The Effective Action Approach to the High Energy Limit of QCD and $\mathcal{N}=4$ SYM

José Daniel Madrigal Martínez[†]

Instituto de Física Teórica UAM/CSIC, Madrid

QCD Prospects for Future ep and eA Colliders

Orsay, 4-8 June 2012

Based on work in collaboration with M. Angioni, G. Chachamis, M. Hentschinski & A. Sabio Vera

Outline

The High Energy Limit of Gauge Theories

- Regge Theory
- The Pomeron in QCD
- Properties and Signatures of BFKL Equation at LL and NLL Order

Loop Computations with Lipatov's Effective Action

- The High-Energy Effective Action
- The Regularization and Subtraction Procedure
- Computation of the 2-Loop Gluon Trajectory

Conclusions

High Energy Limit and Regge Theory

Why to Study the High Energy Limit of QCD?

- Purely Phenomenological Interest
- Emergence of the Pomeron and Reggeization
- Insight into the Non-Perturbative Regime: Saturation
- Role of Conformal Symmetry. Integrability
- Similarity with $\mathcal{N}=4$ SYM. Connection with AdS/CFT

(...) "the small-x [i.e. high-energy] problem in QCD is, except for the understanding of confinement, the most interesting problem in QCD."

Mueller '90

The S-Matrix Approach

The Idea

Amplitudes are extremely constrained by general properties of the S-matrix:

- Lorentz invariance
- Unitarity
- Analyticity & Crossing $\mathcal{A}_{a\bar{c}\rightarrow\bar{b}d}(s,t,u) = \mathcal{A}_{ab\rightarrow cd}(t,s,u)$

The Tools

Partial Wave Expansion

$$\mathcal{A}_{a\bar{c}\to\bar{b}d}(s,t) = \sum_{\ell=0}^{\infty} a_{\ell}(s) P_{\ell} \left(1 + \frac{2s}{t}\right)$$

Sommerfeld-Watson Transform

$$\mathcal{A}(s,t) = \frac{1}{2i} \oint d\ell (2\ell+1) \frac{a(\ell,t)}{\sin \pi \ell} P_{\ell} \left(1 + \frac{2s}{t} \right)$$

The Result

Each pole $\alpha(t)$ of the partial wave amplitude gives a contribution

$$\mathcal{A}(s,t) \xrightarrow{s \gg -t} \frac{\eta + e^{-i\pi\alpha(t)}}{2} \beta(t) s^{\alpha(t)}$$

Regge Phenomenology

(...) "Regge theory remains one of the great truths of particle physics."

Regge-pole behaviour associated to Reggeon (\sim bound state of particles with complex t-dependent spin) exchange

Regge trajectory: $\alpha(t) = \alpha(0) + \alpha' t$ t > 0 Physical particles with distinct values of masses and spins t < 0 Asymptotic Energy Behaviour

$$\sigma_{\mathrm{tot}} \underset{s \to \infty}{\simeq} \frac{1}{s} \Im m \ \mathcal{A}(s, t = 0) \sim \sum A_i s^{\alpha_i(0) - 1}$$

Donnachie & Landshoff '90

Rising Cross Section: Vacuum Quantum Numbers

Regge Poles in Field Theory

All particles involved in hadronic processes have been found to lie in (approximately straight) Regge trajectories \Longrightarrow Elementary Particle Reggeization by Radiative Corrections

The Kinematics of the Ladder: Small-x Regime

Proposal: Reggeized Gluon Built by ln s-Enhanced Corrections to All Orders $(\alpha_s \ln s)^m$, $\alpha_s \ln s \sim 1$

Regge limit $s/|t| \gg 1 \iff Small-x$ in DIS; Large Rapidity Separation

Compare with DGLAP, where strong ordering in transverse momenta holds

Non-Triviality of the Reggeization Ansatz

Lipatov '76

LIPATOV ANSATZ (from knowledge of first orders in perturbation theory)

