ZnMoO₄ purification and crystallization in Novosibirsk

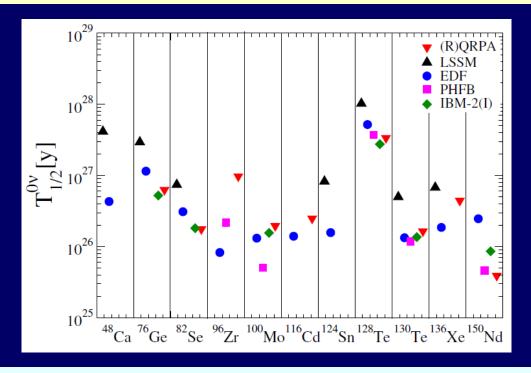
Fedor Danevich

Institute for Nuclear Research, Kyiv, Ukraine

Prospects for 2β experiments

• Test of the H.V. Klapdor-Kleingrothaus et al. claim of $0v2\beta$ in 76 Ge (GERDA, Majorana)

Measurements of $T_{1/2}$ and angular distributions for at least a few nuclei ($T_{1/2} \sim 10^{26} \text{ yr}$)


Test of the inverted neutrino mass scheme

Search for $0v2\beta$ decay on the level of sensitivity $T_{1/2} \sim 10^{27\text{-}28} \text{ yr}$

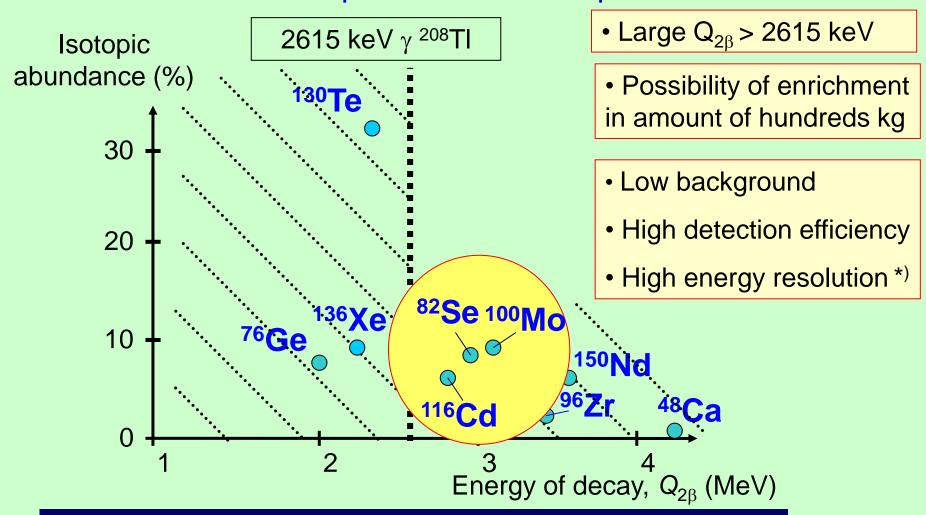
- Investigation of 2ϵ , $\epsilon\beta^+$ and $2\beta^+$ processes (a possibility to distinguish between the ν mass and the right handed current mechanisms)
- Precise measurement of 2v channels

Test of the neutrino mass hierarchy

Theoretical calculations of $T_{1/2}$ for $\langle m_{\nu} \rangle = 0.05$ eV [1]

To cover the inverted hierarchy region, one needs a sensitivity: $\langle m_{\rm v} \rangle \sim 0.02 \; {\rm eV} \; \rightarrow \; T_{1/2} \sim 10^{27} - 10^{28} \; {\rm yr}$

