New spectra in the HEIDI models J. J. van der Bij Institut für Physik Albert-Ludwigs Universität Freiburg > Moriond 2012, Electroweak session, March 3 to March 10, 2012 ## What do we know? - ightharpoonup Vectorbosons exist ightarrow a Higgs field exists. - ▶ QFT is right → The Higgs field has a Källén-Lehmann spectral density. - ightharpoonup EW precision data ightharpoonup the field is light. # Everything else is conjecture. In particular the idea that there is a single Higgs particle peak is an assumption, for which there is no basis in theory or experiment. Newton: Non fingo hypotheses. Since the Higgs field is in some way different from other fields, a non-trivial density is quite natural. The scientific goal regarding EW symmetry breaking is therefore to measure the Källén-Lehmann spectral density of the Higgs propagator. For this the LHC is less than optimal. ## Extended standard model (with A. Hill)[†]. Higgs Sector $$\mathcal{L} = -\frac{1}{2}(D_{\mu}\Phi)^{\dagger}(D_{\mu}\Phi) - \lambda_{1}/8(\Phi^{\dagger}\Phi - f_{1}^{2})^{2} - \frac{1}{2}(\partial_{\mu}H)^{2} - \frac{\lambda_{2}}{8}(2f_{2}H - \Phi^{\dagger}\Phi)^{2}$$ N.B. no H^4 coupling: pure mixing model. Renormalizable !! Two Higgses with reduced couplings $$D_{HH}(k^2) = \frac{\sin^2 \alpha}{k^2 + m_+^2} + \frac{\cos^2 \alpha}{k^2 + m_-^2}$$ This is sufficient to study Higgs signals (interaction basis). The generalization to more fields is straightforward. n Higgses H_i with couplings g_i . Sum rule: $$\Sigma g_i^2 = g_{Standard\ model}^2$$ This can be generalized to a continuum. $$\int \rho(s)ds=1$$ Källén-Lehmann density. # HEIDI Models (with S. Dilcher and B. Puliçe) Higher dimensional singlet \Rightarrow Few Parameters! In terms of the modes H_i the Lagrangian is the following: $$L = -\frac{1}{2}D_{\mu}\Phi^{\dagger}D_{\mu}\Phi - \frac{M_{0}^{2}}{4}\Phi^{\dagger}\Phi - \frac{\lambda}{8}(\Phi^{\dagger}\Phi)^{2}$$ $$- \frac{1}{2}\sum(\partial_{\mu}H_{k})^{2} - \sum\frac{m_{k}^{2}}{2}H_{k}^{2}$$ $$- \frac{g}{2}\Phi^{\dagger}\Phi\sum H_{k} - \frac{\zeta}{2}\sum H_{i}H_{j}$$ $m_k^2 = m^2 + m_\gamma^2 \vec{k}^2$, where \vec{k} is a γ -dimensional vector, $m_\gamma = 2\pi/L$ and m a d-dimensional mass term for the field H. $$S = \int d^{4+\gamma}x \prod_{i=1}^{\gamma} \delta(x_{4+i}) \left(g_B H(x) \Phi^{\dagger} \Phi - \zeta_B H(x) H(x) \right)$$ Propagator $$D_{HH}(q^2) = \left(q^2 + M^2 - rac{\mu^{8-d}}{(q^2 + m^2)^{ rac{6-d}{2}} \pm u^{6-d}} ight)^{-1}$$ This is renormalizable up to 6 dimensions, while $$H\Phi^{\dagger}\Phi$$ is superrenormalizable in four dimensions Corresponding Källén-Lehmann spectral density: zero, one or two peaks plus continuum # Interpretation of the data (one peak plus continuum). #### LEP + LHC - nothing below 95 GeV - 2.3 sigma at 98 GeV - ▶ no further signal below 116 GeV - ▶ bulk of the spectrum between 116 GeV and 130 GeV ## Impose conditions. $$95 GeV < m_{peak} < 101 GeV$$ $0.056 < g_{98}^2/g_{SM}^2 < 0.144$ $m > 116 GeV$ $\int_{(130)^2}^{\infty} ho(s) ds < 0.1$ $$D_{HH}(q^2) = \left(q^2 + M^2 + \mu^2 \frac{\log((q^2 + m^2)/m^2)}{1 + \alpha_6 \log((q^2 + m^2)/m^2)}\right)^{-1}$$ Center point of the fits # The two peak case. - continuum close to peak - no fit with two peaks, 115 and 119 GeV plus continuum at 125 GeV #### Conclusion - The Higgs field has probably been found at the LHC and possibly at LEP-200. - Its properties are consistent with the electroweak precision data. - A dark matter candidate can be included. - The spectrum is uncertain. #### Caveats Significance roughly 3 sigma, somewhat less for