symmetries, currents and effective field theory —

My favorite examples of effective field theories beyond perturbation theory
involve QCD. This is because I fell in love with the bizarre zoo of low energy
particle physics 50 years ago and I have grown up with this physics. If I were
learning it today, it would be much easier, because I know about QCD and
effective field theory. So I am going to give some “practical” examples of
applications to QCD that illustrate important features of EFT.

Isospin and low energy [3-decay of nuclei.
low energy chiral dynamics of mesons and baryons
heavy quark effective theory ?

soft-colinear-effective-theory ???



current-current weak interactions from W exchange
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J* is the charged, left-handed “weak iso-spin” current — more tensor products
— charge and family #
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then the current is j# = j1" + i j5 — electroweak “isospin”
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then the current is j* = j1' + i j4 — electroweak “isospin”
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J* jL — “leptonic weak interactions”” — perturbation theory works great

(Gt 3, + 30 b, + i ab, + i ab)

g ,Tl ., — “hadronic weak interactions” — perturbation theory doesn’t work at all
for light quarks and is complicated even for heavy quarks

i j:w + i j;u — “semi-leptonic weak interactions” — perturbation theory is

useful — to lowest order in electroweak ints, amplitudes factor into a leptonic
part which is calculable times the matrix element of a hadronic current

M= Gr (€ outj;|¢ in) (h out|j] [hin) or (¢out|j} |¢in) (h out|j}|h in)
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thus we are interested in matrix elements of hadronic currents — for the light
quarks u, d and s, these are highly constrained by symmety
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quark field g vector Dt = 0" +igT,G" igT,G* = [D*, D"|
in 3D color space is “covariant GH" is “gluon
+ 6D flavor space derivative” field—strength”

T, 3 x 3 traceless 1 M, diagonal
Hermitian matrices Te(T,T) = =6 in flavor space
in color space 2 u,d,c,s,t,b

color . qu _ yT,GrUT — LUU
gauge ¢ ¢ g
symmetry ¢ — Ugq G* — UGm Ut
T,’s are “color” charges like EM charge in QED binds quarks and antiquarks into
color—neutral combinations like photon exchange binds charged particles into
electrically neutral atoms — color—neutral combinations are

1 € .
qq and k194K
mesons baryons
vt = vkt and a* = ahit, where £, are 6 X 6
sources for the “vector” hermitian flavor

and “axial vector” currents generators



simple first step — focus on the vector current — we will come back to the axial
vector — and look at a world with only the u and d quarks — just isospin

o _ I .. _
L=(qgPq—qMyq)— ZGZ Gap—0VutaVhq

quark field ¢ DH = DHF4-it vt igT,G* + it vt = [D*, DY

3D color space = 0" +igT,GH G*"* is “gluon field—strength”
2D flavor space +ito vk v is isospin field—strength
T, 3 x 3 traceless Tr(T,Th) = Oup/2 M, diagonal
to 2 X 2 traceless ¢ ¢ in flavor space

= 04/2 Tr(tats) = dap/2 u,d
v# is a classical gauge field! — classical flavor gauge symmetry in addition to the

quantum color gauge symmetry

color —qgr 5 UT,GrUt — LU q—Ug  G™ — UGHUT
gauge sym g
isospin ta Ut — Ut utUT — éU@“Z/{T qg—Ug v — UvrUT

broken by mass term if m,, # my



isospin at low energies — [3-decay within a multiplet - say (3*Ar 31C1 31S)
the useful languages of group representations and heavy particle EFT

first consider a world in which m,, = my, and @ = G = 0 so isospin is
unbroken and there are many stable particles

look at VERY low energies (say less that 10 MeV) at some isolated multiplet
with isospin Z of (say for simplicity) sinless nuclei — ® — a 2741 component
vector in isospin space — mass M > 10 MeV

BUT - you say - why am I interested in @ at all if I am stuck at low energies?
one answer is stability — somebody gave you a ¢ and you can’t get rid of it!

no relativity — preferred frame in which your @ is at rest —
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where ;
t,, generate

Ko Ak 4L
D = 0"+ ityv, 2741 dim rep

[z, tg] = z’eamtf

convenient to label states and matrices by [tZ], raising and lowering operators, - - -
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L=29o" (D + +a 0 +o ) @
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motivation for this £ — want to remove the time dependence , e ~**? from the
boring kinematical part of the Hamiltonian, the constant M, and focus on the
interesting low-energy physics notice that M's appear only as 1/M and there are
no more DVs after the initial term — it is useful to see how this works in a free
theory

L=ol(=0" = M%o TP o(x) e Mb(x)/V2M

one
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at this point, we have actually not changed the physics — the equation of motion
for @ is still quadratic in 9° — and therefore has two solutions




d-0 0%\ - E? 52
<28 + Wi 2M)<I> 0 or E+2M Wi 0

E=\p>+M>—M or E=—\/p2+M>—M
WE ARE NOT INTERESTED IN THE LARGE NEGATIVE ENERGY!
we throw away this solution to change the physics to the effective field theory
we can get a L that gives us only the small positive energy solution perturbatively
by eliminating higher powers of £ using a momentum expansion — which we

can do explicitly by solving the equation of motion perturbatively in the small
momentum

9 E2 9 1 =9 E2 2
E = p — — p — p —_ — e
2M  2M 2M  2M \2M 2M

Another equivalent way to get L is to redefine the field
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E=\/p2+M2—-M or E=—\/p2+M2—-M

