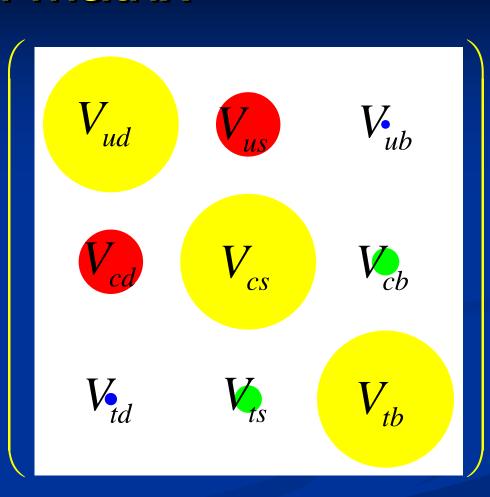
Andreas Crivellin ITP Bern

Rare decays and MSSM phenomenology

Outline:


- The SUSY flavor and CP problem
- Constraints from flavour observables
- Where are large effects still possible?
- SUSY_FLAVOUR v2.0

CKM matrix

- CKM matrix is the only source of flavor and CP violation in the SM.
- No tree-level FCNCs.

 $V_{CKM} =$

- Off-diagonal CKM elements are small
 - Flavor-violation is very suppressed in the SM.

SUSY flavor (CP) problem

- The sfermion mass matrices are not necessarily diagonal (and real) in the same basis as the fermion mass matrices.
- Especially the trilinear A-terms can induce dangerously large flavor-mixing (and complex phases) since they don't necessarily respect the hierarchy of the SM fermions (CKM matrix).
- The MSSM possesses two Higgs-doublets: Flavor-changing charged Higgs and (loop-induced) neutral Higgs interactions.
- Possible solutions:
 - MFV D'Ambrosio, Giudice, Isidori, Strumia hep-ph/0207036
 - Flavor-symmetries
 - effective SUSY Barbieri et at hep-ph/10110730
 - Radiative flavour violation (RFV) A.C., Hofer, Nierste, Scherer, hep-ph/11052818

Squark mass matrix

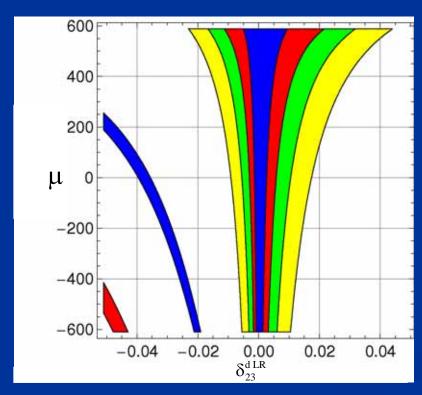
$$\mathbf{M}_{\text{e}/\text{o}}^{2} = \begin{pmatrix} \mathbf{M}_{\text{LL}}^{\text{e}/\text{o}2} & \Delta^{\text{e}/\text{o}LR} \\ \Delta^{\text{e}/\text{o}LR}^{\dagger} & \mathbf{M}_{\text{RR}}^{\text{e}/\text{o}2} \end{pmatrix}$$

Bilinear Terms

$$\mathbf{M}_{\mathrm{LL}}^{\text{Hol}} = \begin{pmatrix} \left(\mathbf{M}_{\mathrm{LL}}^{\text{Hol}}\right)_{11} & \Delta_{12}^{\text{Hol}} & \Delta_{13}^{\text{Hol}} \\ \Delta_{12}^{\text{Hol}} & \left(\mathbf{M}_{\mathrm{LL}}^{\text{Hol}}\right)_{22} & \Delta_{23}^{\text{Hol}} \\ \Delta_{13}^{\text{Hol}} & \Delta_{23}^{\text{Hol}} & \left(\mathbf{M}_{\mathrm{RR}}^{\text{Hol}}\right)_{33} \end{pmatrix} \quad \mathbf{M}_{\mathrm{RR}}^{\text{Hol}} = \begin{pmatrix} \left(\mathbf{M}_{\mathrm{RR}}^{\text{Hol}}\right)_{11} & \Delta_{12}^{\text{HoR}} & \Delta_{13}^{\text{HoRR}} \\ \Delta_{12}^{\text{HoRR}} & \Delta_{13}^{\text{HoRR}} & \Delta_{23}^{\text{HoRR}} \\ \Delta_{13}^{\text{HoRR}} & \Delta_{23}^{\text{HoRR}} & \Delta_{23}^{\text{HoRR}} \end{pmatrix}$$

