

Search for sgluons in multitop final states at the LHC

PHENOMENOLOGICAL SEARCH PRELIMINARY RESULTS IN ATLAS

[Calvet, Fuks, Gris, Valéry JHEP '13]

[ATLAS-CONF-2013-051]

Samuel CALVET¹, Benjamin FUKS^{2,3}, Philippe GRIS¹, Loïc VALÉRY¹

Laboratoire de Physique Corpusculaire (LPC) - Clermont-Ferrand
 Institut Pluridisciplinaire Hubert Curien (IPHC) - Strasbourg
 Theory Division, Physics Department, CERN

GDR Terascale @ Montpellier May 15th, 2013 (Modified on 16/05/2013)

Outline

- 1 Theoretical context Sgluon phenomenology
- 2 Phenomenological search
- Search within ATLAS
- 4 Conclusions Outlooks

Progression

- Theoretical context Sgluon phenomenology
 - Theoretical context
 - Sgluon phenomenology
 - Summary
- 2 Phenomenological search
- Search within ATLAS
- Conclusions Outlooks

4 / 24

Theoretical context

Theoretical context - Sgluon phenomenology

- MSSM can be extended with a new symmetry (R-symmetry) \rightarrow **new particles** are expected.
- Among them, a new color-octet scalar field, named sgluon, partner of the the gluon and gluino, denoted σ in the next slides.
- Such particles are also predicted in other BSM theories: UED theories for example.
- To describe generically these particles, we assumed an effective theory (inspired by MRSSM theories)

000

Theoretical context - Sgluon phenomenology

Productions and decays

Production modes

Pair-production cross section much higher than the single sgluon one.

[Plehn, Tait J.Phys. '09]

Decays

Decay to guarks mediated by squarks and gluinos in MRSSM.

Most favoured ones: at least one top quark (amplitude proportional to m_i and m_i).

Production

The sgluon pair production mode dominates.

Production

The sgluon pair production mode dominates.

Decays

Mainly with at least one top quark. This leads to three different final states.

Loïc VALÉRY sgluons 6 / 24

Production

The sgluon pair production mode dominates.

Decays

Mainly with at least one top quark. This leads to three different final states.

titi topology

Each sgluon decays into one top quark and a uptype light quark (u or c).

Production

The sgluon pair production mode dominates.

Decays

Mainly with at least one top quark. This leads to three different final states.

titi topology

Each sgluon decays into one top quark and a uptype light quark (u or c).

titt topology

One sgluon decays in tt and the other one in ti pair.

Production

The sgluon pair production mode dominates.

Decays

Mainly with at least one top quark. This leads to three different final states.

titi topology

Each sgluon decays into one top quark and a uptype light quark (u or c).

titt topology

One sgluon decays in tt and the other one in ti pair.

4-top topology

Each sgluon decays into two top quarks.

Progression

- Theoretical context Sgluon phenomenology
- Phenomenological search
 - Generation of samples
 - Cross sections
 - Dileptonic signatures
 - Selection criteria
 - Results
 - Summary
- Search within ATLAS
- Conclusions Outlooks

In this study, we assume an integrated luminosity of 20 ${\rm fb}^{-1}$ at 8 TeV using pp collisions.

©Benjamin Fuks

Framework

- Parton level: MADGRAPH 5.1.2/5.1.3.
- Parton showering + hadronization : PYTHIA 6.
- Detector simulation : DELPHES with ATLAS card
 - Fast simulation of ATLAS and CMS detectors
 - Smearing and reconstruction of objects (electron, jets, ...)
 - Using a *b*-tagging efficiency of 60%.