WE ARE NOT INTERESTED IN THE LARGE NEGATIVE ENERGY!!
throwing it away changes the physics to the effective field theory
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or expanding and returning to position space

o 0.0 (907
_ ot 0
C @(18+2M+8M3+ )cp

just choose your fields properly to avoid all higher powers of 9°
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just choose your fields properly to avoid all higher powers of 9°

this works even in the presence of interactions! — terms with a D° acting on ®
or ® can be eliminated by a redefinition of ® order by order in the derivative
expansion — using the equation of motion perturbatively to remove D

so for example iA (DijDO n DODij> can be eliminated

a term like by field redefinition
while . ey can be . Jj 0 g1 j 350
terms like 2AD'D'D replaced by A[[D, D], D] = A[D, tavg ]
_ DIDI to[D7,0%]  (DIDI)?
L= (D S ) @
(Z o T T T
because there is only one D° the quantum mechanics is simple
oL

so that ® and ®' are annihilation and creation opeators resp



simple first step focus on the vector current — we will come back to the axial
vector — and look at a world with only the u and d quarks — just isospin

oL
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L=(qgPq—qMyq)— ZGZ Gop—0VutaVh q =—q7"taq

quark field g Dt = DHF+it vt igT,G"™ + it vt = [D*, D]

3D color space = O +igT,G" G*" is “gluon field—strength”
2D flavor space +ito vk v 1s isospin field—strength
T, 3 x 3 traceless Te(T,Ty) = 6 /2 M, diagonal
to 2 x 2 traceless ¢ ¢ in flavor space

= 04/2 Tr(tats) = das/2 u,d

vk 1s a classical gauge field! — classical flavor gauge symmetry in addition to the
quantum color gauge symmetry

color —qGr 5 UT,GrUT — LUBMUT q—Ug  G™ — UGHUT
gauge sym g
isospin tavl — Ut U — SUOUT g — Uq o™ — Uv™ U

coefficient of —v* is the current j4 = gv* t, ¢ in the EFT!
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b p “ A2 scale A
- Ja - p+p’ L “kinematic”
b p *\ 2M scale M

I haven’t really tried to get signs right here — life is too short
Ward identities are automatically implemented by gauge invariance
isospin breaking — two effects (slightly interrelated as we will see)
EM interactions — include photons in effective theory

m,, # mgy — the method of spurions



simple first step focus on the vector current — we will come back to the axial
vector — and look at a world with only the u and d quarks — just isospin

. ~ | _ R
L=(qPq—qM,q)— ZGZ Gopw—0 7V (tavh+eQA,) qu’ F..,

quark field g Dt = DHF+it vt igT,G" + it vt = [D*, D]

3D color space = O +igT, G G*" is “gluon field—strength”
2D flavor space +ito vk v is isospin field—strength
T, 3 x 3 traceless Tr(T,T}) = Sup/2 M, diagonal
to 2 X 2 traceless ¢ ¢ in flavor space

= Ja/2 Tr(tatﬁ) = 6045/2 U, d

v# is a classical gauge field! — classical flavor gauge symmetry in addition to the
quantum color gauge symmetry

color . Gr  UT,GrUT — LUMUT g —Uq G — UGHU!
gauge sym g
isospin oVl — UtoutUT — éuauuT qg—Ug v — UvMUT

spurion method — treat M, and M, — UMUT put small M, and
e() as variable classical fields eQ) — UeQU' e( as fields in EFT



some technical but important details

we( 8) e=(4 5)

both transform like a combination of a singlet and the 3rd component of an
isospin triplet
M, =ml+06m= =ml+omt; Wherem = (m,+mq)/2
2 is the average mass
€ 95 _ € ddm =m, —mgis
eQ=-I+e==—-I+et an u d
¢ 6 2 6 ’ the mass difference

the I terms do not break the isospin symmetry so we won’t be very interested in
them (at least for now)

with an unknown coefficient
depending on the dynamics

in the
EET omts o< om t%

In EFT, no matter how the field ® ransforms under isospin, we can always write a
term like

tr(M,t,) ®tEd = sm T ®  or  tr(eQt,) PO = e DIED



what about second order

in the 2nd order symmetry (s )2 ( tI)2 with an unknown coefficient
EFT breaking eciom) it depending on the dynamics

tr(M,t,) tr(Mty) ®THEHED = sm? T (1)*®

isospin is particularly simple because the product of two irreducible
representations never contains any irreducible representation more than once —
but the moral is general — just put the symmetry breaking terms in the effective
theory and build the most general terms you can
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include symmetry breaking from mass term
t [ =m0 T om .o 1
L=3"|iD +b§mt3+cT{zD,t3}+~- o

the b terms gives mass splittings within the isospin multiplet — in our world the
d is heavier than the u so dm < 0 — this effect is just counting the number of
slightly heavier d quarks

the interesting thing is that the ¢ term gives no symmetry breaking contribution to
the current — can eliminate it by field redefnition (like all D° terms)

o — <1—ct15—m) o

if you just calculate it without field redefinition you will find that the ém in the
wave function renormalization cancels the Jm in the coefficient of v¥

this 1s actually not very important for isospin, because as we will see, there are
other effects — but for SU(3) it is important, and is called the Ademollo-Gatto
theorem



EM contributions include the coupling to the photon we get by putting () A* in
the covariant derivative — and of course that means that the electromagnetic
current is related to the currents coupled to v

historically interesting because Feynman + Gell-Mann used this in 1958 to relate
weak vector currents in semileptonic decays

Q" (ty £ ita)q
to the isovector part of the hadron electromagnetic current
qY"tsq

these currents can be measured! both in scattering and in decays

lepton-hadron hadron semi-
scattering leptonic decay



of course, quarks were unknown at the time — this was before Gell-Mann had
understood SU(3) — so the connection that Feynman + Gell-Mann found was an
important clue to the stucture of the strong interactions as well as the weak
interactions



also quantum effects from photons

eQ§ Q)
o )

the long distance part of graphs like this are present in the low energy theory —

but as we have seen in our discussion of matching — the high energy part appears

as a new local term in the EFT o< av — the joke is that a A ~~ dm so isospin
breakings have similar sizes — as far as we know this is just a bizarre accident

proportional to two factors of e() because the photons hook onto quarks
somewhere inside the blob

important because each factor of e() contains a piece that transforms like the
neutral component of an isospin triplet — two factors of £

thus there are two ¢Zs for each photon line so one photon can do the work of two
oms
L= of (z’DO +admtE +bal () +catiiD L + - ) i)