Left-Right Terms

$$\begin{split} & \Delta_{ij}^{d\,LR} = -v_d \left(\mu \, tan \left(\beta \right) Y_i^{d(0)} \delta_{ij} + A_{ij}^d \right) \\ & \Delta_{ij}^{u\,LR} = -v_u \left(\mu \cot \left(\beta \right) Y_i^{u(0)} \delta_{ij} + A_{ij}^u \right) \end{split}$$


$$\tan(\beta) = \frac{v_u}{v_d}$$

$$\delta_{ij}^q = \frac{\Delta_{ij}^q}{m_{\phi_0}^2}$$

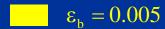
Constraints on the sfermion mass matrices from flavour-observables

$B \rightarrow X_{s(d)} \gamma$

- Very strong constraints on $\delta_{23,13}^{d LR}$, $\delta_{32,31}^{d LR}$
- Strong constraints on $\delta_{23,13}^{dLL,RR}$ if $tan(\beta)$ is large
- $_{\rm H^+} > 300 {\rm GeV}$ if no cancellations occur. Misiak et al. arXiv:0609232

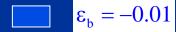
$$m_{\phi} = 1000 \text{GeV}$$

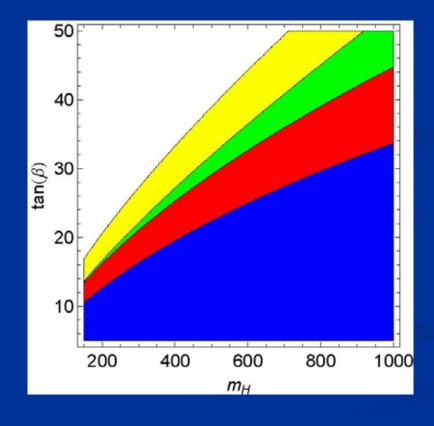
$$m_{g_6} = 2000 \text{GeV}$$

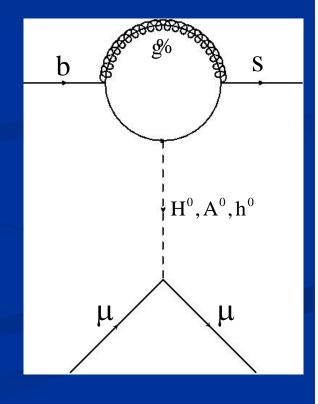

$$m_{g_6} = 1500 \text{GeV}$$

$$m_{\%} = 1000 \text{GeV}$$

$B_{s,d} \rightarrow \mu^{+}\mu^{-}$


- Neutral Higgs contribution dominant for large tan (β)
 (non-decoupling)
- Even for MFV sizable contributions


Allowed regions for RFV



$$\varepsilon_{\rm b} = 0.01$$

$$\varepsilon_{\rm b} = -0.005$$

B_{s,d} mixing

- At low $tan(\beta)$ constraints on $\delta_{13,23}^{dRR}$, $\delta_{13,23}^{dLL}$
- Double-Higgs penguin contributions at large tan (β)
 (if the Peccei-Quinn symmetry is broken)

