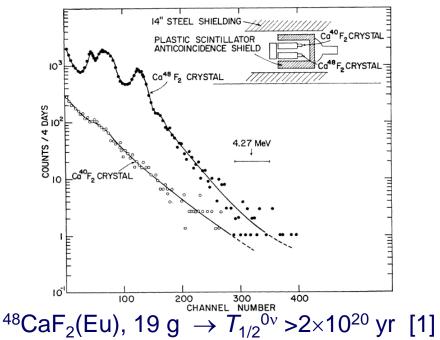
# Development of CdWO<sub>4</sub> crystal scintillators from <sup>106</sup>Cd and <sup>116</sup>Cd, and of Zn<sup>100</sup>MoO<sub>4</sub>

### **Fedor Danevich**

Institute for Nuclear Research, Kyiv, Ukraine http://lpd.kinr.kiev.ua

- Scintillators in 2β experiments
- Specific requirements to scintillators from enriched materials
- Enriched <sup>106,116</sup>CdWO<sub>4</sub> crystals
- R&D of Zn<sup>100</sup>MoO<sub>4</sub>
- Conclusions

F.A. Danevich


ISOTTA meeting 2012, Orsay, France

29 Jun 2012

### 2β experiments with crystal scintillators

#### Limits for Lepton-Conserving and Lepton-Nonconserving Double Beta Decay in Ca<sup>48</sup><sup>†</sup>

E. DER MATEOSIAN AND M. GOLDHABER Brookhaven National Laboratory, Uplon, New York (Received 10 February 1966)



- CdWO<sub>4</sub>, <sup>116</sup>CdWO<sub>4</sub>, <sup>106</sup>CdWO<sub>4</sub> → <sup>106,108,114,116</sup>Cd, <sup>180</sup>W, <sup>186</sup>W
- CaF<sub>2</sub>(Eu)  $\rightarrow {}^{40,48}Ca$
- $CaWO_4 \rightarrow {}^{48}Ca$
- **GSO(Ce)** →<sup>160</sup>Gd, <sup>136,138,142</sup>Ce
- $ZnWO_4 \rightarrow {}^{64,70}Zn, {}^{180,186}W$
- <sup>40</sup>Ca<sup>100</sup>MoO<sub>4</sub> → <sup>100</sup>Mo
- CeF<sub>3</sub>, CeCl<sub>3</sub>  $\rightarrow$  <sup>136,138,142</sup>Ce
- $BaF_2 \rightarrow {}^{130,132}Ba$
- SrCl<sub>2</sub>, Srl<sub>2</sub>(Eu)  $\rightarrow$  <sup>84</sup>Sr

$$\begin{split} & T_{1/2}{}^{0\nu} > 1.7 \times 10^{23} \, \text{yr} \; (0\nu 2\beta \; \text{of} \; {}^{116}\text{Cd}) \\ & T_{1/2}{}^{2\nu} = 3 \times 10^{19} \; \text{yr} \; (2\nu 2\beta) \end{split}$$

- A sensitivity to explore the inverted hierarchy:  $T_{1/2} \sim 10^{26} 10^{27}$  yr
- Cryogenic scintillating bolometers able to provide such a sensitivity

[1] E. der Matosian and M. Goldhaber, Phys. Rev. 146 (1966) 810

F.A. Danevich

### Requirements to scintillators for 2β experiments

Sensitivity (half-life  $T_{1/2}$ ) of  $0v2\beta$  experiments:

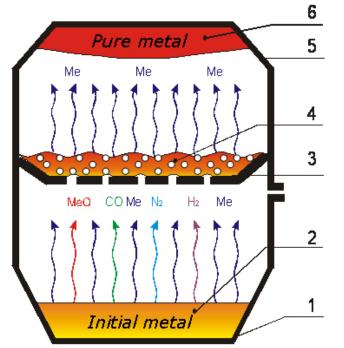
 $\epsilon$  – detection efficiency

$$T_{1/2} \propto \varepsilon \cdot \delta \sqrt{rac{m \cdot t}{R \cdot BG}}$$

- $\delta$  abundance of candidate nuclei in the detector
- m mass of detector
- t-time of measurements
- R energy resolution
- BG background
- Maximal concentration of an isotope of interest
- Very low (ideally zero) radioactive contamination
- High scintillation properties (energy resolution, light yield, reasonably fast scintillation decay)
- Large enough volume ~ 10<sup>2</sup> cm<sup>3</sup>

# Specific requirements to scintillators from enriched isotopes

(typically unclear for producers of scintillators)


- Low contamination by Th, Ra, U, K, rare earth elements
- Minimal loses and contamination of enriched materials
- Recovery and purification of enriched material form the scraps after detectors production
- Prevention of neutrons & cosmogenic activation

### Development and radioactive contamination of <sup>106,116</sup>CdWO<sub>4</sub> scintillators

### Purification of <sup>nat</sup>Cd, <sup>106</sup>Cd and <sup>116</sup>Cd

Kharkiv Institute of Physics and Technology, Ukraine

**Distillation through getter filters** 



1 – crucible; 2 – initial metal; 3 – plate
with holes; 4 – getter; 5 – condenser;
6 – purified metal

R.Bernabey *et al.*, Metallofiz. Nov. Tekhn. 30 (2008) 477 G.P.Kovtun *et al.*, Functional Materials 18 (2011) 121