The effect of incorporating virtual corrections to all orders is reggeizing the intermediate t-channel gluons of the ladder:

$$\frac{-i}{k_i^2} \to \frac{-i}{k_i^2} \left(-\frac{s_i}{k_i^2} \right)^{\alpha(-\mathbf{k}_i^2)}$$

- Reggeized gluon is an extremely non-trivial construction
- Consistency: Reggeizing intermediate gluons gives an overall reggeized-gluon exchange in t-channel when projecting in the octet
- Bootstrap: Gluon reggeization compatible with an infinity of non-linear constraints coming from s-channel unitarity

BFKL Equation. Emergence of the (Hard) Pomeron

- **Pomeron** (singlet) exchange emerges as a bound state of two reggeized gluons
- Lipatov's Ansatz gives the amplitude $A_{2\rightarrow n+2}$ in closed form
- Then the amplitude for pomeron exchange can be reconstructed using unitarity and summing in the number of steps of the ladder
- Mellin transforming (working with partial wave amplitudes) phase space integrations are disentangled and the **pomeron amplitude** is given as the solution of an integral equation

Fadin, Kuraev & Lipatov '75, '76, '77 Lipatov '76 Balitskii & Lipatov '78, '79

BFKL EQUATION

$$\omega f_{\omega}(\mathbf{k}, \mathbf{k}') = \delta^{2}(\mathbf{k} - \mathbf{k}') + \int d^{2}\kappa \, \mathcal{K}(\mathbf{k}, \kappa) f_{\omega}(\mathbf{k}, \mathbf{k}')$$

$$\mathcal{K}(\mathbf{k}, \kappa) = 2\alpha(-\mathbf{k}^{2})\delta^{2}(\mathbf{k} - \kappa) + \frac{N_{c}\alpha_{s}}{\pi^{2}} \frac{1}{(\mathbf{k} - \kappa)^{2}}$$

$$\alpha(-\mathbf{k}^{2}) = \frac{N_{c}\alpha_{s}}{4\pi^{2}} \int d^{2}\kappa \frac{-\mathbf{k}^{2}}{\kappa^{2}(\kappa - \mathbf{k})^{2}}$$

Forward Solution and Total Cross Section

$$\sigma_{\text{tot}}^{qq} = 4\alpha_s^2 \mathcal{G} \iint d^2 \mathbf{k} \, d^2 \mathbf{k'} \frac{f(s, \mathbf{k}, \mathbf{k'})}{\mathbf{k}^2 \mathbf{k'}^2} \sim \frac{s^{\lambda}}{\ln s}$$

Pomeron Intercept $\lambda = \frac{N_c \alpha_s}{\pi} 4 \ln 2 \underset{\alpha_s \simeq 0.2}{\simeq} 0.5$

The Problems with BFKL

- Violation of Unitarity (Froissart Bound): $\lambda > 0$
- **Diffusion** At asymptotic energies BFKL Green's function f unavoidably receives contributions form non-perturbative region
- Convolution with PDFs in hadron-pomeron vertices limits predictability
- Collinear contamination, DGLAP can mimic BFKL-like behaviour for most processes \Longrightarrow Need to suppress DGLAP evolution (use of similar transverse scales)
- Need to Go Beyond LL Approximation: to set the scales of validity and running

Properties and Signatures of BFKL Equation at LL and NLL Order

Avoiding DGLAP Mimicking: Golden Signatures

Going Beyond Leading Order: Problems

NLL BFKL Equation

Fadin & Lipatov '98 Ciafaloni & Camici '98 Kotikov & Lipatov '00

$$\omega f(\mathbf{q}_1^2,\!\mathbf{q}_2^2,\!\omega) \!\!=\!\! \delta^2(\mathbf{q}_1^2\!-\!\mathbf{q}_2^2) \!+\! \int d^2\boldsymbol{\kappa} \, \mathcal{K}_{\mathrm{NLL}}(\mathbf{q}_1,\!\boldsymbol{\kappa}) f(\boldsymbol{\kappa},\!\mathbf{q}_2,\!\omega)$$