L= (iD’+admti +baA(5)’ +cat; iDt+ )@
a and b are mass splitting terms — only two parameters — not very interesting
for small tZ — but very important for large multiplets

c term is the leading term that contributes to symmetry breaking in the current

this is less complicated than it looks — ignore the mass terms (which don’t affect
the current) and use the magic of field redefinition

L= @T(zpo+cat§z'p0t§+--->q>
D=0t +itlet D= (1 - ca(t§>2/2>&> =
(1 ca()?/2) (D" +catf D" G + ) (1 ca(F)?/2)®
= <i>T<z'D° —calth [t,iD%]/2 + - - -)cf

=l (z'ao — 20 —caltL [tF,i0° — tE00])/2 + - - -)é

= (fT<i(90 —tﬁvg%—ca(t%v?%—tgvg)ﬂ%—---)(f)

changes the normalization of the charged current but not the neutral current



the moral is that we know a great deal about the vector isospin currents from first
principles

the leading terms at low energy and momentum transfer are completely
determined by the symmetry — not just the form, but the normalization

dynamics appears in the form of higher dimension operators and it is highly
constrained by the isospin symmetry

dynamics also appears in the symmetry breaking which can be analyzed in
perturbation theory in the symmetry breaking parameters

this is how we know V,,; in the KM matrix — superallowed -decays are decays
from one member of an isospin multiplet from another so this picture applies —
if the states have spin O (which is all we have discussed so far) the axial vector
current cannot contribute because of Lorenz invariance and parity — you cannot
build any interactions of a single axial vector source



the stable baryons, V,,; and SU(3)

three extensions — spin 1/2 — SU(2) — SU(3) — axial vector current
contribute

we will look at the first two of these first — we will have to wait until we see
how to deal with SU(3) x SU(3) symmetry — but it is interesting to see how the
vector currents work



the eightfold way —

1. Right view

2. Right intention
Right speech
Right action
Right livelihood
Right effort

Right mindfulness

A

Right concentration
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Pauli matrices embedded in first two rows and columns

Ty = Aa/2

1

so tr(1,Ty) = §5ab

[Taa Tb] =1 fabcTc



now we would say that
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the light baryon octet

= A +
atw o E P
i - -0 A
Bj = by 7 + N
= =0 —2A
- - T
+ U is a special generators act
B = UBU'  where unitary 3 X 3 matrix by commutation

U=1+ie,T,+ -+ B — B+ie[T,,B] 0B = +ie,[1,, B]

the matrix form is particularly convenient for explicit calculations in simple case,
because it is easier to do matrix multiplication than to carry around 8 x 8
matrices — but it can get confusing and difficult to see which indices are
contracted with which — so you should be able to go back and forth from one
notation to the other — B, o tr(\, B)



use B to describe the low-energy baryon — matrix structure gets the flavor right
— what about spin?

just ordinary angular momentum because we have broken Lorentz invariance by
going to the frame in which the baryon is at rest — so B is a Pauli spinor and a
flavor matrix

d
L=tr (BTz’DO(B) +i % Blojen|Tuvy", B) + 5 Blojejre{Tovy', B} + - )

where D"(O) = 0"O + ivh[T,, O]
symmetry breaking
m, 0 0 2/3 0 0
My=1 0 mq O and Q=1 0 —1/3 0
0 0  msg 0 0 —1/3

My + Mg + My My + Mg — 2my

3 V3

treat symmetry breaking perturbatively — use our isospin analysis within isospin
multiplets — ignore isospin breaking and ) when looking at SU (3) breaking
effect — here the Ademollo-Gatto theorem is really important

Mq: ]+(mu—md)T3+ Tg




the light baryon octet mass terms

= A +
atw o E P
i — -3 A
—=— =0 —2A
- - V6 /i

tr (myB'B + o/ B'TyB + 0/ B'BT}) = tr (m¢B'B + aB'T,B + bB' BT,)

000 mo (NTN + 12 + ATA + 2%
where T,=(0 0 O

001 +a (224 2ATA/3) + b (NTN + 2ATA/3)
ms = my ms =mg+a my = mg+b mA:m0+§(a+b)

Gell-Mann — Okubo

2 (my +mz) = 3ma +my formula



renormalization of currents - first order in 1/,
£ = tr( BUD(B)+B'iD (ay M, B+az BMy)+ (a1 B Myt M, B )iD(B)+ -

avoid D*(M,)

where  D"(0) = 0"O + ivy[T4, O] T confusing

the a; and a; terms can be removed by field redefinition — if you don’t remove
them it doesn’t matter - you just have to do the calculation right — 9° term
determines the normalizations of the states — this is what field redefinition is all
about



renormalization of currents - second order in 1/,
L=tr (BM'DO(B)) + antr(B*quO(MqB)) + amtr(MunDO(BMq))

+a12tr(BTquD0(BMq) + M,BND (M, B)) L

avoid D*(M,)

where D"(0) = 0"O + k[T, O] t confusing

now it is not so obvious what terms can be removed by field redefinition — but
again, if you don’t remove them it doesn’t matter - you just have to do the
calculation right — 9° term determines the normalizations of the states



Exercise 4. I like to think about worlds slightly different from ours. So imagine
a world in which the u, d and s quarks are just like they are in our world, but the
c quark is lighter, and almost degenerate with the s quark. In this world, there
would be two approximate SU (2) symmetries, the usual isospin symmetry under
which (u, d) transforms as a doublet, and “isospin2” under which (c, s)
transforms as a doublet. And these two SU(2) would fit into an approximate
SU(4) symmetry, which is the analog of Gell-Mann’s SU (3) in this world.