LEP. ## Questions for the LHC this year - Confirm the peak - Go down to 95 GeV - "model-independent" analysis Example: divide 116-130 GeV in 7 bins of 2 GeV. Allow for Higgs spectral densities in steps of 1/6. This give 1716 models. ## Longer term - branching ratios - width # Beyond the LHC: A Higgs factory ### Questions for the ILC Obviously a lepton collider is needed, but how well can one do? $$e^+e^- \rightarrow Z H$$. Measurement of line-shape and invisible decay BR's. - Energy about 250-300 GeV - High precision - ► Theory: benchmark models - ► Beam Strahlung: machine - Resolution: detector - Unfolding: analysis ILC: no mandate from ICFA for 300 GeV A muon collider: Science fiction? A large circular collider: VLLC! Heidi is hidden in the high-D Higgs Hill! Where is Heidi hiding? # EXTRA! COMMENTS ON STRONG INTERACTIONS Strong interactions: $$\cos^2(\alpha)m_-^2 + \sin^2(\alpha)m_+^2 \geq \frac{8\pi\sqrt{2}}{3G_F}.$$ Precision tests: $$\delta_{EW} pprox \log(m_-^2/m_Z^2) + \sin^2(\alpha)\log(m_+^2/m_-^2).$$ This must then be smaller than the limit for the standard model $$\delta_{EW} \leq \log(m_{up}^2/m_Z^2).$$ We take $m_- pprox 115~$ GeV and $m_{up} pprox 157~$ GeV (blue-band). Combine, $x = m_{+}^{2}/m_{-}^{2}$: $$\frac{x-1}{\log(x)} \geq \frac{16\pi v^2 - 3m_-^2}{3m_-^2 \log(m_{uu}^2/m_-^2)}.$$ The LHC has shown evidence for the presence of a Higgs at 125 GeV with a fraction f of the signal: $$\frac{x-1}{\log(x)} \geq \frac{16\pi v^2 - 3(1-f)m_-^2 - 3 fm_{LHC}^2}{3m_-^2(\log(m_{up}^2/m_-^2) - f\log(m_{LHC}^2/m_-^2))}.$$ | fLHC | m+ (GeV) | Γ ₊ (GeV) | $\sin^2(\alpha)$ (%) | |------|----------|----------------------|----------------------| | 0.0 | 3285 | 1623 | 9.3 | | 0.1 | 3337 | 1648 | 9.0 | | 0.2 | 3391 | 1674 | 8.7 | | 0.3 | 3448 | 1702 | 8.4 | | 0.4 | 3508 | 1731 | 8.1 | | 0.5 | 3571 | 1762 | 7.8 | | 0.6 | 3636 | 1794 | 7.6 | | 0.7 | 3705 | 1827 | 7.3 | | 0.8 | 3778 | 1862 | 7.0 | | 0.9 | 3854 | 1900 | 6.7 | | 1.0 | ∞ | 00 | 0.0 | # Stealth model (with T. Binoth)[†]. M(inimal) N(on) M(inimal) S(tandard) M(odel) $$\mathcal{L} = -\frac{1}{2}(D_{\mu}\Phi)^{\dagger}(D_{\mu}\Phi) - \frac{\lambda}{8}(\Phi^{\dagger}\Phi - f^{2})^{2}$$ $$-\frac{1}{2}(\partial_{\mu}\vec{\phi})^{2} - \frac{1}{2}m^{2}\vec{\phi}^{2} - \frac{\kappa}{8}(\vec{\phi}^{2})^{2}$$ $$-\frac{\omega}{2}\vec{\phi}^{2}\Phi^{\dagger}\Phi$$ $\vec{\phi}$: N scalar fields; singlets under the standard model gauge group. O(N) symmetry unbroken \Rightarrow dark matter. After spontaneous symmetry breaking of the electroweak group this leads to an invisible decay mode of the Higgs boson if the dark matter particles are light enough. $$H \rightarrow \vec{\phi} \vec{\phi}$$ $$\Gamma_H = \frac{\omega^2 N}{64\pi^2} \frac{v^2}{m_H}$$ ω^2 N can be large, so the Higgs boson resonance can be wide and invisible. Therefore very difficult at the LHC, but there would be a measurable excess in missing energy signals in the vectorboson fusion channel. General singlet extensions allow for invisible decay (dark matter). There are two arbitrary functions: - Line shape. - Invisible branching ratio. Unchanged are the relative branching fractions to standard model particles. ## Examples - Visible peak unequal to Standard Model. - completely invisible decay. - spread-out Higgs. - Singlets too heavy for the Higgs to decay into. ## Theory or scenario? - philosophical argument - plausibility argument - cosmological indications - experimental support - simplicity - consistency at the quantum level - a prediction that can be refuted So this is a theory, not a scenario!