Signal

- Model generated by FeynRules 1.6 for the 3 topologies.
- Five mass points: (200), 400, 600, 800 and 1000 GeV.
- Two scenarios :
 - Assuming universal couplings : $\sigma \rightarrow tq'$ with q' = u, c, t : **Scenario I**
 - Assuming a 100 % branching ratio of σ to $t\bar{t}$: Scenario II

Cross sections

Sample	Cross section [pb]	
W+jets	35678	
$\gamma/Z+$ jets	3460	
$t \overline{t}$	139.2	
Single top	42.3	
Dibosons	40.8	
$t\bar{t}X+{\sf jets}$	0.47	
tītī	7×10^{-4}	
σ ($m = 400 \text{ GeV}$)	2.77	
σ ($m = 600 \text{ GeV}$)	0.17	
$\sigma (m = 800 \text{ GeV})$	0.02	

- All backgrounds are generated using Monte Carlo simulation.
- No simulation of the instrumental backgrounds (multijet for example).
- Most backgrounds rescaled to NLO or NNLO.
- Signal also rescaled to NLO.

 [Goncalves-Netto et al., Phys.Rev. D '12]

Common signatures

- Several possible leptons in the final states
- Neutrino(s) in the final states : source of missing transverse energy.

tjtj topology

- 2 high p_T jets
- 2 *b*-jets

tjtt topology

- 1 high p_T jets
- 3 *b*-jets

4-top topology

4 *b*-jets

sgluons

Common signatures

- Several possible leptons in the final states
- Neutrino(s) in the final states: source of missing transverse energy.

tjtj topology

- 2 high p_T jets
- 2 *b*-jets

titt topology

- 1 high p_T jets
- 3 *b*-jets

4-top topology

4 *b*-jets

IMPORTANT: the leptons can have the same electric charge.

Loïc VALÉRY sgluons 10 / 24

Selection criteria

Preselection steps

- At least 2 same-sign leptons (ee, $\mu\mu$ and $e\mu$)
- $M(\ell,\ell) \geq 20 \text{ GeV}$
- $\blacksquare \mathcal{E}_T > 40 \text{ GeV}$

tjtj topology

- > 3 iets with $p_T \geq 25 \text{ GeV}$
- > 1 *b*-jet

Expected yields

- $m_{\sigma} = 400 \text{ GeV}$: 281 ± 11 (eff : 0.8 %)
- Bkg: 4191 ± 35

titt topology

- > 4 jets with $p_T > 25 \text{ GeV}$
- > 2 *b*-iets

Expected yields

- $m_{\sigma} = 400 \text{ GeV} : 36 \pm 4$ (eff: 1.5 %)
- Bkg: 286 ± 8

4-top topology

- > 5 jets with $p_T > 25 \text{ GeV}$
- > 3 *b*-iets

Expected yields

- $m_{\pi}^{I} = 400 \text{ GeV}$: 0.69 ± 0.08 (eff : 0.70 %)
- $m_{\sigma}^{II} = 800 \text{ GeV}$: 0.82 ± 0.07 (eff : 1.12 %)
- Bkg: 10.3 ± 1.5

Loïc VALÉRY

sgluons

Results

- After the selection, the remaining backgrounds are essentially SM tt, single top and SM ttt.
- $t\bar{t}$ and single top backgrounds : less objects than the signal. This difference can be described by H_T .

$$H_T = \sum p_T ext{(leptons)} + \sum p_T ext{(jets)} + ext{\mathcal{L}_T}$$

- Limits estimated with McLimit software [cdf/doc/statistics/public/8128] .
- Only statistical uncertainties are considered.

Expected limits

A semi-leptonic study has also been performed (more details in the phenomenological paper).

	Single lepton analysis	Multilepton analysis	Multilepton analysis (background ×10)	
tjtj	590 ⁺⁴⁰ ₋₃₀ GeV	570 ⁺³⁰ ₋₅₀ GeV	440 +40 GeV	ĺ
tjtt	480 ⁻³⁰ ₋₈₀ GeV	520 +35 GeV	-15	
tttt (Sc. I)	-	-	-	
tttt (Sc. II)	640 ⁺⁴⁰ ₋₃₀ GeV	650 ⁺³⁰ ₋₄₀ GeV	520 $^{+50}_{-110}$ GeV	

Results

■ A semi-leptonic study has also been performed (more details in the phenomenological paper).