Find the SU (4) representations of the light spin 1/2 and spin 3/2 baryons in this
world and explain how they decompose into representations of the two SU(2)s.
I am not assigning this because it is a little more involved, but if you are bored, it
is really fun to use the analog of the Gell-Mann — Okubo formula to calculate
the masses in this toy world. They can all be expressed very simply in terms of
the masses in our world.



the physics of spontaneously broken continuous symmetry — a mechanical
analogy

transverse waves in invariance under translations ©r — = + ¢
a string described
by wave function ¢ (z)




the physics of spontaneously broken continuous symmetry — a mechanical
analogy

transverse waves in invariance under translations * — = + ¢
a string described normal modes ¢ (z + ¢) x ¢(z)
by wave function ¢ (z) = normal modes e**




the physics of spontaneously broken continuous symmetry — a mechanical

analogy
transverse waves in invariance under translations x — x + ¢
a string described normal modes ¥ (x + ¢) oc ()
by wave function ¢ (z) = normal modes e'kx

dispersion relation w?(k?) oc
restoring force for the
k mode from mechanical
properties of the string
(tension, stiffness, etc)



the physics of spontaneously broken continuous symmetry — a mechanical

analogy
transverse waves in invariance under translations © — = 4 ¢
a string described normal modes ¢ (z + ¢) x ¢(z)
by wave function ¢ (z) = normal modes e**

dispersion relation w?(k?) oc  invariance under translations y — y + d
restoring force for the — normal modes already fixed
k mode from mechanical symmetry spontaneously broken
properties of the string
(tension, stiffness, etc)



the physics of spontaneously broken continuous symmetry — a mechanical

analogy
transverse waves in invariance under translations © — = 4 ¢
a string described normal modes ¢ (z + ¢) x ¢(z)
by wave function ¢ (z) = normal modes e**

— - —————m = e T T T e

dispersion relation w?(k?) oc  invariance under translations y — y + d

restoring force for the — normal modes already fixed
k mode from mechanical symmetry spontaneously broken
properties of the string tells you about the dispersion

(tension, stiffness, etc) relation



the physics of spontaneously broken continuous symmetry — a mechanical

analogy

transverse waves in
a string described
by wave function ()

invariance under translations z — = + ¢

normal modes 9 (z + ¢) x (x)
= normal modes e***

dispersion relation w?(k?) oc

restoring force for the
k mode from mechanical

properties of the string

(tension, stiffness, etc)

invariance under translations y — y + d

— normal modes already fixed
symmetry spontaneously broken
tells you about the dispersion
relation w? — 0 as k? — 0



I like this example because I think it survives the onslaught of quantum
mechanics!

normally quantum mechanics destroys spontaneous symmetry breaking — even
if a classical system has degenerate ground states that break symmetry — like the
double well potential — the quantum mechanical ground state is symmetric

()

v " l|

the reason is superposition and the uncertainty principle — the states spread out
around the classical minima because of the uncertainty principle — then the
wave functions around the classical minima interfere constructively and the
symmetric state has the lowest energy — a very general phenomenon —
continuous symmetry also — like a particle moving freely on a circle



simplest field theory model with spontaneously broken continuous symmetry

invariant under

1 "
£ =350.00" 6 b+

The conserved Noether current is 9°¢, so we would normally expect

Q- / 0°6(7 #)d*r and U, |0) = |0)

to be a conserved charge generating the transformation.
But this cannot be because

U. = ¢e"?  would satisfy UL, gzﬁUcT =¢p+c

and

(01610) = (O U110) = (01(6 +)[o) = (Olafo) +¢ O



the trouble is that () is not very well defined — so consider a smeared version of

Q
Q)\(t> = /6_1712/2)\2 80¢(37, t) ddy Q)\(t) g0cCs to Q

as A goes to 0o

Exercise 5. Calculate @) ¢(Z, t) e7c @ (®),

If |0) is a vacuum state satisfying (0|¢|0) = 0, then @, () |0) is a well-defined
normalized state. But if you calculate

FA) = (0] W)

you find that f(\) = e=<*/327° 50 f(A) = 0 as A — oo.

So the state €@*(*) |0) that wants to become the “transformed vacuum” as

A — oo is actually orthogonal to the vacuum in the limit. It is easy to show that it
also becomes orthogonal to any state obtained by acting on |0) by fields in a finite
region of space. So it is an equivalent vacuum, but it is completely disconnected
from all the physical states built on the original vacuum. So the transformation is
taking us to a completely equivalent, but completely disconnected Hilbert space

continuously oo # of equivalent spaces labeled by ¢ — supersection rules



the key, clearly, is the particles which transform inhomogeneously under the
symmetry — they have to be massless as the ¢ is trivially in our toy theory — but
the problem is precisely the “global” nature of the symmetry — this mess
happened because we insisted on thinking about a symmetry that is spread out
over all of infinite space — the transformed vacuum is built out of “particles”
whose wave function is similarly spread out, and this has negligible overlap —
this saves SSB from the ravages of QM — and it means that what the symmetry
tells us is quite different from what happens in Gell-Mann’s SU (3) — we are not
interested in () — be we are interested in () for finite \ because even though the
limit A — oo is seriously diseased — the approach to the limit provides very
interesting information — SSB relates states with different numbers of low
momentum particles — this is an absolute set-up for the kind of momentum
expansion that we use in EFT — and in fact, the clearest formulation of the
effective field theory paradigm arose from the attempts of Steve Weinberg and
others to make sense of spontaneously broken global symmetries — the fields
like ¢ in our stupid little example are massless in the symmetry limit and must
ALWAYS be included in the EFT while EVERYTHING ELSE should be left out
— and the symmetry tells us interesting things about the massless fields because
they ARE the transformations of the vacuum in a limited region. These are the
Goldstone bosons.



But in QCD, the axial SU(3) currents are like the Noether current 9°¢ in our
simple field theory example. If the quarks masses vanish, the axial SU(3)
currents are conserved, but corresponding charges do not exist on the Hilbert
space of physical states. The symmetry is spontaneously broken from

SU(3) x SU(3) down to Gell-Mann’s SU (3). With zero u, d, s quark masses
and a = Gy = 0, the light pseudo-scalars would become massless Goldstone
bosons. Their interactions at very low energy would be completely determined
by the symmetry because the fields that create them correspond to local
symmetry transformations of the vacuum.

In the stupid little example, there is no high energy theory. The Goldstone bosons
are the fundamental free fields.

The situation is very different for SU(3) x SU(3) — SU(3) and it is fun to
understand why in detail.