Concentration of impurities in <sup>106</sup>Cd (ppm)

|         |        | -       |
|---------|--------|---------|
| Element | Before | After   |
| К       | 11*    | 0.04**  |
| Ni      | 0.6*   | < 0.2** |
| Cu      | 5*     | 0.5**   |
| Fe      | 1.3*** | 0.4**   |
| Mg      | 12*    | <0.05** |
| Mn      | 0.1*   | 0.1*    |
| Cr      | 9*     | <0.1**  |
| Pb      | 270*   | <0.3**  |

Measured by: ICP- MS \*, Laser Mass Spectroscopy \*\*, Atomic Absorption Spectroscopy \*\*\*

F.A. Danevich

### Synthesis of nat,106,116CdWO<sub>4</sub> compounds

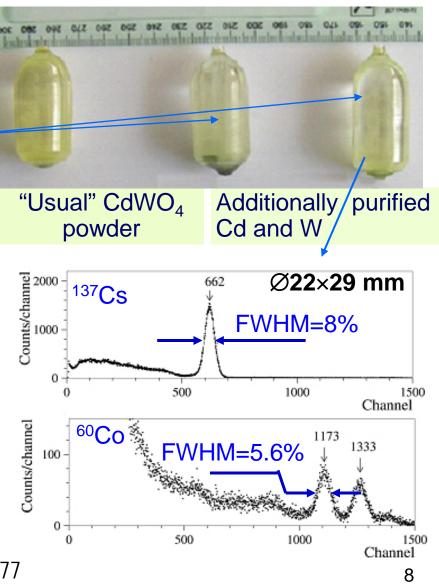
### Joint Stock Company NeoChem, Moscow, Russia

After dissolving the metallic cadmium in nitric acid, the purification was realized by coprecipitation on a collector. Solutions of cadmium nitrate and ammonium para-tungstate were mixed and then heated to precipitate cadmium tungstate:

### $Cd(NO_3)_2 + (NH_4)_2WO_4 = CdWO_4 + 2NH_4NO_3$

- All the operations were carried out by using quartz or polypropylene lab-ware, materials with low level of radioactive contaminations
- Reagents of high purity grade (concentration of any metal less than 0.01 ppm)
- Water, acids and ammonia were additionally distilled by laminar evaporation in quartz installation
- Additional recrystallization was performed to purify ammonium para-tungstate

### Methods to recover Cd from CdWO<sub>4</sub> crystalline scraps were developed and used to recover <sup>106</sup>Cd and <sup>116</sup>Cd


A. Barabash et al., JINST 6 (2011) P08011

P. Belli et al., NIMA 615 (2010) 301

### Growth of CdWO<sub>4</sub> from purified Cd

CdWO<sub>4</sub> scintillators of improved quality were grown by standard Czochralski method

*in collaboration with the Institute of Scintillation Materials, Kharkiv, Ukraine* 



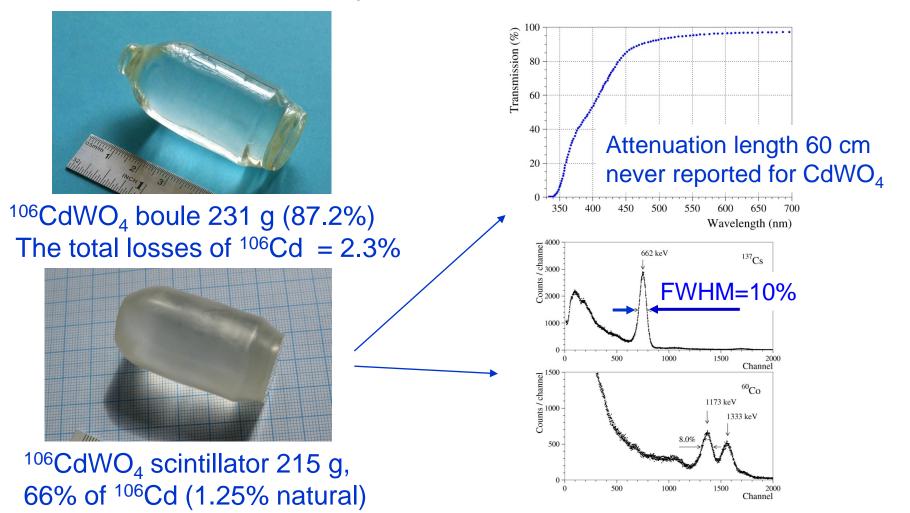
R.Bernabey et al., Metallofiz. Nov. Tekhn. 30 (2008) 477

F.A. Danevich

#### Growth of <sup>106</sup>CdWO<sub>4</sub> and <sup>116</sup>CdWO<sub>4</sub> Low-Thermal-Gradient Czochralski (LTG-C) technique to grow crystals CdWO<sub>4</sub> ~10 kg Platinum Ũ σ Lid Ē Crystal ⊕ ∟ Platinum Crucible Thermocouples Melt Đ Ceramic Support CdWO<sub>4</sub>



Nikolaev Institute of Inorganic Chemistry, Novosibirsk, Russia


Quartz Heater Tube Electronic Balance However, it works standard LTG-C Output 25-30% up to 90% Quality typically higher expected better Radiopurity Loses of powder 2-3% <0.3%