(LL) Eigenfunctions

$$\langle \mathbf{q} | n, \nu \rangle = \frac{1}{\pi \sqrt{2}} (\mathbf{q}^2)^{i\nu - \frac{1}{2}} e^{in\vartheta}$$

NLL 'Eigenvalues'

$$\begin{split} &\langle n, \nu | \mathcal{K} | \nu', n' \rangle \\ &= \bar{\alpha}_{s, \overline{\mathrm{MS}}} \Big[\chi_0 \left(|n'|, \frac{1}{2} + i \nu' \right) + \bar{\alpha}_{s, \overline{\mathrm{MS}}} \chi_1 \left(|n'|, \frac{1}{2} + i \nu' \right) \\ &- \frac{\bar{\alpha}_{s, \overline{\mathrm{MS}}} \beta_0}{8 N_c} \chi_0 \Big(|n'|, \frac{1}{2} + i \nu' \Big) \left\{ -i \frac{\partial}{\partial \nu'} + i \frac{\partial}{\partial \nu} - 2 \ln \mu^2 \right\} \\ &+ i \frac{\bar{\alpha}_{s, \overline{\mathrm{MS}}} \beta_0}{8 N} \frac{\chi_0 \Big(|n'|, \frac{1}{2} + i \nu' \Big)}{2 N_c} \Big] \delta_{n, n'} \delta(\nu - \nu'), \end{split}$$

LO:
$$\bar{\alpha}_s \chi_0(n=0,\nu)$$
; $\bar{\alpha}_s \equiv \frac{\alpha_s N_c}{\pi}$
NLO: $\bar{\alpha}_s \chi_0 + \bar{\alpha}_s^2 \chi_1(n=0,\nu)$

Properties and Signatures of BFKL Equation at LL and NLL Order

Going Beyond Leading Order: Solutions

Huge NLL Corrections: Is after all $1/\ln s$ not a good expansion parameter?

Situation is not hopeless: 3 vias for solution envisaged

- Collinear Resummation to All Orders
- Rapidity Veto
- BLM Renormalization Scale Setting

Properties and Signatures of BFKL Equation at LL and NLL Order

Effect of BLM Renormalization Scale Setting

BLM results systematically closer than other renormalization schemes to $\mathcal{N}=4$ SYM predictions for ratios of angular correlations of Mueller-Navelet jets

[Mueller & Navelet'87]; [Del Duca & Schmidt'94]; [Schwennsen & Sabio Vera'06]; [Marquet & Royon'06, '08]; [Colferai, Schwennsen, Szymanowski & Wallon'101

[Angioni, Chachamis, JDM & Sabio Vera'11]

Effective Field Theory (EFT) and High-Energy Limit (HEL)

- Effective field theory: powerful tool for multi-scale problems
- Semihard processes in Regge limit: $s \gg -t \gg u^2$
- Unitarity directly restored in EFT
- Takes the reggeized gluon as the relevant degree of freedom: captures simplicity of HEL
- Very powerful to compute reggeon vertices for NLO and NNLO BFKL (tree-level) [Kniehl, Basin & Saleev'06; Braun, Lipatov, Salykin & Vyazovsky'11...]

★ Lipatov's EFT can be derived (at LO) by integrating out heavy modes

[Kirschner, Lipatov & Szymanowski'94,'95]

Effective Field Theory (EFT) and High-Energy Limit (HEL)

- Effective field theory: powerful tool for multi-scale problems
- Semihard processes in Regge limit: $s \gg -t \gg u^2$
- Unitarity directly restored in EFT
- Takes the reggeized gluon as the relevant degree of freedom: captures simplicity of HEL
- Very powerful to compute reggeon vertices for NLO and NNLO BFKL (tree-level) [Kniehl, Basin & Saleev'06; Braun, Lipatov, Salykin & Vyazovsky'11...]