[1] J.D. Vergados, H. Ejiri, F. Simkovic, Rep. Prog. Phys. 75 (2012) 106301


What does it mean $T_{1/2} \sim 10^{27} - 10^{28} \text{ yr } ?$

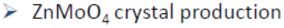
Nucleus	$T_{1/2}$ to reach $\langle m_{\rm v} \rangle = 0.02 \; {\rm eV} \; [1]$	Detector	Number of 2β nuclei in 1 ton detector	Number of decays over 5 yr
⁴⁸ Ca	$(3-28) \times 10^{27} \text{ yr}$	⁴⁸ CaF ₂ (20%)	1.4×10^{27}	0.2 – 1.9
⁷⁶ Ge	$(3-17) \times 10^{27} \text{ yr}$	HP ⁷⁶ Ge	7.9×10^{27}	1.6 – 9
⁸² Se	$(1-4) \times 10^{27} \text{ yr}$	Zn ⁸² Se	4.1×10^{27}	3 – 13
¹⁰⁰ Mo	$(0.3 - 1.5) \times 10^{27} \text{ yr}$	Zn¹00MoO₄	2.6×10^{27}	6 – 30
		⁴⁰ Ca ¹⁰⁰ MoO ₄	3.0×10^{27}	4 – 34
¹¹⁶ Cd	$(0.8 - 1.3) \times 10^{27} \text{ yr}$	¹¹⁶ CdWO ₄	1.7×10^{27}	4 – 7
¹³⁰ Te	$(0.7-3) \times 10^{27} \text{ yr}$	¹³⁰ TeO ₂	3.8×10^{27}	4 – 18
¹³⁶ Xe	$(1-4) \times 10^{27} \text{ yr}$	¹³⁶ Xe	4.4×10^{27}	4 – 14

[1] Table 3 in J.D. Vergados, H. Ejiri, F. Simkovic, Rep. Prog. Phys. 75 (2012) 106301

The most "promising" 2\beta nuclei

from the point of view of experiment

^{*)} Pure energy resolution is still acceptable if one give a *limit* on $0v2\beta$ decay, while it is not a case if one claim *detection* of the process


LUMINEU in a nutshell

Luminescent Underground Molybdenum Investigation for NEUtrino mass and nature

Expérience souterraine avec détecteurs luminescents de molybdate de zinc pour l'étude de la masse et la nature des neutrinos

Set the bases for a next-generation neutrinoless double-beta decay experiment

Temperature sensor production and optimization

Light detector development

But also:

Pilot experiment with enriched material

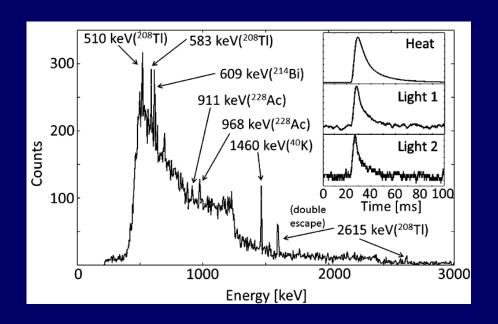
Possible implications on the direct detection of dark matter (especially for low-mass WIMPs)

Funded by ANR in France (Agence National de la Recherche)

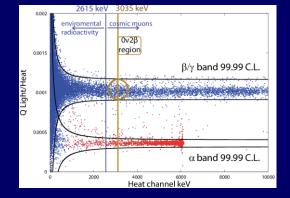
Collaboration: CNRS-Orsay, CEA-Saclay, IAS-Orsay, ICMCB Bordeaux, INR Kiev, NIIC

Novosibirsk; **Heidelberg University** is joining. In total, ~ 40 participants.

Start: October 1st, 2012 - duration: 4 years


Courtesy Andrea Giuliani

Properties of ZnMoO₄ crystals


Property	Value	Measurements	Reference
Density (g/cm ³)	4.3		[1]
Melting point (° C)	1003 ± 5		[1]
Structural type	Triclinic, P1		[1, 2]
Cleavage plane	Weak (001)		[1]
Hardness Mohs scale	3.5		[3]
Index of refraction	1.89 - 1.96		[3]
Wavelength of emission maximum (nm)	605 585 625	SR 6.5 eV, 10 K X ray excitation, 8 K X ray excitation, 8 K	[1] [4] [3]
Scintillation decay time (μ s)	1.3, 16, 150 3.9	SR 6.5 eV, 80 K SR 5.5 eV, 300 K	[5] [6]

- [1] L.I.Ivleva et al., Crystallog. Rep. 53 (2008) 1087
- [2] W.Reichelt et al., Z. Anorg. Allg. Chem. 626 (2000) 2020
- [3] D.M.Chernyak et al., in review in NIMA
- [4] L.L.Nagornaya et al., IEEE Trans. Nucl. Sci. 56 (2009) 2513
- [5] V.B. Mikhailik et al., Nucl. Instr. Meth. A 562 (2006) 513
- [6] D. Spassky et al., Phys. Status Solidi A 206 (2009) 1579