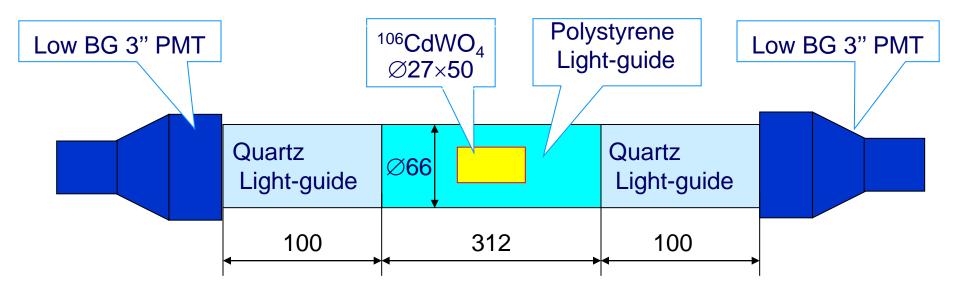
A.A. Pavlyuk et al., Proc. APSAM-92, April 26–29, Shanghai, China (1992)

F.A. Danevich

ISOTTA meeting 2012, Orsay, France

### <sup>106</sup>CdWO<sub>4</sub> crystal scintillator

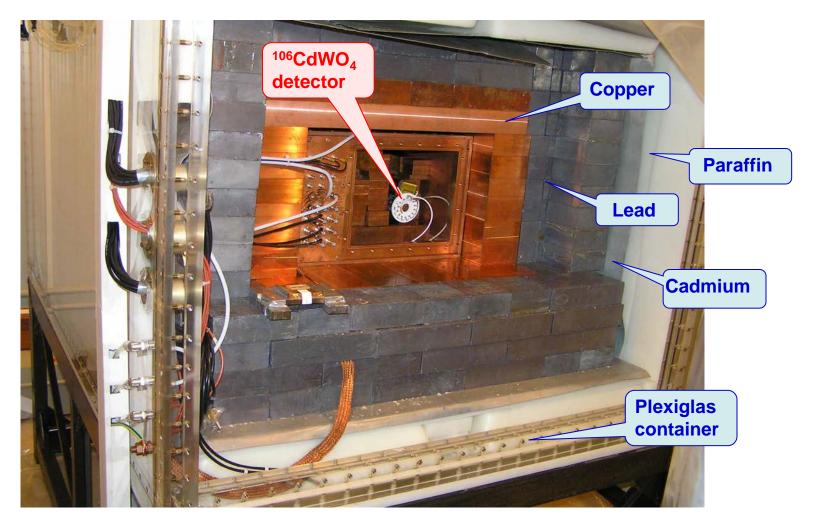



Excellent optical and scintillation properties thanks to special R&D to purify raw materials and Low-thermal-gradient Czochralski technique to grow the crystal

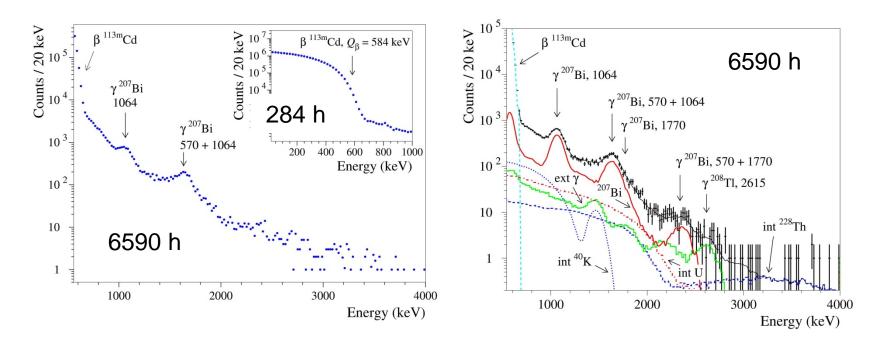
P. Belli et al., NIMA 615 (2010) 301

F.A. Danevich

ISOTTA meeting 2012, Orsay, France


# Low background scintillation detector with <sup>106</sup>CdWO<sub>4</sub> crystal scintillator






### Low background scintillation set-up DAMA/R&D

#### Gran Sasso National Laboratories of the INFN (Italy)

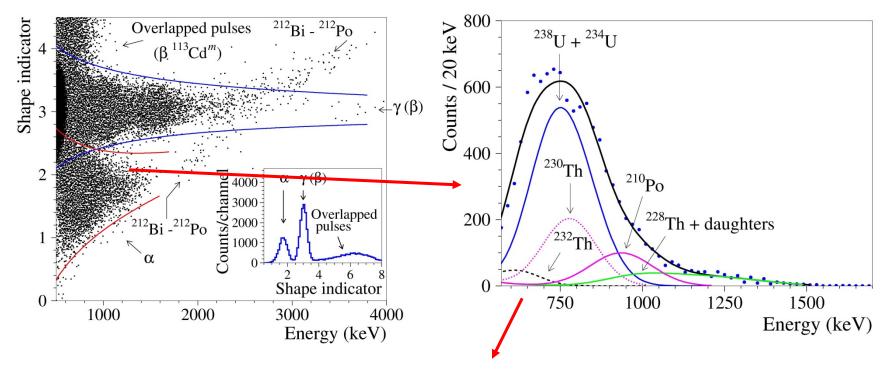


### Background of <sup>106</sup>CdWO<sub>4</sub> detector



Contamination of <sup>106</sup>CdWO<sub>4</sub> (mBq/kg)