★ Lipatov's EFT can be derived (at LO) by integrating out heavy modes

[Kirschner, Lipatov & Szymanowski'94,'95]

★ Later, effective action formulated in terms of gauge invariant interactions of (arbitrary # of) reggeons and QCD partons local in rapidity

[Lipatov'95

Effective Field Theory (EFT) and High-Energy Limit (HEL)

- Effective field theory: powerful tool for multi-scale problems
- Semihard processes in Regge limit: $s \gg -t \gg \mu^2$
- Unitarity directly restored in EFT
- Takes the reggeized gluon as the relevant degree of freedom: captures simplicity of HEL
- Very powerful to compute reggeon vertices for NLO and NNLO BFKL (tree-level) [Kniehl, Basin & Saleev'06; Braun, Lipatov, Salykin & Vyazovsky'11...]

★ Lipatov's EFT can be derived (at LO) by integrating out heavy modes

[Kirschner, Lipatov & Szymanowski'94,'95]

★ Later, effective action formulated in terms of gauge invariant interactions of (arbitrary # of) reggeons and QCD partons local in rapidity

[Lipatov'95]

⇒ and now also available for computing at loop level!

[Hentschinski & Sabio Vera'11; Chachamis, Hentschinski, JDM & Sabio Vera'12]

Effective Field Theory (EFT) and High-Energy Limit (HEL)

- Effective field theory: powerful tool for multi-scale problems
- Semihard processes in Regge limit: $s \gg -t \gg \mu^2$
- Unitarity directly restored in EFT
- Takes the reggeized gluon as the relevant degree of freedom: captures simplicity of HEL
- Very powerful to compute reggeon vertices for NLO and NNLO BFKL (tree-level) [Kniehl, Basin & Saleev'06; Braun, Lipatov, Salykin & Vyazovsky'11...]

★ Lipatov's EFT can be derived (at LO) by integrating out heavy modes

[Kirschner, Lipatov & Szymanowski'94,'95]

★ Later, effective action formulated in terms of gauge invariant interactions of (arbitrary # of) reggeons and QCD partons local in rapidity

[Lipatov'95]

 \Rightarrow and now also available for computing at loop level!

[Hentschinski & Sabio Vera'11; Chachamis, Hentschinski, JDM & Sabio Vera'12]

Generalized

Quasi-Multi-Regge Kinematics (QMRK) [Fadin&Lipatov'89]

Clusters strongly ordered in rapidity: $y_0 \gg y_1 \gg \cdots \gg y_{n+1}$, $y_k = \frac{1}{2} \ln \frac{k}{k-}$

- Strong rapidity ordering simplifies polarization tensor of t-channel reggeons: $g_{\mu\nu} \rightarrow \frac{1}{2}(n^+)_{\mu}(n^-)^{\nu} + \mathcal{O}(1/s)$
- Reggeized gluons couple to quarks and gluons through effective vertices local in rapidity:
 Effective vertex=Light-Cone Projection+Induced Contributions

• Reggeon propagators are essentially transverse: $q_i^2 = -\mathbf{q}_i^2$

$$p_a + p_b \to p_1 + p_2; \quad n^{+,-} = 2p_{a,b}/\sqrt{s},$$

 $k = k^{+} \frac{n^{-}}{2} + k^{-} \frac{n^{+}}{2} + \mathbf{k}$

Feynman Rules for Lipatov's Effective Action

$$S_{\text{eff}} = S_{\text{QCD}} + S_{\text{ind}};$$

$$S_{\text{od}} = \int_{a_0,k_0}^{a_0} d^2x \int_{a_0,k_0}^{a_0,k_0} d^2x \int_{a_0,k_0}^{a_0,k_0}$$

[Antonov, Cherednikov, Kuraev & Lipatov'05]

$$\begin{split} S_{\text{eff}} &= S_{\text{QCD}} + S_{\text{ind}}; \\ S_{\text{ind}} &= \int d^4 x \operatorname{Tr} \left[\left(W_+[v(x)] - \mathscr{A}_+(x) \right) \partial_\perp^2 \mathscr{A}_-(x) \right] \\ &+ \int d^4 x \operatorname{Tr} \left[\left(W_-[v(x)] - \mathscr{A}_-(x) \right) \partial_\perp^2 \mathscr{A}_+(x) \right]; \\ W_{\pm}[v] &= v_{\pm} \frac{1}{D_+} \partial_{\pm} = v_{\pm} - g v_{\pm} \frac{1}{2} v_{\pm} + \cdots \end{split}$$