Quick discussion of the Goldstone theorem in perturbative QFT — consider
some real scalar fields ¢

¢ is some multiplet

1
L(p) = 5 @ 0"p —V(9) of spinless fields

V(¢) and L(¢) invariant under
symmetry generated by 7,

- where T, = T = -TF
00 = i€ 1o because ¢s are real

these fields transform homogeneously — SSB arises if these are not the right
fields to use at low energies which is what happens if the minimum of V' (¢) is
not at ¢ = 0 — suppose there is a minimum of V'(¢) at ¢ = F # 0 VEV

for convenience in a"
the analysis define Vivgu() = d¢;, ... 00;, V(9)

the condition that F be an extremum of V' (¢) as

and Fis a
minimum if

Fis an

extremum if Vi(F) =0

Vir(F) >0

perturbing around F )
shifted fields Vi) =V(F)+ Qﬁ;VJ(}") + —%%ij(}—) L
¢'=¢—F create particles 2



perturbing around F )
shifted fields V(g) =V(F)+ ¢, BCF) + Eqb;-gbﬂ/}k(}") .
¢'=¢—F create particles

Vi (F) is the meson mass-squared matrix — there are no tachyons in the free
theory about which we are perturbing

iy ;. P because F
0p =1e, T, = 60 =ie, 1,0 +ie, T, F doesn’t change
T,F is a set of
vectors in field space

is a real, symmetric and positive

— T
Kap = F T, Ty F ) . .
ab ath assume we’ve diagonalized

two kinds of generators — “unbroken” S, | S,F = 0 — “broken”

X, | XoF # 0 — the shifted fields ¢’ transform homogeneously under .S, and
inhomogenously under X, — S, form a subalgebra because

S,F =0and S, F =0 = [Sa, Sb]f =0

so S, generate the “unbroken subalgebra”



V(¢ +60) — V(¢) = iVi(d)ealTul i = 0

now differentiate and set ¢ = F
‘/jk(f>€a[Ta]klE + Vk(f>€a[Ta]kj =0= ‘/}k(f) [Xa]klﬂ =0

the nonzero vectors we get by acting on the VEV F with the broken generators
X, are eigenvectors of the mass matrix with eigenvalue 0 — massless particles
— this is the Goldstone theorem — F describes the “vacuum” — X, F is the
change we make to try to “transform” the vacuum — but instead of getting a new
vacuum, we get massless fields 77 X,¢’ that look like transformed vacuum in
some limited region of of space — these are the Goldstone bosons

FIX,¢



example — the linear o-model 2 x 2 matrix of spinless fields > — could couple
to chiral fermions g ¢q;,>qr + h.c.

SR N R where o and 7 are real fields and 7,
R - are the Pauli matrices — quaternions

where
TL=TF =71,/2
L = exp (il*TF)
R = exp (ir"TF)

transformation of > under . amL < R
or we can exponentiate the

.|_
infinitesimal transformations X LXR

leaves invariant the quaternion
“absolute value”

the magic of

P vty — 524 72
YN =XIN =0T, paili matrices

1 1 A
L= 50"00,0 + 0" muduma — 7 (0 + 72 - )

equivalent o
formulation o m 1 s A o 2
with real ¢ = o £—§a¢au¢—z(¢ ¢—f)
fields T3

SU(2) x SU(2) algebra < SO(4) algebra



with real fields 1 A )
we canapply the ¢ = (U) L=30"¢"0.0— " (70— f?)
Goldstone analysis 2 4

@) (7-b)

-+ amL s a R
0¥ = iep Ty —ixeR T, TL — Tf = Ta/2

5Lz:5L(a+ﬁ.ﬁ):f,%(aﬂ'f 7) =&
. T 220 o T w0 &2
5LO'— L 5 (5L7T— L2 L X 5 or i€ -T" = (_’L/Q —gL/QX)
OrY = 0p(o+iT-7) = —i(o +iT w)*R~I:*R E—HF —“RE—E’RXE
2 2 2 2
. . .o 7 0 €r/2
(SRO'— €ER 5 (SRTF— €R ER X or 1€R T = (—53/2 —gR/QX)



with real fields 1 A )
we can apply the o= ( ) L= —0“¢T8M¢ _Z (¢T¢ — f2)
Goldstone analysis 2 4

_ < 0 —&/2 )

gL/Q —gL/QX

A9

% g or ider-T
T _ax i 0 /2
2 5 O iegT _(—gR/Q —€R/2><)

0 — =R o 0
) €p-T .7:—<_€R/2>

vector or “diagonal”
=0 ,
/ symmetry is unbroken

chiral symmetry is
/2 spontaneiously broken

/ —
f the Goldstone FTXY o 7

the shifted o
fields are g =90=7 = bosons are



we can apply the
Goldstone analysis

F= (5) & - TLF = (5}2) e TRF = (_6%/2)

ngvEfL+fR gvgzgv(fL+fR)f

_ > 7L > TR T _ 0 0 B vector or “diagonal”
B (5\//2) + ( —5\//2) =0 symmetry is unbroken

™

with real fields 1 b 2
b= (‘Z) L= 50"6"0,0 - (676~ )

X=T4=TL_TF i€ X F = ( 0 ) chiral symmetry is

Eaf/2 spontaneiously broken
the shifted b ol=0—Ff the Goldstone T3 =
fields are V=0=71 = bosons are FrXG o

1 1 A
L= 58“0'(‘3#0’ + 58”7? -0, T — 1 (0" + [)? + mammq — f2)2

nomw

_]‘p/ ! 1 W= — A /2 /2
_580 ey —1-5(9 W-aﬂﬂ'—z((f +7Ta7Ta+2fO') mass



o-model deceptively simple because SU(2) x SU(2) algebra < SO(4)

L = exp (Z’laTaL)
R = exp (ir"TF)

3 X 3 matrix O

.I.
SU(3) x SU(3) symmetry ¢ LOR

ﬁ:

A A
tr (aﬂqﬁaﬂ@ - é@@*tr(w) - ?QCINI)T(I)(IDT + m2c1>c1ﬂ> + g (det ® + h.c.)