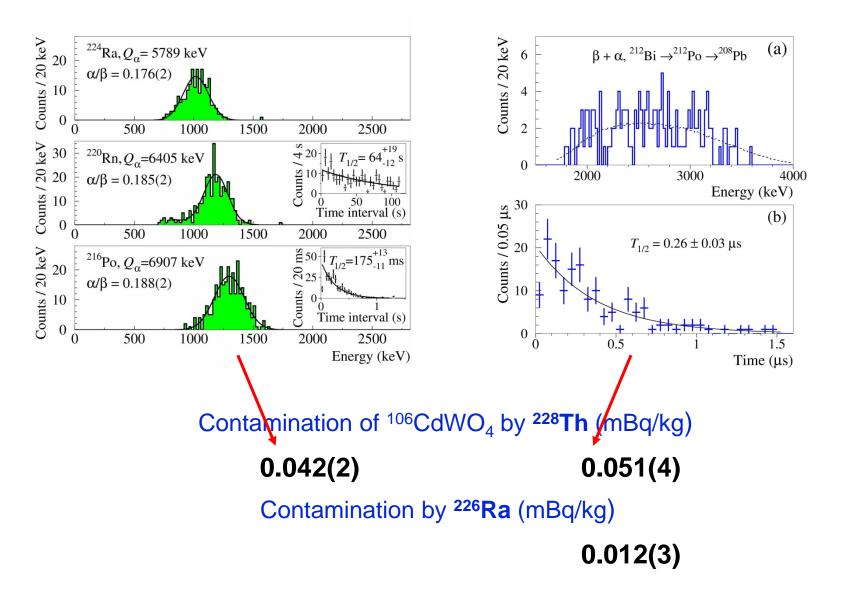
| <sup>207</sup> Bi  | <0.7 (= 0.06 mBq/cm <sup>2</sup> on surface) |
|--------------------|----------------------------------------------|
| <sup>113m</sup> Cd | 116 000                                      |
| <sup>40</sup> K    | <1.4                                         |


P.Belli et al., PRC 85 (2012) 044610

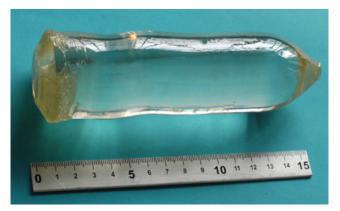
F.A. Danevich

ISOTTA meeting 2012, Orsay, France

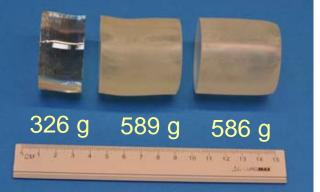
29 Jun 2012


### **Pulse-shape analysis**



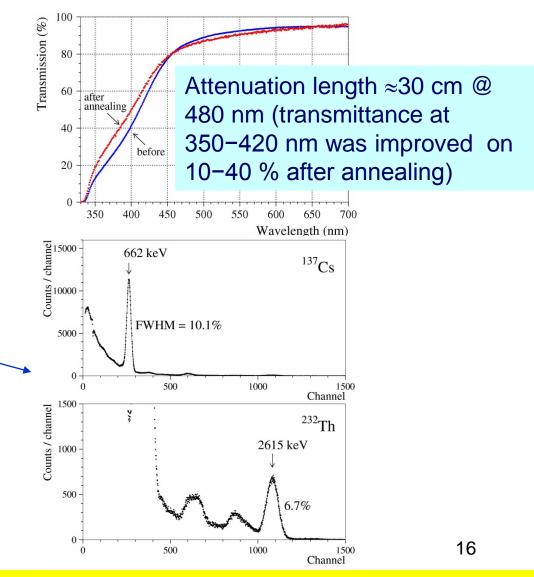

Contamination of <sup>106</sup>CdWO<sub>4</sub> (mBq/kg)

| <sup>232</sup> Th | <0.07 |
|-------------------|-------|
| <sup>238</sup> U  | <0.6  |
| <sup>230</sup> Th | <0.4  |
| <sup>210</sup> Po | <0.2  |


### **Time-Amplitude and Bi-Po analyses**

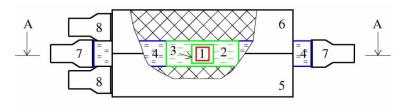


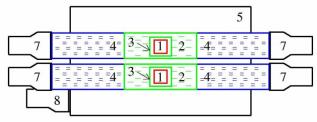
### <sup>116</sup>CdWO<sub>4</sub> scintillator



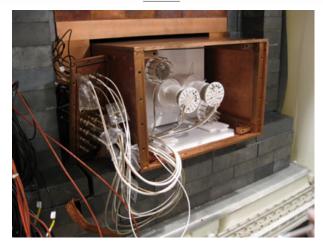

<sup>116</sup>CdWO<sub>4</sub> crystal boule 1868 g (87% of initial charge)