	Single lepton analysis	Multilepton analysis	Multilepton analysis (background ×10)
tjtj	590 ⁺⁴⁰ ₋₃₀ GeV	570 ⁺³⁰ ₋₅₀ GeV	440 ⁺⁴⁰ ₋₁₅ GeV
tjtt	480 ⁺⁷⁰ ₋₈₀ GeV	520 +35 GeV	-
tttt (Sc. I)	-	=	-
tttt (Sc. II)	640 ⁺⁴⁰ ₋₃₀ GeV	650 ⁺³⁰ ₋₄₀ GeV	520 ⁺⁵⁰ ₋₁₁₀ GeV

■ The most sensitive topology is the **4-top one** (assuming a 100 % BR to $t\bar{t}$).

Loïc VALÉRY sgluons 13 / 24

- These signatures could **lead to a discovery**.
- More specifically, a general experiment (like ATLAS) could reach sgluons up to 650 GeV, focusing on the 4-top topology, and assuming 100 % BR.
- Much more details in the phenomenological paper published in JHEP, resulting of a collaboration between theorists and experimentalists :

Calvet, Fuks, Gris, Valéry JHEP '13

- Limitations of the study
 - All backgrounds are MC-simulated (no background from fake leptons)
 - The pile-up is not taken into account in this study

Progression

- Theoretical context Sgluon phenomenology
- Phenomenological search
- Search within ATLAS
 - Introduction
 - Backgrounds
 - Events selection
 - Results
- Conclusions Outlooks

Introduction

- Using the results of the phenomenological paper, the 4-top final state has been recently investigated in ATLAS in the context of the same-sign dilepton final states.
- Work done by S. Calvet and L. Valéry in a more general same-sign dilepton group.
- The generated signal assumes a 100 % BR of σ to $t\bar{t}$.
- Search using 14.3 fb⁻¹ of data recorded by ATLAS at $\sqrt{s} = 8$ TeV.
- Results recently public : [ATLAS-CONF-2013-051]

Search within ATLAS 000000

Background sources

- Two types of backgrounds to be considered :
 - Processes leading to real same-sign dilepton final state are simulated using Monte Carlo.
 - Processes leading to opposite sign or other non-same-sign-dilepton final state are estimated using data driven techniques.

Background sources

- Two types of backgrounds to be considered :
 - Processes leading to real same-sign dilepton final state are simulated using Monte Carlo.

Search within ATLAS

 Processes leading to opposite sign or other non-same-sign-dilepton final state are estimated using data driven techniques.

■ Monte-Carlo-generated samples

- Dibosons (WZ, ZZ, W[±]W[±])
- \bullet $t\bar{t} + X (X = W, Z, WW)$

Backgrounds

- Two types of backgrounds to be considered : Processes leading to real same-sign dilepton final state are simulated using
 - Processes leading to opposite sign or other non-same-sign-dilepton final state are estimated using data driven techniques.

■ Monte-Carlo-generated samples

- Dibosons (WZ. ZZ. $W^{\pm}W^{\pm}$)
- \bullet $t\bar{t} + X (X = W, Z, WW)$

Data-driven backgrounds

Monte Carlo.

- Mis-identification of the electric charge of the leptons
- Fake leptons

Preselection of events

- Quality criteria (trigger, bad jet rejection, ...)
- $e \mu$ overlap removal
- **Solution Solution Solution**
- Same-sign dileptons
- Trigger matching (at least one lepton matches the trigger)
- **1** If \mathbf{Z} / quarkonia veto : $M_{\parallel} > 15$ GeV and $|M_{\parallel} 91$ GeV $|\mathbf{Z}| > 10$ GeV