1 1
COfCDij = 561'2'”'26]']'1]'2@,'1]'1 q)izjz det ® = 5 Z q)ijCqu)ij

ij

1 invariance "
det ® = gtr (@Tcofé) of det ® — cof® — L*cof®R”
At 2\2 Ao Ny
=)~ (wow) )" o (001 £))

—%tr (CofCID — é@*) ((:0f<I>T — gfl)T) v (B) = f1/2

(@) — f1/2 breaks Exercise 6. Show that the traceless

® — ®f are massless fields
SU(3) x SU(3) = SU(3) and other fields are massive



the physics of spontaneously broken continuous symmetry — a mechanical
analogy

transverse waves in invariance under translations * — = + ¢
a string described normal modes 9 (z + ¢) x (x)
by wave function () = normal modes ¢**
e e e e e e e e e e e e e - TT——

dispersion relation w?(k?) oc  invariance under translations y — y + d

restoring force for the — normal modes already fixed
k mode from mechanical symmetry spontaneously broken

properties of the string tells you about the dispersion

(tension, stiffness, etc) relation w? — 0 as k? — 0

k — 0 gets closer and closer to a translation of the whole string
the spontaneously broken symmetry guarantees that there is no
restoring force as k — (0 — but notice that the system never gets
to k& = 0 — that would require motion of the whole infinite system



These perturbative models have spontaneously broken symmetry, but the simple
linear transformation laws for the fields obscure the fact that the low energy
interactions are completely determined by the symmetry.

Let’s try to visualize what is happening with a toy model of

SU(2) x SU(2) — SU(2) — SU(2) is nice because an SU(2) transformation
(at least a small one) looks like a rotation in 3D space, which can be specified by
what it does to the orientation of a set or coordinate axes, Z;, ¥J; 2; in some
internal space.

SU(2) ~ SO(3) specify vacuum by orientation in isospin space at each point in
ordinary space.






what happens when a Goldstone boson wave passes through?

_/ N

We will send a wave with this shape by a small square region

gb-b0.flv — looking at it from “above” the wave passes through
gb-a2.flv — nothing much happens — vacuum twists and untwists
gb-b1.flv — two waves one after another

gb-b2.flv — more interesting with two overlapping waves

gb-a8.flv — still nothing

gb-a4.flv — more interesting — these waves interacted




3 x 3 matrix ®

L = exp (il"T*
; Rt P ( a)
SU(3) x SU(3) symmetry ®— Lo

R = exp (ir"TF)

2w 000) =3 (sow) ) (o))

A ]
—73‘51" (cof® — %(ID ) (cof®! — g@T) ~s o (DY = f1)2
(®) = fI/2breaks SU(3) x SU(3) Il=r=L=R=u & — udul
— SU(3) — Goldstone bosons | = —r =L =Rl =¢ & — B¢
describe the GBs by a chiral transformation!

i how do &, h and
O =& (h+ f1/2)€ where h=h' é transfform?
b e i [ f / ¢’ = ¢ because
O — LOR = ¢/ (1 + f1/2)¢ 50 g m
tr ((@7®)") is invariant so the eigenvalues of 1
don’t change = h’ = uhu' (where u(L, R, £))

LE(h + fI/2)ERT = &u(h + fI/2u'¢ ¢ = Léu' = uéR'

nonlinear homogeneous on h — uhu' &2y LR
transformation crazy on & — Léu' = uéR1



3 x 3 matrix ® i L=exp (z’l“TaL)
SU(3) x SU(3) symmetry ¢ — Lok R = exp (ir"TF)

At

L =tr ((%(I)Ta“q)) -5 (tr(q)qﬂ) - %)2 - %tr ((q)q)T B {1_2)2)

—%tr (CofCID — %QD*) ((:0f<I>T — gfl)T) v (B) = f1/2

(®) = fI/2breaks SU(3) x SU(3) l=r=L=R=u & — udbul
— SU(3) — Goldstone bosons l=—r=L=R=¢ &= B¢
describe the GBs by a chiral transformation!

L is)f _ .+ no & dependence
O = (h+ [1/2)§ where h=h in the potential

(m«(@qﬂ) - %)2 tr ((CDCI)T - f;f) tr (cof® — L&) (cofdt — LBT)

mass to trh mass to h mass to ¢, h
SO(18) chiral U(1) just SU(3) x SU(3)
at low energies I?

—_ Tom — ¢2
only GBs survive 4 tr (8“[] 0 U) where U =¢

very low energy physics completely determined by symmetry and f




. N 1 . ~
L=(qPq—qM,q) - ZGZL Gapw—q7" (v, + aus) g

quark field g vector Dt = 0" +igT,G" igT,G* = [D*, D"|
in 3D color space is “covariant GH" is “gluon
+ 3D flavor space derivative” field—strength”

15, 3 x 3 traceless 1 M, diagonal
Hermitian matrices tr(1,Ty) = =0ap in flavor space
in color space 2 u,d, s

color . qu _, yT,GrUT — LUGU
gauge ¢ ¢ g
symmetry ¢ — Ugq G* — UGm Ut
T,’s are “color” charges like EM charge in QED binds quarks and antiquarks into
color—neutral combinations like photon exchange binds charged particles into
electrically neutral atoms — color—neutral combinations are

1 € .
qq and k194K
mesons baryons
vt = vkt and a* = ahit, where £, are 3 x 3
sources for the “vector” hermitian flavor

and “axial vector” currents generators



o 1 . _ _ .
L=1iq) q— ZGZ Gapw — V" (v + apys)g — @(s + ipys)g

. 1 . _ _ _ , _ .
=171 q— ZGZ Gapw — QY"0uqr — GrY'ruqr — qr(Ss +ip)qr — qr(s —ip)qr

Tus £y, s and p are classical Hermitian 3 x 3 matrix fields (tr¢, = trr, = 0) —
just assuming (at this point) no chiral U (1) symmetry (det term)???