 \mathscr{A}_+ : reggeons, v_{μ} : gluons

$$\partial_{\pm}\mathscr{A}_{\mp}(x) = 0, \quad \sum_{i=0}^{r} k_i^{\pm} = 0$$

 Reggeon fields invariant under local gauge transformations

The Light-Cone Regularization

Tilting the light-cone vectors appearing in the induced vertices

[Collins & Soper'81,'82] Korchemsky & Radyushkin'87 [Hentschinski & Sabio Vera'11]

 Regularization needed to make sense of non-local operators $\frac{1}{\partial_{\perp}}$

0000

- Rest of divergences managed with dimensional regularization
- $\rho \to \infty$ in the high-energy limit
- Pole prescription: principal value [Hentschinski'11]

The Gluon Regge Trajectory

Amplitudes in Multi-Regge Kinematics: Reggeization

$$\mathcal{M}_{2\to 2+n}^{\mathrm{LLA}} = \mathcal{M}_{2\to 2+n}^{\mathrm{tree}} \prod_{i=1}^{n+1} s_i^{\omega(t_i)}$$
 [Lipatov'76] $\omega(t) = \mathrm{Regge}$ Trajectory

• Regge trajectory describes virtual contributions in the BFKL equation [Fadin, Kuraev & Lipatov'75,'77]; [Balitsky & Lipatov'78]

$$\omega \tilde{f}_{\omega}(\boldsymbol{q}_1, \boldsymbol{q}_2) = \delta^2(\boldsymbol{q}_1 - \boldsymbol{q}_2) + \int d^2 \boldsymbol{\kappa} \; \mathcal{K}(\boldsymbol{q}_1, \boldsymbol{\kappa}) \tilde{f}_{\omega}(\boldsymbol{\kappa}, \boldsymbol{q}_2)$$

One-Loop Trajectory

Effective Action Diagrams

Enhanced means $\propto \rho = \ln s$

Usual QCD Diagrams

(+ non-enhanced contributions)

2-Loop Effective Action Diagrams

The Regge trajectory is an extremely important quantity:

- BFKL equation controls asymptotic rising of crosssections at very high energies
- Includes as a piece the **cusp** anomalous dimension

$$\omega(-t) = \frac{1}{2} \int_{-t}^{\mu_{\rm IR}^2} \frac{d\mathbf{k}^2}{\mathbf{k}^2} \Gamma_{\rm cusp}(\alpha_s(\mathbf{k}^2)) + \Gamma_R(\alpha_s(-t)) + \text{poles in } (1/\epsilon_{\rm IR})$$

It is known

- at NLO in QCD [Fadin, Fiore & Kotsky'96]
- to all orders in N = 4 SYM

[Kotikov & Lipatov'00; Beisert, Eden &

Staudacher'07: Bartels, Lipatov & S.Vera'09]

THE RECIPE to Compute the 2-Loop Gluon Trajectory $\omega^{(2)}$

- Determine the high energy limit of the 2-loop parton-parton scattering amplitude by dropping terms not ρ -enhanced (remember, $\rho = \ln s$)
- 2 Subtract non-local contributions to reggeized gluon self-energy to avoid double-counting
- 3 Divide by the tree-level HEL result
- Remove all terms corresponding to combinations of 1-loop trajectory and 1-loop impact factors (reggeon-parton scattering vertices)

Cancellation of ρ -divergences in full amplitude [High-Energy Factorization]

• Remove a term $\frac{1}{2} \ln^2(s/s_0) [\omega^{(1)}(t)]^2$ (logs arise from $s^{\omega} = 1 + \omega \ln s + \frac{1}{2!}\omega^2 \ln^2 s + \cdots, \quad \omega(t) = \omega^{(1)}(t) + \omega^{(2)}(t) + \cdots$

This is an example of a general procedure

The Subtraction Procedure

- In Lipatov's action, interactions between partons and reggeons assumed to occur at $\Delta y < \eta \ll \ln s$ (locality in rapidity)
- QMRK clusters connected by reggeon propagators (non-local in rapidity)

However, when considering loops...

