speed
 - very low power consumption
 - low cost
- ▶ With STAR's HFT, CMOS sensors enter large scale HEP experiments

Outlook

- ► ALICE will replace its complete inner tracker with some 10 m² CMOS in 2018–2019
- Many R&D projects are on their way to make CMOS radiation hard enough for "ALTAS/CMS/ILC-type" applications