Ty = Uy — Qy b, = v, +ay, s — M,

r, and ¢, fields are classical gauge fields for the SU(3)z and SU(3),
symmetries, and also the sources for the corresponding Noether currents

we want to build a low energy theory with the same symmetries —

qr — Rqr GB field U
qL—>LqL U— LUR!

r,— Rr, RN —iRJ, R r,— Rr,RT —iRJ, R
(,—~Le, Lt —iLo, Lt (,— Le, LN —iLo, Lt

s+ip— R(s+ip) LT s+ip — R(s+ip) LT



we want to build a low energy theory with the same symmetries —

an — Ran GB field U
q. — Lqp U— LUR!
rn— Rry Rl — iR, R r.— Rr, R — iR, R
0~ L0, LT —iLd, L 0, — LO,LT —iLd, L
s+ip — R(s+ip) Lt s+ip — R(s+ip) Lt

low energy theory effective £ depends on U and classical sources

DFU = 9#U + ithU — iUr* QCD also 5“&?
DrUT = orUT + irtUT — iU T# invariant on : "
DU — L DU Rf under g

T Trt i
DUt — RDPUT L parity p——p

most general effective Lagrangian consistent with the symmetries — only useful
because we can expand in powers of derivatives + sources and truncate the
expansion after a small number of terms

leading term 12
for s = p= 0 £<Ua T, ev 57])) = Ztr (DHUTD!LU)



most general effective Lagrangian consistent with the symmetries — only useful
because we can expand in powers of derivatives sources and truncate the
expansion after a small number of terms

leading term 12
oo I LU, ,p) = Tt (DMUTD,U)
_ . expand in
U = exp[2i11/f] powers of 11
X T+ 6 ot K+ S
HZWaTQZE T —5m+ g KO K- = K+
K~ KO —\/1677 W — KOT

expanding derivative f_2 wrrt 1 "
term in II 4 tr (D U DuU> 9 L0,

1 _
=3 (0,7°0" 7 + 9,n0"n) + Oyt O~ + O, KTO'"K~ + 9,K°0"K°

properly normalized KE for meson fields



expand in

U = exp[2:11/ f] powers of 11
1 L0t Ly T K" m=at
H:WGTQZE T _\/L§7TO+\/A6-77 K? K~ =K*!
K- KO _\/1677 ﬁ = KOT

pure vector SU(3) transformation L. = R = u

mesons transform
like SU(3) octet

U—U =ulu =11 - II' = ullu!
pure chiral transformation L = R' = ¢
U/ — eicUeic
take c to be infinitesimal and write I1" as a power series in ¢ and IT

(I+2I/f+--) =1 +dic+ )1 +2I0/f+ ) (1 +ic+--).
=1+ fc+--- or T =T+ feat o

terms are odd in 7 and ¢ because of parity — c and 7 change signs under L <> R
inhomogeneous term a signal of spontaneous symmetry breakdown



zlltr (0#U'9,U)  with U = exp[2ill/ f]

explore nonlinear terms — for any matrix M the derivative of e

1 1
oHeM = / =M g pr M qs MigreM = / e M oM M (s
0 0

itr (0"U'9,U) = itr (orUtUU9,U) = —}ltr (Utoru Uto,U)

-
UToHU = %/ e 2SI/ T grTT 21/ T g
I Jo

2i (! 2i 252

_ 2 (aun _ ﬁ[m OMII] — %[H, [T, 0"T1]] + - - ) ds
[ Jo f f

because GBs are rotations of the vacuum, the only reason they interact at all in

leading order is the non-Abelian nature of the symmetry — introduces

nonlinearity in the scattering of classical GB waves



we want to build a low energy theory with the same symmetries —

an — Ran GB field U
q. — Lqr, U— LUR'
r,— Rr, RN —iRO,R" 7, > Rr,R —iRO, R
0, — L0, L —iLd, Lt {,— L0, LN —iLd, Lt
s+ip=M— RML' M — RML?

low energy theory effective £ depends on U and classical sources

DHU = OPU + i0HU — Ur* QCD also i ——

DrUT = orUY + irtUT — U T m invariant U+ Ut
DU — [ DU RY under O ¢
DrUT — R DAUT LT parity M & Mt

most general effective Lagrangian consistent with the symmetries — only useful
because we can expand in powers of derivatives sources and truncate the
expansion after a small number of terms

f2

leading term LU, 0, s,p) = Ztr (D#UTD#U)

for M =0



including M — parameter x (mass)

L=f (%tr (D“UTDMU) +tr (UpM + h.e.) _|_)

1.0, 1 + +
1 vt " K K = g+t
=T, = — T —%woju%n KO K=
ala \/5 - 2 5 6 ) KO _ KOT
K K — 2

U = exp(2:ll/f) and D*U = 0*U + it*U — iUr* (gives the currents) and

symmetry breaking by M = M m, 00
y y g by M=(0 my 0
qrMqgr + h.c. gives “GB” masses 0 0  my
for p and M real, the linear term cancels and the quadratic term is
—2tr(puMII?),

which corresponds to a mass term (like baryons but only one term)
4tr(puMTI?)

for the II — evaluate these masses in the limit of isospin invariance, ignoring
weak and electromagnetic interactions and setting m,, = mg = m



Lo oo
m2 =4tr | uM | 0 20 = 2um
0 0 0
00
mi =4tr (puM [0 0 0| ] =pulm+my)
0 0 1
1
2 12 (1) X 2u
my =4dtr | uM [ 0 5 0 _?(m+2ms)
0o 0 !