Kaon and D mixing

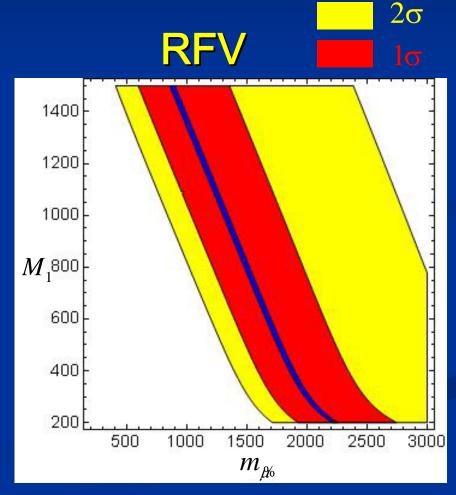
- Stringent constraints on $\delta_{12,21}^{d LR}$, $\delta_{12,21}^{u LR}$, $\delta_{12}^{d RR}$, $\delta_{12}^{u RR}$, $\delta_{12}^{d LL}$, $\delta_{12}^{u LL}$
- Constraints on the mass splitting of left-handed squarks.
 Because of the SU(2) relation

$$M_{LL}^{6/2} = V^{\dagger} M_{LL}^{6/2} V$$

effects in Kaon and D mixing cannot be simultaneously avoided for non-degenerate squarks.

Allowed mass splitting

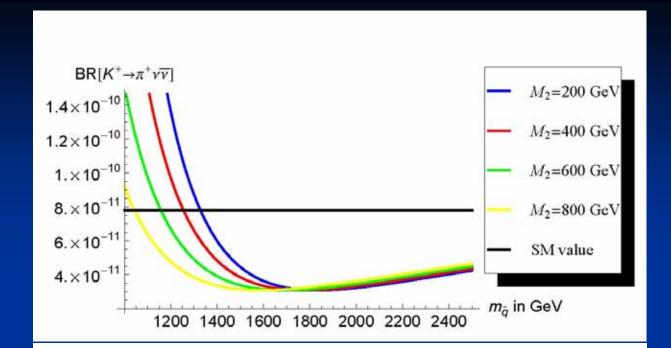
- Non-degenerate squark masses are allowed.
- More space for models with abelian flavor symmetries.
- Interesting for LHC benchmark scenarios.

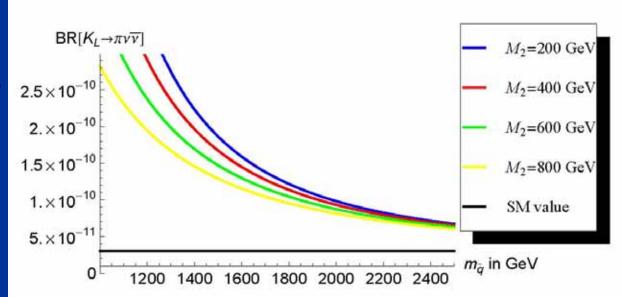


Anomalous magnetic moments and EDMs

Constraints on

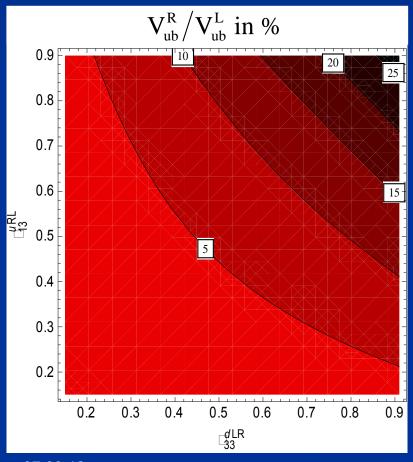
Re
$$\left[\delta_{11,22}^{1 \text{ LR}}\right]$$
, Re $\left[\delta_{11}^{d,u \text{ LR}}\right]$
Im $\left[\delta_{11,22}^{1 \text{ LR}}\right]$, Im $\left[\delta_{11}^{d,u \text{ LR}}\right]$

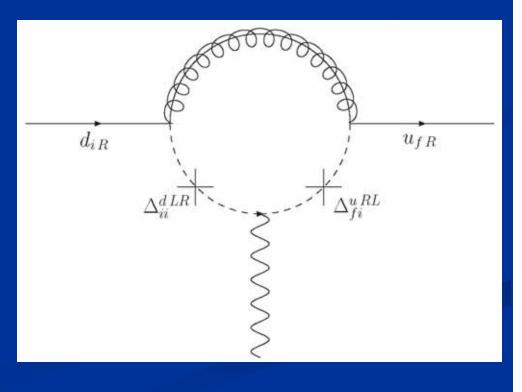

The deviation from the SM expectation of the anomalous magnetic moment of the muon can be explained with large tan (β) or large A-terms.