- ☐ The constraint has to be enforced in the momentum integrals, e.g. with a cutoff in rapidity [Bartels, Hentschinski & Lipatov'07]

The Subtraction Procedure

- In Lipatov's action, interactions between partons and reggeons assumed to occur at $\Delta y < \eta \ll \ln s$ (locality in rapidity)
- QMRK clusters connected by reggeon propagators (non-local in rapidity)

However, when considering loops...

- ☐ The constraint has to be enforced in the momentum integrals, e.g. with a cutoff in rapidity [Bartels, Hentschinski & Lipatov'07]
- □ Alternatively, subtract non-local contributions, mediated by a reggeized gluon. In our case...

The Subtraction Procedure

- In Lipatov's action, interactions between partons and reggeons assumed to occur at $\Delta y < \eta \ll \ln s$ (locality in rapidity)
- QMRK clusters connected by reggeon propagators (non-local in rapidity)

However, when considering loops...

- ☐ The constraint has to be enforced in the momentum integrals, e.g. with a cutoff in rapidity [Bartels, Hentschinski & Lipatov'07]
- □ Alternatively, subtract non-local contributions, mediated by a reggeized gluon. In our case...

Contributions to Unsubtracted 2-Loop Gluon Self-Energy

000

(only first diagram ρ -enhanced)

Subtractions

2-Loop Gluon Trajectory: Quark Part

Contributions to Unsubtracted 2-Loop Gluon Self-Energy

000

(only first diagram ρ -enhanced)

Subtractions

2-Loop Gluon Trajectory: Quark Part

Contributions to Unsubtracted 2-Loop Gluon Self-Energy

000

(only first diagram ρ -enhanced)

Subtractions

Result of the Computation

Exact Agreement with Previous Two-Loop Computation

[Fadin, Fiore & Kotsky'96; Fadin, Fiore & Quartarolo'96; Blümlein, Rayindran & van Neerven'98; Del Duca & Glover'01]

$$\omega_{n_f}^{(2)}\left(\epsilon, \frac{\boldsymbol{q}^2}{\mu^2}\right) = \bar{g}^4 \left(\frac{\boldsymbol{q}^2}{\mu^2}\right)^{2\epsilon} \frac{4n_f}{\epsilon N_c} \frac{\Gamma^2(2+\epsilon)}{\Gamma(4+2\epsilon)} \\ \times \left[\frac{2\Gamma^2(1+\epsilon)}{\epsilon \Gamma(1+2\epsilon)} - \frac{3\Gamma(1-2\epsilon)\Gamma(1+\epsilon)\Gamma(1+2\epsilon)}{\epsilon \Gamma^2(1-\epsilon)\Gamma(1+3\epsilon)}\right]; \\ \bar{g}^2 = \frac{g^2 N_c \Gamma(1-\epsilon)}{(4\pi)^{2+\epsilon}}, \quad d = 4+2\epsilon$$

And now the computation of the rest of the trajectory is almost done... [Chachamis, Hentschinski, JDM & Sabio Vera, to appear soon]

- More difficult contributions, require a more powerful strategy
 - Reduction to master integrals using integration by parts codes e.g. [Smirnov & Smirnov'08]
 - Obtention of Mellin-Barnes representations and computation of residues relevant in Regge limit [Smirnov'99]
- General powerful procedure, which can be automatized

Conclusions

☐ Lipatov's effective action is a very powerful tool for computations
n the high-energy limit
☐ The proposed regularization-subtraction procedure gives a
systematic way to employ this action for loop computations
$\hfill \square$ Quark piece for 2-loop trajectory: exact agreement. Agreement also
Found for 1-loop jet vertex

Yet to be done...

- ★ Check further the procedure (e.g. computation of gluon jet vertex)
- ★ Automatization of the computation