The m? determined in this way satisfy the Gell-Mann Okubo relation
3m% + mfr = 4m§(

but here we are using the momentum expansion rather than expanding in powers
of the symmetry breaking — this depends on the SU (3) symmetric part of M
and makes sense even for m, — 0 — and explains why GMO for mesons works

much better for m? than for m
notice that M gives a potential —f;tr (U TuM ) — f;tr (UpM) that is minimized
for U = I — until we turned on M all U were equally good vacua



if we don’t assume m,, = my

10 0
1
m2, =mZ. =4dtr [ pM | 0 }l 0 = p(my, +my)
0 0 0
Lo oo
mi. =4tr | uM (0 0 (1) = p(m,, + my)
0 i
0O 0 O
mio =4tr | pM | 0 10 = u(mg + my)
00 !
0 0
m%:4tr uM % (1) zg(mu—irmd—irélms)
0 3
0

my . = 4tr | pM (M — myg)

TN O Ofl=
[N}
= =gk
|
ow|
—
S
o O O
Il
)
W=



the small  — 7° mixing term is higher order in isospin breaking and very small

Lo
m2,=mZ. =dtr [uM [0 1 0 = p(my + my)
0 0 0
100
m%izéltr(,uM(O 0 0>>:M(mu+ms)
0 0 !
0 0 0
myo = 4dtr { pM [ 0 5 0 | ) = pu(mg+my)
00 1
L 0 0 p
m; = 4tr | pM [ O & (1) :§(mu—|—md+4ms)
0 0 !

quark masses do not split m+ from mo to this order - both proportional to
m,, + my (the splitting is a Al = 2 effect)

but EM interactions do — () has

t ~ Amii = Am%{i
L and R part — photon loops ~» > tr(UQU'Q)

others 0 — m, ratios



including M and @)

1 2
L=f? (Ztr (D*UTD,U) + %tr (UpM +he)) + str(UQUTQ) + - - )
0, 1
i e Tt K* 4t
0 — T—l _— 10, 1 KO K =K
K~ KO —\/167]

U = exp(2:ll/f) and D*U = 0*U + i¢*U — iUr* (gives the currents) and

0 my 0

symmetry breaking by s = M . (mu 0 0 )
0 0 ms

qrMaqr + h.c. gives “GB” masses

¢, is the source the LH octet currents

ol Ty aurr _ (AeTrt __'21 wyrt
if Ztr<U 0,0 — (9'U )@U) ——if 2tr<€MU8 U>

—f/ tr( ( aun—@[n o"TI] + 2322[11, [H,@“H]]+--->) ds



the general case - coset construction - and how ~~ SU(3) x SU(3)
i, T
Tll

- TE elements L = e

G generated by T}, elements g = ea .
TE elements R = "™

broken to H generated by S,

broken
generators

unbroken

L _ R _
generators So Iy =T, = To

Xy T = -TE =T,
Goldstone bosons are the group elements associated with X,

GBs =M [ =¢=¢™le and R=¢l = Ml
general transformation can be uniquely decomposed into a product of a broken

transformation (GB) and an unbroken transformation

o a o a
ezan ezsaS L=

12,1 eiSaTa and R = efi:L'aT“ eisaTa
T — S + X determines how the GBs transform

LE = &'u(L, R, €)
Re¢t = ¢Mu(L, R, €)
Goldstone bosons in SU(3) x SU(3)
the Coset space G/ H SU(3)

ei’yaTaé- — eianaeisaSa = é-/ U/(’}/?é-)’v‘-)




back to the heavy baryon effective theory using matrix B to describe the
low-energy baryon — matrix structure gets the flavor right —

spin is just ordinary angular momentum because we have broken Lorentz
invariance by going to the frame in which the baryon is at rest — so B is a Pauli
spinor and a flavor matrix

_ _ d _—
L =tr (BDO(B) + % Bojejn[T,0k, B] + 1 Bojejn{T,0" B} + -- >

where D*(O) = 0"O + vt [T,, O]

how do the baryons transform under chiral SU(3) x SU(3)? the answer is that
they don’t! baryons and all the other QCD bound states live in the vacuum
defined by SU(3) x SU(3) — SU(3) — we know that it doesn’t make sense to
make a global rotation of this vacuum and thus it only makes sense to ask how
the baryons transform under the unbroken Gell-Mann’s SU(3) — and this we
know — they are an octet — but this is enough to allow us to construct an
SU(3) x SU(3) invariant theory using the Goldstone Boson fields £ which
transform under a general L and R like

€= ¢ = Léu(L,R,§)" = u(L, R,€)ER'



¢ — ¢ = Léu(L, R, &)" = u(L, R, &)ERT

u(L, R, &) is the vacuum preserving part of the transformation — all the rest goes
into transforming the IIs which are the physically sensible local rotations of the
physical vacuum — thus under a general L and R, the baryon transformation law
is nonlinear and involves &

B — B'=u(L,R,&) Bu(L,R,¢)!

to build an invariant £, we have to deal with derivatives — a little crazy because
we now have 3 “local” symmetries — L and R because we demand classical
gauge invariance with the sources as gauge field — and u which depends on
space and time through its dependence on L, R and £ — build two octets out of
the GB fields £ with simple transformation laws under «

This beautiful construction comes from two classic papers —CWZ and CCWZ



§— ¢ = Leu(L, R.€)' = u(L, R, )¢R!
vector field V* = —% (10" + i) & + £(0" + irt)ET)
transforms like a gauge field for the local u transformation
V# = u(L, R, V*u(L, R, )" —iu(L, R,)0"u(L, R, &)
axial vector field ~ A* = —% (70" +itm)E — £(0" + irt)ET)
transforms like an SU (3) octet field (note trV* = trA* = 0)
A" — u(L, R, §)A*u(L, R, €)'
with V# we can make an improved covariant derivative with chiral symmetry
D*(B) = 0"B +i[V*, B] = u(L, R, §)D"(B) u(L, R,§)"

the leading derivative terms in £ are

£ =t (BDY(B) +dBG {4, B} +if B[4 B]+--)



£ =tr (BDY(B) +dBG {4, B} +if B[4 B]+--)

DH(B) = "B +i[V*,B] &=/

Vi = L (0" +it)E + (0" +ir)e) = T
i =
A= (€0 + i) — 60"+ irT) = T O

the DY term is what we saw before — it determines the couplings of the vector
current

V=m Y =ined ="y =1 097 = o
the d and f terms determine both the baryon matrix element of the axial vector
current (some of which can be measured in the semileptonic weak interactions)
and the GB couplings to the baryons — for the chiral SU(2) currents between
proton and neutron states only the f term contributes and the matrix element of

the axial vector current in [ decay is related to the pion coupling to nucleons —
Goldberger-Treiman relation