Where are large effects still possible?

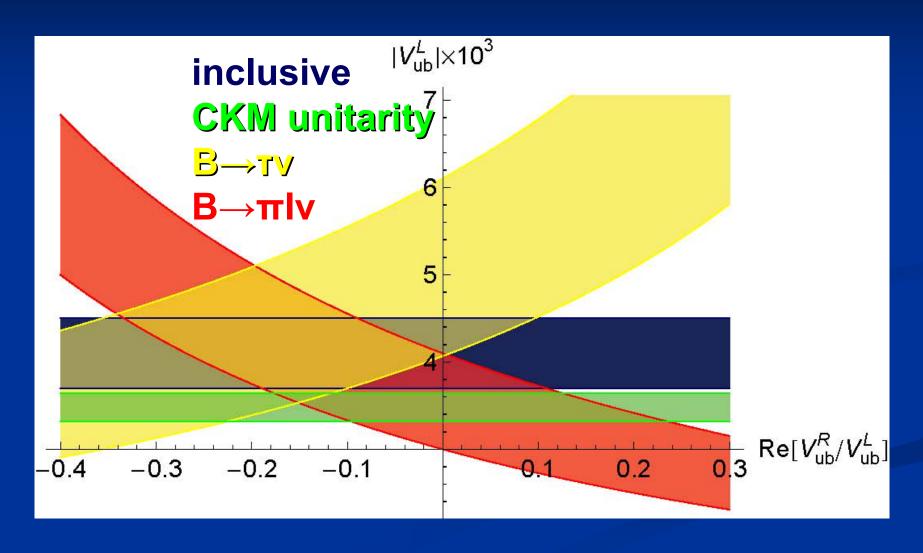
 $\delta_{13}^{u\,LR}\times\delta_{23}^{u\,LR}$

RFVeffects in K→πvv


Verifiable predictions for NA62


Right-handed W-coupling

AC, arXiv:0907.2461


 $\delta_{31}^{u\,LR} \times \delta_{33}^{d\,LR}$ generates V_{ub}^{R}

$$-i\frac{g_{\mathrm{W}}}{\sqrt{2}}\gamma^{\mu}\Big(P_{\mathrm{L}}V_{\mathrm{fi}}^{\mathrm{L}}+P_{\mathrm{R}}V_{\mathrm{fi}}^{\mathrm{R}}\Big)$$

Determination of Vub

SUSY_FLAVOUR v2.0

A.C., Janusz Rosiek, arXiv:1203.XXXX

Calculates in the generic MSSM:

- EDMs and anomalous magnetic moments
- $\bar{D}-D, \bar{B}_{s,d}-B_{s,d}, \bar{K}-K$
- $b \to s\gamma, \mu \to e\gamma, \tau \to \mu\gamma, \tau \to e\gamma$
- $K_I \to \pi \nu \overline{\nu}, K^+ \to \pi^+ \nu \overline{\nu}$
- $B_{s,d} \to 1^+1^-, K_L \to 1^+1^-$
- $\blacksquare B \to \tau \nu, B \to D\tau \nu$

Including the important resummation of all chirally enhanced effects A.C., L. Hofer, J. Rosiek arXiv:1103.4272

Conclusions

- The flavour structure of the MSSM is constrained from many flavour-observables.
- Except $δ_{13,23}^{u\,RL,RR}$ all flavour-changing elements of the squark mass matrices are stringently constrained
- Radiative-flavour-violation is an interesting alternative to MFV.
- $\delta_{13,23}^{uLR}$ might generate large effects in $K \to \pi \nu \bar{\nu}$ or an anomalous W-coupling which affects the determination of V_{ub} and enhanced single top production.
- Chirally enhanced corrections are numerically important.