ZnMoO₄ scintillating bolometers

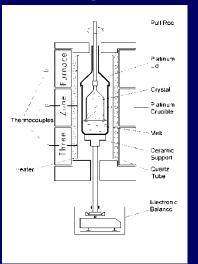
Chain	Activity (mBq/kg)		
	[1]	[2]	
²²⁶ Ra	< 0.8	= 0.027(6)	
²²⁸ Th	< 0.8	< 0.006	

- High energy resolution 3.8 keV at 2615 keV (0.15%)
- Estimated background is a few counts / yr at $Q_{2\beta}$ in 1 ton detector (the main background is expected to be from random coincidence of $2v2\beta$ events [3])

Sensitivity for 5 yr 800 kg Zn¹⁰⁰MoO₄: $T_{1/2} \approx 10^{27}$ yr $\rightarrow \langle m_{v} \rangle \sim 0.013 - 0.05$ eV [4]

[1] D.M. Chernyak *et al.*, submitted to NIMA; [2] J.W.Beeman *et al.*, Eur. Phys. J. C 72 (2012) 2142 [3] D.M. Chernyak *et al.*, Eur. Phys. J. C 72 (2012) 1989; [4] J.W. Beeman *et al.*, PLB 710 (2012) 318

R&D of Zn¹⁰⁰MoO₄ crystal scintillators


- Deep purification of Mo
- Recovery of Mo from ZnMoO₄
- Crystal growth
- Scintillation elements production
- Tests of produced crystal samples

Low-Thermal-Gradient Czochralski technique

Nikolaev Institute of Inorganic Chemistry, Novosibirsk, Russia

Low-Thermal-Gradient Czochralski (LTG-C) [1]

	<u>standard</u>	<u>LTG-C</u>
Output	25-30%	up to 90% *)
Quality		typically higher *)
Radiopurity		expected better
Loses of powder	2-3%	<0.3% *)

*) Achieved for 106CdWO₄ and 116CdWO₄ [2, 3]

[1] A.A. Pavlyuk *et al.*, Proc. *APSAM-*92, April 26–29, Shanghai, China (1992) [2] P. Belli *et al.*, NIMA 615 (2010) 301; [3] A. Barabash *et al.*, JINST 6 (2011) P08011

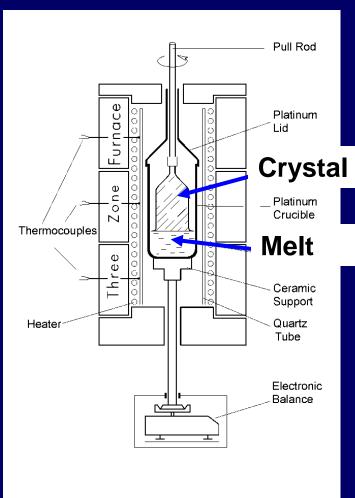
Status of Zn¹⁰⁰MoO₄ R&D

First LUMINEU ZnMoO₄ samples were delivered in June 2013 (in the frame of the 1st contract):

- 2 samples Ø 20 × 40 mm
- 2 samples Ø 35 × 40 mm

Tests:

- Bolometric properties
- Radioactive contamination
- Optical and luminescence properties
- Diamagnetic properties
- Debye temperature
- Segregation of impurities
- Screening of radioactive contamination of polishing materials


next steps

(to be realized in the frame of the next 3 contracts)

- Production of "small" (≈ Ø 20 mm) enriched Zn¹00MoO₄ crystal(s) from ≈180 g of contaminated ¹00MoO₃ *)
- Growth of ZnMoO₄ from deeply purified Mo
- Recrystallization
- Increase diameter (goal ~ 6 cm)
- Growth of "large" ($\approx \varnothing$ 40 50 mm) enriched Zn¹⁰⁰MoO₄ crystal(s) from \approx 1 kg of ¹⁰⁰Mo

^{*)} rest after wet chemistry purification of ¹⁰⁰MoO₃ for the ARMONIA experiment [1]: a few mBq/kg of ²²⁸Th and ²²⁶Ra, 0.3 Bq/kg ⁴⁰K, 20 mBq/kg of ¹³⁷Cs)