After the preselection - $e\mu$ channel

Final selection

- The last steps of the selection are optimized fro the 4-top final state.
- The optimization is performed in order to get the best expected limit (using both the statistic and systematic uncertainties).
- The total selection is then :
 - Quality criteria (trigger, bad jet rejection, ...)
 - $e \mu$ overlap removal
 - **3** Exactly two leptons in the event $(e\mu, \mu\mu \text{ or } ee)$
 - Same-sign dileptons
 - Trigger matching (at least one lepton matches the trigger)
 - **1** Z / quarkonia veto : $M_{\parallel} > 15$ GeV and $|M_{\parallel} 91$ GeV | > 10 GeV

Final selection

- The last steps of the selection are optimized fro the 4-top final state.
- The optimization is performed in order to get the best expected limit (using both the statistic and systematic uncertainties).
- The total selection is then:
 - Quality criteria (trigger, bad jet rejection, ...)
 - $e \mu$ overlap removal
 - **Solution Exactly two leptons in the event** $(e\mu, \mu\mu \text{ or } ee)$
 - Same-sign dileptons
 - Trigger matching (at least one lepton matches the trigger)
 - **5** Z / quarkonia veto : $M_{\parallel} > 15$ GeV and $|M_{\parallel} 91$ GeV| > 10 GeV
 - \bigcirc $E_T > 40 \text{ GeV}$
 - $N_i > 2$
 - 9 $N_b > 2$
 - $H_T = \sum p_T(\text{jets}) + \sum p_T(\text{lepton}) \ge 650 \text{ GeV}$

Yields

■ After the whole selection, the expected numbers of signal and background events are :

	Channel		
Samples	ee	eμ	$\mu\mu$
Charge mis-id	$0.16 \pm 0.04 \pm 0.05$	$0.41 \pm 0.07 \pm 0.12$	_
Fakes	$0.18 \pm 0.17 \pm 0.05$	$0.07 \pm 0.28 \pm 0.02$	< 1.14
Diboson			
 WZ / ZZ+jets 	< 0.11	$0.01 \pm 0.09 \pm 0.01$	< 0.11
 W[±] W[±] +2 jets 	< 0.03	$0.18 \pm 0.16 \pm 0.07$	< 0.03
$t\bar{t} + W/Z$			
 t₹W(+jet(s)) 	$0.31 \pm 0.04 \pm 0.12$	$0.93 \pm 0.06 \pm 0.35$	$0.65 \pm 0.06 \pm 0.25$
 tt̄Z(+jet(s)) 	$0.09 \pm 0.02 \pm 0.04$	$0.34 \pm 0.04 \pm 0.14$	$0.14 \pm 0.02 \pm 0.06$
• $t\bar{t}W^{\pm}W^{\mp}$	$0.012 \pm 0.002 \pm 0.005$	$0.039 \pm 0.003 \pm 0.016$	$0.024 \pm 0.003 \pm 0.01$
Total	$0.75 \pm 0.21 \pm 0.14$	$1.98 \pm 0.35 \pm 0.40$	$0.82 \pm 1.15 \pm 0.26$
Sgluon (350 GeV)	59 ± 22	167 ± 36	136 ± 31
Sgluon (400 GeV)	47 ± 11	141 ± 20	108 ± 18
Sgluon (500 GeV)	26.4 ± 4.3	93.1 ± 8.1	44.5 ± 5.3
Sgluon (600 GeV)	8.0 ± 1.2	32.9 ± 2.4	21.7 ± 2.0
Sgluon (800 GeV)	1.13 ± 0.15	4.3 ± 0.4	2.75 ± 0.25
Sgluon (1000 GeV)	0.127 ± 0.019	0.448 ± 0.036	0.381 ± 0.033

Yields

■ After the whole selection, the expected numbers of signal and background events are:

	Channel		
Samples	ee	eμ	μμ
Charge mis-id	$0.16 \pm 0.04 \pm 0.05$	$0.41 \pm 0.07 \pm 0.12$	_
Fakes	$0.18 \pm 0.17 \pm 0.05$	$0.07 \pm 0.28 \pm 0.02$	< 1.14
Diboson			
 WZ / ZZ+jets 	< 0.11	$0.01 \pm 0.09 \pm 0.01$	< 0.11
 W[±] W[±] +2 jets 	< 0.03	$0.18 \pm 0.16 \pm 0.07$	< 0.03
$t\bar{t} + W/Z$			
 t\(\bar{t}W(+\text{jet(s)})\) 	$0.31 \pm 0.04 \pm 0.12$	$0.93 \pm 0.06 \pm 0.35$	$0.65 \pm 0.06 \pm 0.25$
 tt̄Z(+jet(s)) 	$0.09 \pm 0.02 \pm 0.04$	$0.34 \pm 0.04 \pm 0.14$	$0.14 \pm 0.02 \pm 0.06$
 tīw±w∓ 	$0.012 \pm 0.002 \pm 0.005$	$0.039 \pm 0.003 \pm 0.016$	$0.024 \pm 0.003 \pm 0.01$
Total	$0.75 \pm 0.21 \pm 0.14$	$1.98 \pm 0.35 \pm 0.40$	$0.82 \pm 1.15 \pm 0.26$
Sgluon (350 GeV)	59 ± 22	167 ± 36	136 ± 31
Sgluon (400 GeV)	47 ± 11	141 ± 20	108 ± 18
Sgluon (500 GeV)	26.4 ± 4.3	93.1 ± 8.1	44.5 ± 5.3
Sgluon (600 GeV)	8.0 ± 1.2	32.9 ± 2.4	21.7 ± 2.0
Sgluon (800 GeV)	1.13 ± 0.15	4.3 ± 0.4	2.75 ± 0.25
Sgluon (1000 GeV)	0.127 ± 0.019	0.448 ± 0.036	0.381 ± 0.033
Observed	1	6	1

■ No significant excess seen in data compared to background expectations.

sgluons

Limits

- \blacksquare The limits are computed using the $\mathrm{McLimit}$ software, including both statistical and systematic uncertainties.
- The vertical red dashed line represents the observed limit, while the blue one represents the expected limit.

Observed limit @ 0.8 TeV.

Progression

- Theoretical context Sgluon phenomenology
- Phenomenological search
- Search within ATLAS
- 4 Conclusions Outlooks

Conclusions - Outlooks

- The sgluon signatures have been investigated in a phenomenological paper, result of a collaboration between theorists and experimentalists.
- Such particles could be reached at the LHC until masses of about 0.65 TeV.
- Following the conclusions of this paper, the 4-top topology has been studied in ATLAS, using 14.3 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV.
- The limitations of the pheno paper were corrected :
 - Pile up taken into account
 - Background more accurately described using both MC samples and data driven estimation.
- Consequently, a expected limit of 0.83 TeV is obtained, and the observed limit is of 0.80 TeV

Sgluon production & decays

slguon production

Cross section of sgluon [pb] vs mass of sgluon [GeV].

- Sgluon sensitive to strong interaction: large coupling to quarks and gluons. Important production at the LHC.
- The pair production is always the main way to produce sgluons.
- The cross section is quite important for low masses, but decreases quickly.

Loïc VALÉRY sgluons 27 / 24

sgluon decays

- The coupling between sgluon and quarks is mediated by squarks and gluinos.
- Assuming a maximal mixing between the up-type squarks.
- Final states with at least one top quark are equiprobable.

sgluons

Effective model

Simplified model I

- In SUSY, the sgluon coupling to gluons or quarks is mediated by squarks and gluinos ... But they habe not (yet) been discovered ⇒ coupling depends on the mass of these particles.
- Since *sgluon-like* particles are predicted in various kind of BSM theories, the couplings are expected to be different.
- To describle generically sgluons, an effective model has been built.
- To do so :
 - We minimally extend the Standard Model.
 - We only add one scalar field.
 - The allowed coupling are inspired of N = 1/N = 2-hybrid-like models.