### Scintillation elements Abundance of <sup>116</sup>Cd is 82%

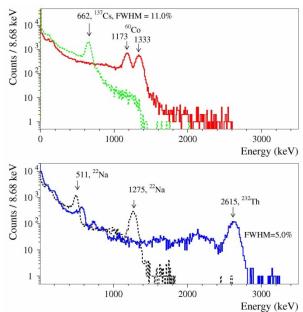

A. Barabash et al., JINST 6 (2011) P08011




F.A. Danevich

# Low background detector with the <sup>116</sup>CdWO<sub>4</sub> scintillators

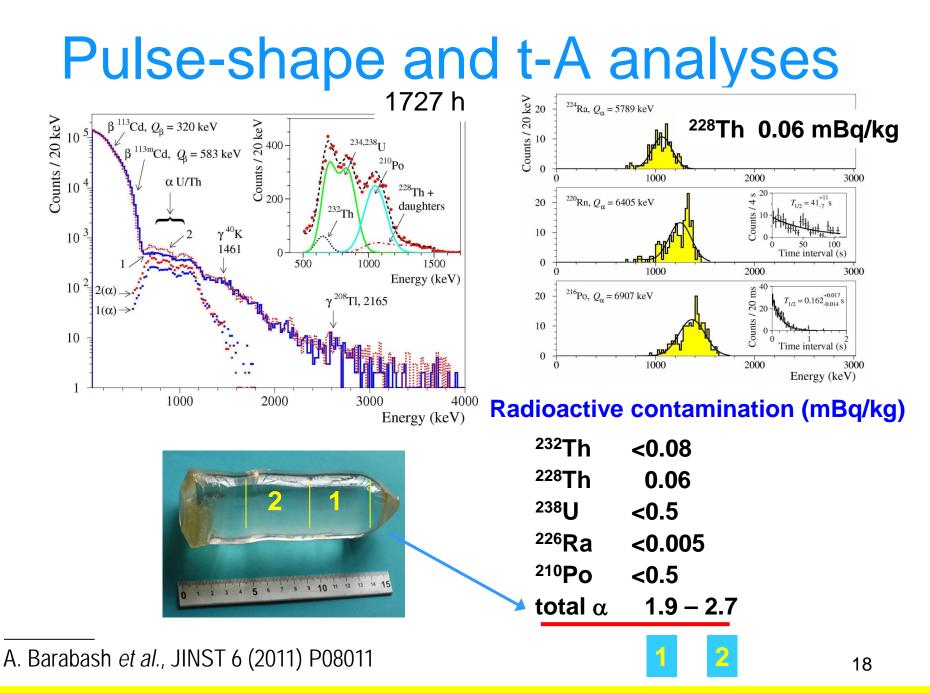









A. Barabash et al., JINST 6 (2011) P08011

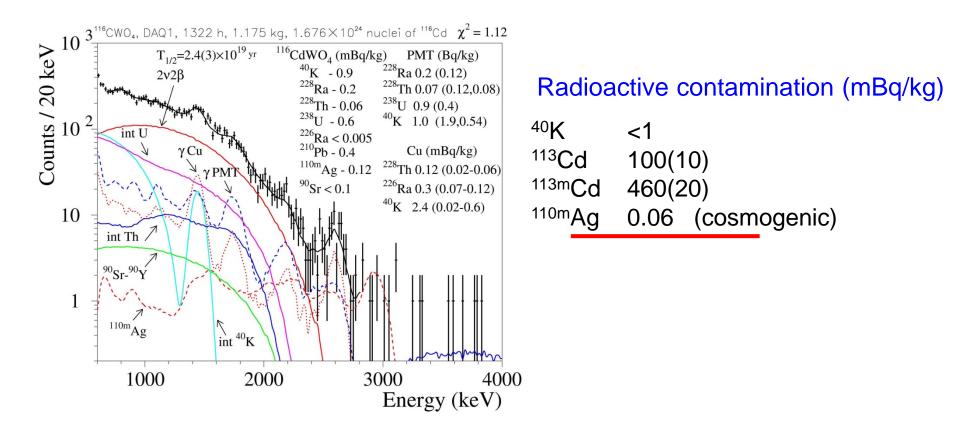





F.A. Danevich

ISOTTA meeting 2012, Orsay, France

29 Jun 2012




F.A. Danevich

ISOTTA meeting 2012, Orsay, France

29 Jun 2012

### Model of the background of <sup>116</sup>CdWO<sub>4</sub>



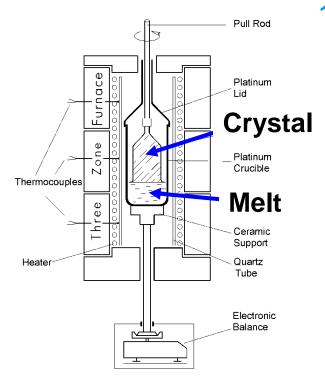
F.A. Danevich

ISOTTA meeting 2012, Orsay, France

29 Jun 2012

A. Barabash et al., JINST 6 (2011) P08011

A. Barabash et al., to be presented at NPAE 2012, Kyiv, Ukraine


# Radioactive contamination of <sup>106,116</sup>CdWO<sub>4</sub> and CdWO<sub>4</sub>

| Nuclide            | <sup>106</sup> CdWO <sub>4</sub> [1] | <sup>116</sup> CdWO <sub>4</sub> [2] | CdWO <sub>4</sub> [3,4] |
|--------------------|--------------------------------------|--------------------------------------|-------------------------|
| <sup>40</sup> K    | <1.4                                 | <1                                   | <(1.7-5)                |
| <sup>110m</sup> Ag | <0.06                                | 0.06(4)                              | -                       |
| <sup>113</sup> Cd  | 182                                  | 100(10)                              | 558(4)                  |
| <sup>113m</sup> Cd | <u>116 000(4000)</u>                 | 460(20)                              | <3.4 – 150              |
| <sup>232</sup> Th  | <0.07                                | <0.08                                | <0.03                   |
| <sup>228</sup> Th  | 0.042(4)                             | 0.060(6)                             | <(0.003-0.014)          |
| <sup>238</sup> U   | <0.6                                 | <0.5                                 | <1.3                    |
| <sup>226</sup> Ra  | 0.012(3)                             | <0.005                               | <(0.007-0.02)           |
| <sup>210</sup> Po  | <0.2                                 | <0.5                                 | <0.06                   |
| Total α            | 2.1(2)                               | 1.9(2) – 2.7(3)                      | 0.26(4)                 |

[1] P.Belli *et al.*, PRC 85 (2012) 044610
[3] F.A. Danevich *et al.*, Z. Phys. A **355** (1996) 433
[2] A. Barabash *et al.*, JINST 6 (2011) P08011
[4] P. Belli *et al.*, Phys. Rev. C 76 (2007) 064603 <sub>20</sub>

F.A. Danevich

### Segregation of radioactive elements in



<sup>116</sup>CdWO<sub>4</sub>

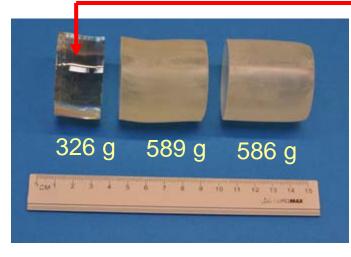