Segregation of radioactive elements in crystals

Segregation of impurities

$$K = C_{\rm S}/C_{\rm L}$$

where K is segreagation coefficient, C_s is concentration of impurity in solid phase (crystal), C_L is concentration of impurity in liquid phase (melt),

If *K* < 1, recrystallization could improve radiopurity of the crystal

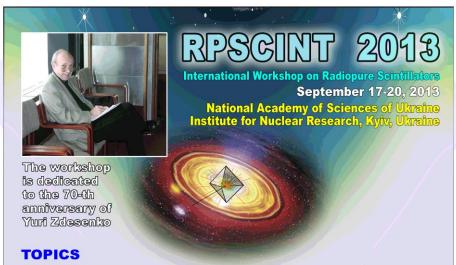
Possibility to improve radiopurity by recrystallization (on example of ¹¹⁶CdWO₄)

Activity of ²²⁸Th (mBq/kg) 10(2)

rest of the melt

Nuclide	Activity	(mBq/kg)
	Crystal	Rest of melt
⁴⁰ K	<1	27(11)
²²⁶ Ra	<0.005	64(4)
²²⁸ Th	0.04 - 0.07	10(2)

0.07(1)0.04(1)O (3 part


Ra contamination by recrystallization

D.V. Poda *et al.*, Radiat. Meas., DOI 10.1016/j.radmeas.2013.02.017

F.A. Danevich et al., to be published in LRT 2013 proceedings

conclusions

- The next generation 2β experiments call for large mass detectors (~100 - 1000 kg) with challenging characteristics: containing certain elements → isotopically enriched, very low radioactive background, high energy resolution (< 1%), long time operation (~ 10 yr)
- Crystal scintillators, in particular ZnMoO₄, can meet these requirements
- Production of high quality low radioactive crystal scintillators from enriched isotopes requires a special extended R&D
- Purification of raw materials is an important issue to obtain high quality radio-pure ZnMoO₄ and Zn¹⁰⁰MoO₄ crystals
- Recrystallization could be a way to improve further the ZnMoO₄ radiopurity
- R&D of methods to recover Mo from ZnMoO₄ scraps is in progress.

- radiopure scintillators in nuclear and astroparticle physics
- requirements of low-count rate experiments regarding radiopurity and scintillation properties
- radioactive contamination of scintillation materials
- selection and screening of input materials
- instruments and methods to test radioactive contamination of materials and scintillators
- purification of materials and preparation of raw compounds
- crystal growing, annealing and handling
- test of scintillators including scintillation, optical, luminescence low-background and low-temperature measurements
- search for and development of new scintillating materials

International Scientific Committee:

Rita Bernabei, Univ. Tor Vergata and INFN, Rome, Italy Victor Brudanin, JINR, Dubna, Russia Hiro Ejiri, RCNP, Osaka, Japan; CTU, Prague, Czech Republic Fernando Ferroni, INFN, Rome, Italy Ettore Fiorini, Univ. Milano Bicocca, Milano, Italy Richard Ford, SNOLAB, Lively, Canada Andrea Giuliani, CNRS CSNSM, Orsay, France Boris Grinyov, ISMA, Kharkiv, Ukraine Hong Joo Kim, KNU, Daegu, Republic of Korea Masaaki Kobayashi, KEK, Tsukuba, Japan Hans Kraus, Univ. of Oxford, UK Matthias Laubenstein, LNGS, Assergi, Italy Pierre de Marcillac, CNRS IAS, Orsay, France Marek Moszynski, NCNR, Otwock-Swierk, Poland Stefano Pirro, INFN Milano Bicocca, Milano, Italy Vladimir Shlegel, NIIC, Novosibirsk, Russia Matias Velazquez, ICMCB, Bordeaux, France

Local Organizing Committee:

Fedor Danevich (chair)
Vladimir Tretyak (co-chair)
Denys Poda
Elena Zueva
Valentyna Mokina
Dmitry Chernyak

RPSCINT 2013 INR Kyiv

Tel: +380 44 525 1111 +380 44 525 2210 +380 44 525 5283 fax: +380 44 525 4463 rpscint13@kinr.kiev.ua http://lpd.kinr.kiev.ua/rps13