sgluons

Simplified model II

Kinematic term

- Covariante derivative of standard QCD.
- \blacksquare G_{ii}^a : gluon

$$\mathcal{L}_{\rm kin} = \frac{1}{2} D_\mu \sigma^a D^\mu \sigma_a - \frac{1}{2} m_\sigma^2 \sigma^a \sigma_a \quad \ \ {}_{\rm with} \quad D_\mu \sigma^a = \partial_\mu \sigma^a + g_s \, f_{bc}^{\ a} \, G_\mu^b \, \sigma^c$$

Interaction Lagangian

An effective coupling between the sgluon and the matter fields is introduced.

$$\mathcal{L}_{\text{eff}} = \sigma^{a} \bar{d} T_{a} \Big[a_{d}^{L} P_{L} + a_{d}^{R} P_{R} \Big] d + \sigma^{a} \bar{u} T_{a} \Big[a_{u}^{L} P_{L} + a_{u}^{R} P_{R} \Big] u + a_{g}^{R} d_{a}^{bc} \sigma^{a} G_{\mu\nu b} G^{\mu\nu}{}_{c} + \text{h.c.}$$

Loïc VALÉRY sgluons 31 / 24

Simplified model III

Allowed coupling in the considered effective model.

Loïc VALÉRY sgluons 32 / 24

Backgrounds

$t\bar{t} + W/Z + \text{jets}$

- MadGraph+Pythia (CTEQ6L1), fullsim
- Additional partons: $\in [0, 2]$

$t\bar{t} + WW$

- MadGraph+Pythia (MSTW2008LO), AF2
- CTEQ6L1 sample used for comparison

Diboson+jets $(W^{\pm}Z/ZZ)$

- Sherpa (CT10), fullsim
- Additional partons: $\in [0,3]$
- Alpgen+Jimmy used for comparison

Same-sign diboson $(W^{\pm}W^{\pm}+jj)$

- MadGraph+Pythia (MSTW2008LO), AF2
- CTEQ6L1 sample used for comparison

A few words about data driven backgrounds

Mismeasured electric charge of the lepton

- Origin: trident electron (hard bremstrahlung), slightly curved track.
- Negligible for muons (combination of different trackers)
- Measurement performed using a $Z \rightarrow ee$ sample.
- A correction to account for high p_T electrons is done using $t\bar{t}$ samples.

■ Fake leptons

- Origin: heavy flavour decays, photon conversion, ...
- Uses the Matrix Method
- A *loose* selection of leptons is performed by relaxing the isolation cuts.
- The yields of real or fake leptons in the *loose* sample are used to extrapolate the contamination in the signal region (more details in backup).

Loïc VALÉRY sgluons

Matrix method

Matrix method I

- Loose lepton
 - If the lepton is a real one (region $E_T^{miss} > 150$ GeV for electrons and $m_T(W) > 100$ GeV for muons), the efficiency to pass the tight criteria is r.
 - If the lepton is a fake one (region defined by $E_T^{miss} < 20$ GeV and $E_T^{miss} + m_T(W) < 60$ GeV for the electrons and $|d_0/d_0^{sig}| > 5$ fro the muons) the efficiency to be selected as a real one is r.
- Matrix method

$$\left(\begin{array}{c} N^{\rm tt} \\ N^{\rm tl} \\ N^{\rm lt} \\ N^{\rm ll} \end{array}\right) = \boldsymbol{M} \left(\begin{array}{c} N^{\rm ll}_{\rm rr} \\ N^{\rm ll} \\ N^{\rm fl} \\ N^{\rm ll} \\ N^{\rm ll} \\ N^{\rm ll} \end{array}\right)$$

$$\mathbf{M} = \begin{pmatrix} r_1 r_2 & r_1 f_2 & f_1 r_2 & f_1 f_2 \\ r_1 (1 - r_2) & r_1 (1 - f_2) & f_1 (1 - r_2) & f_1 (1 - f_2) \\ (1 - r_1) r_2 & (1 - r_1) f_2 & (1 - f_1) r_2 & (1 - f_1) f_2 \\ (1 - r_1) (1 - r_2) & (1 - r_1) (1 - f_2) & (1 - f_1) (1 - r_2) & (1 - f_1) (1 - f_2) \end{pmatrix}$$