Segregation of impurities

 $K = C_{\rm S}/C_{\rm L},$ 

where K is segreagation coefficient,  $C_s$  is concentration of impurity in solid phase (crystal),  $C_L$  is concentration of impurity in liquid phase (melt),

If *K* < 1, recrystallization could improve radiopurity of the crystal

The scraps after the <sup>116</sup>CdWO<sub>4</sub> crystal grown were measured by HPGe γ detector


Matthias Laubenstein (LNGS)

| Radionuclide      | Crystals | Scraps |
|-------------------|----------|--------|
| <sup>228</sup> Th | 0.06     | 10(2)  |
| <sup>226</sup> Ra | <0.005   | 64(4)  |
| <sup>40</sup> K   | <1       | 27(11) |

### Plans to test the 3<sup>rd 116</sup>CdWO<sub>4</sub> crystal



We are going to measure radioactive contamination of the 3<sup>rd</sup> sample in scintillation mode to estimate how concentration of Th, U, Ra, K depends on crystal growth



- We hope to estimate how recrystallization could improve radioactive contamination of CdWO<sub>4</sub> crystal scintillators
- Then the <sup>116</sup>CdWO<sub>4</sub> crystals can be re-crystallised

# Effect of crystal growth ?

At present we ascribe radioactive contamination of crystals mainly to contamination of raw materials (powder for crystal growth). However, there was no systematic study how crystal growth process effects radioactive contamination of crystals

- Ceramics have typically contamination a few orders of magnitude higher
- Crucible is in direct contact with the melt for crystal growth

### Contamination of Ceramics vs ZnWO<sub>4</sub> crystals (mBq/kg)

| Producer          | Ceramics (228Ac)        | ZnWO <sub>4</sub> ( <sup>228</sup> Th) |
|-------------------|-------------------------|----------------------------------------|
| ISMA, Kharkiv     | (<2-42)×10 <sup>3</sup> | 0.002 - 0.005                          |
| NIIC, Novosibirsk | <3×10 <sup>3</sup>      | 0.02                                   |

| Producer          | Ceramics (226Ra)           | ZnWO <sub>4</sub> ( <sup>226</sup> Ra) |
|-------------------|----------------------------|----------------------------------------|
| ISMA, Kharkiv     | (<1 − 36)×10 <sup>3</sup>  | 0.002 - 0.02                           |
| NIIC, Novosibirsk | (<0.4 – 2)×10 <sup>3</sup> | 0.02                                   |

- There is no correlation between radioactive contamination of ceramics and ZnWO<sub>4</sub> crystal scintillators
- We are going to grow ZnWO<sub>4</sub> crystals in the different conditions by using the same raw material

P. Belli et al., NIMA 626 (2011) 31

# **Contamination of platinum**

- Pt crucible is in direct contact with the melt for crystal growth
- One cannot grow high quality crystal in a crucible where another crystal was grown before (e.g., CdWO<sub>4</sub> after BGO)

2]