Loïc VALÉRY sgluons 38 / 24

Matrix method II

$$\left(egin{array}{c} oldsymbol{N^{\mathrm{tt}}} \ oldsymbol{N^{\mathrm{tt}}} \ oldsymbol{N^{\mathrm{lt}}} \ oldsymbol$$

Known and unknown quantities

- In the first member of the equation
 - Known quantity (e.g. N^{tt} is the number of events in the loose selection for which the two leptons pass the tight criteria).
- In the second member of the equation
 - the matrix in **known** (r and f are parametrized as a function of η , p_T ...)
 - the column vector is unknown (number of lepton pairs that are rf, fr, rr or ff).

Loïc VALÉRY sgluons 39 / 24

Matrix method III

■ Inverting the matrix, the number of tight-tight events containing at least one fake lepton is:

$$\begin{aligned}
N_{\text{fake}}^{\text{tt}} &= N_{\text{rf}}^{\text{tt}} + N_{\text{fr}}^{\text{tt}} + N_{\text{ff}}^{\text{tt}} \\
&= r_{1} f_{2} N_{\text{rf}}^{\text{ll}} + f_{1} r_{2} N_{\text{fr}}^{\text{ll}} + f_{1} f_{2} N_{\text{ff}}^{\text{ll}} \\
&= \alpha r_{1} f_{2} \left[(f_{1} - 1)(1 - r_{2}) N^{\text{tt}} + (1 - f_{1}) r_{2} N^{\text{tl}} + f_{1}(1 - r_{2}) N^{\text{lt}} - f_{1} r_{2} N^{\text{ll}} \right] \\
&+ \alpha f_{1} r_{2} \left[(r_{1} - 1)(1 - f_{2}) N^{\text{tt}} + (1 - r_{1}) f_{2} N^{\text{tl}} + r_{1}(1 - f_{2}) N^{\text{lt}} - r_{1} f_{2} N^{\text{ll}} \right] \\
&+ \alpha f_{1} f_{1} \left[(1 - r_{1})(1 - r_{2}) N^{\text{tt}} + (r_{1} - 1) r_{2} N^{\text{tl}} + r_{1}(r_{2} - 1) N^{\text{lt}} + r_{1} r_{2} N^{\text{ll}} \right]
\end{aligned}$$

where

$$\alpha = \frac{1}{(r_1 - f_1)(r_2 - f_2)}.$$

sgluons 40 / 24

Charge mis-ID

Charge mis-identification I

- Estimated using $Z \rightarrow ee$ events
 - In data, same-sign and opposite-sign events are selected.
 - In both kinds of samples, a Z peak can be seen.

FIGURE: Up : Same-sign events. Bottom : Opposite sign events

Trigger

Trigger

- Electrons
 - EF_e24vhi_medium1
 - EF_e60_medium1
- Muons
 - EF_mu24i_tight
 - EF_mu36_tight

Optimisation of the selection

Optimization of the selection

■ The optimization of the selection is performed in order to get the best expected limit (using both the statistic and systematic uncertainties).

Selected set of cuts :

$$N_{jets} \geq 2$$
 $N_b \geq 2$ $\sum p_T(\text{jets}) + \sum p_T(\text{lepton}) \geq 650 \text{ GeV}$

Loïc VALÉRY sgluons

46 / 24

Limits

- The limits are computed using the McLimit software, including both statistical and systematic uncertainties.
- The vertical red dashed line represents the observed limit, while the blue one represents the expected limit.