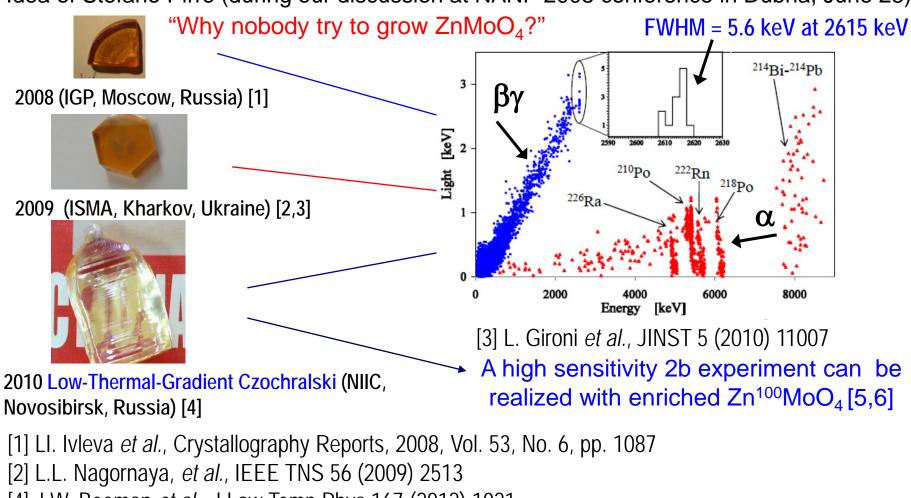
| <u>IPGe 468 cm<sup>3</sup>, 42.5 g</u> | of Pt, 1815 h [1, |
|----------------------------------------|-------------------|
|                                        |                   |
|                                        | HP Ge             |
| (a)                                    | (b)               |

**Radioactive contamination of Pt** 

| <u>(mBq/kg)</u>              |      |  |
|------------------------------|------|--|
| <sup>40</sup> K              | < 25 |  |
| <sup>228</sup> Th            | < 7  |  |
| <sup>226</sup> Ra            | < 3  |  |
| <sup>192m</sup> lr (241 yr)* | = 40 |  |

\*  $\textbf{Q}_{\beta}$  = 1460 keV,  $\textbf{Q}_{\text{EC}}$  = 1046 keV

- More sensitive measurements are necessary
- One should study behavior of Th, Ra, K

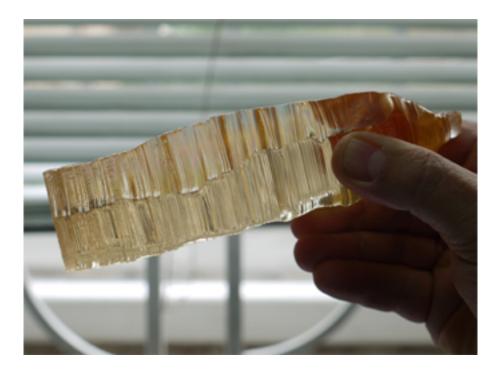

[1] P.Belli et al., EPJA 47 (2011) 91

[2] P.Belli et al., PRC 83 (2011) 034603

F.A. Danevich

### ZnMoO<sub>4</sub>

Large ZnMoO<sub>4</sub> single crystals were developed for the first time in 2008 Idea of Stefano Pirro (during our discussion at NANP 2005 conference in Dubna, June 23)




- [4] J.W. Beeman et al., J Low Temp Phys 167 (2012) 1021
- [5] J.W. Beeman et al., PLB 710 (2012) 318
- [6] J.W. Beeman et al., APP 35 (2012) 813

F.A. Danevich

ISOTTA meeting 2012, Orsay, France

### Large ZnMoO<sub>4</sub>



2011 Low-Thermal-Gradient Czochralski (NIIC, Novosibirsk, Russia)

### R&D of Zn<sup>100</sup>MoO<sub>4</sub> is in progress

 Radioactive contamination of ~1 kg of <sup>100</sup>MoO<sub>3</sub> was measured by lowbackground HPGe detector at LNGS [1]

| • | • Requirements of $0v2\beta$                     |  |  |
|---|--------------------------------------------------|--|--|
|   | experiment to Zn <sup>100</sup> MoO <sub>4</sub> |  |  |
|   | crystals:                                        |  |  |

| <sup>100</sup> MoO <sub>3</sub> (mBq/kg) |  |  |
|------------------------------------------|--|--|
| 36                                       |  |  |
| 2                                        |  |  |
| 1                                        |  |  |
|                                          |  |  |

| Zn <sup>100</sup> MoO <sub>3</sub> (mBq/kg) |                   |
|---------------------------------------------|-------------------|
| <sup>40</sup> K                             | <10 <sup>*)</sup> |
| <sup>226</sup> Ra                           | <0.1 – 1          |
| <sup>228</sup> Th                           | <0.01 – 0.1       |
| Total $\alpha$ activity                     | < 1 mBq/kg        |

\*)  $2\nu 2\beta$  activity of <sup>100</sup>Mo in Zn<sup>100</sup>MoO<sub>4</sub> is 8 mBq/kg

[1] P.Belli et al., NPA 846 (2010) 143

F.A. Danevich

### Conclusions I

• The next generation double  $\beta$  experiments call for large mass detectors (~100 - 1000 kg) with extremely characteristics: containing certain elements (isotopically enriched), very low (ideally 0) radioactive background, high energy resolution (< 1%), discrimination ability, long time operation (~ 10 yr)

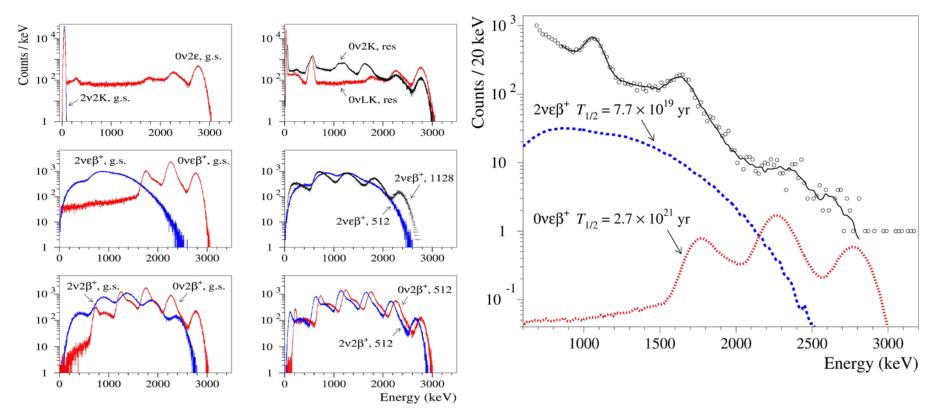
- Cryogenic scintillating bolometeres are promising tools to search for  $0\nu2\beta$  decay

 High quality <sup>106</sup>CdWO<sub>4</sub> and <sup>116</sup>CdWO<sub>4</sub> crystal scintillators were developed from enriched <sup>106</sup>Cd and <sup>116</sup>Cd

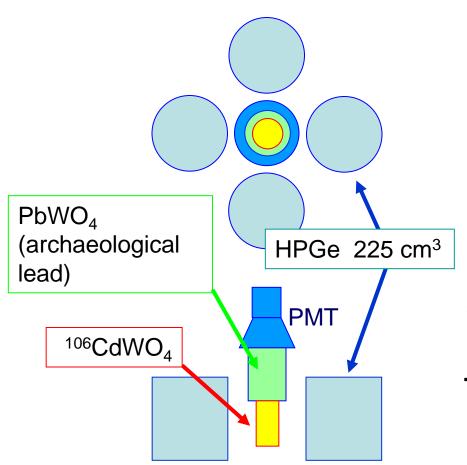
• R&D of Zn<sup>100</sup>MoO<sub>4</sub> from enriched <sup>100</sup>Mo is in progress

## **Conclusions II**

 Production of high quality low radioactive crystal scintillators from enriched isotopes for high sensitivity 2β decay experiments requires a special extended R&D: radiopurity is the most important issue


- Deep purification of initial materials looks the most important issue to be addressed
- Study of Th, U, Ra, K segregation in CdWO<sub>4</sub>, ZnMoO<sub>4</sub> could allow to improve radiopurity by recrystallization
- Effect of crystal growing (contamination of ceramics & crucible) can be important at the  $\mu$ Bq/kg level
- Knowledge of the "history" of initial materials to be used in enrichment process is important (<sup>113m</sup>Cd in <sup>106,116</sup>CdWO<sub>4</sub>)
- Keep in mind cosmogenic activation (very dangerous  $^{110m}Ag$  with  $Q_\beta\approx 3010~keV$  in  $^{116}CdWO_4$  is observed with an activity of ~ 0.06 mBq/kg)

# backup slides


### Search for $2\beta$ decay of $^{106}Cd$

Response of the  $^{106}CdWO_4$ detector to 2 $\beta$  processes in  $^{106}Cd$ simulated by EGS4 and DECAY0

## Fit of the experimental data to estimate $T_{1/2}$ limits on $\epsilon\beta^+$



### next step: <sup>106</sup>CdWO<sub>4</sub> in HPGe

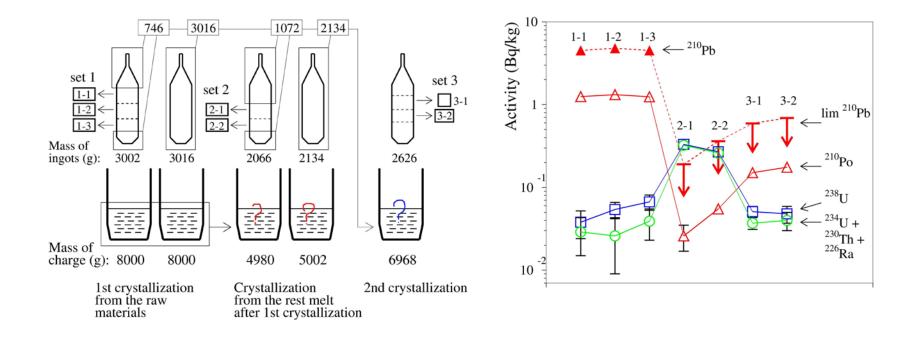


<sup>106</sup>CdWO<sub>4</sub> in coincidence / anticoincidence with HPGe

Detection efficiency ~ 5-7%

Background expected to be several events during year

Sensitivity to  $2v \epsilon \beta^+$  and  $2\beta^+$  in <sup>106</sup>Cd:  $T_{1/2} \sim 10^{20} - 10^{21}$  yr Theory:  $2v2K \ 10^{20} - 5 \times 10^{21}$  yr  $2v\epsilon \beta^+ \ 8 \times 10^{20} - 4 \times 10^{22}$  yr


### A possible further step:

Production of <sup>106</sup>CdWO<sub>4</sub> from the <sup>106</sup>Cd depleted in <sup>113</sup>Cd to remove <sup>113m</sup>Cd

33

TAUP 2011 Munich

### Segregation of Pb, Po, U in CaWO<sub>4</sub>



F.A.Danevich et al., NIMA 631 (2011) 44