

Search for sgluons in multitop final states at the LHC

Samuel CALVET¹, Benjamin FUKS², Philippe GRIS¹, Adrien RENAUD³, <u>Loïc VALÉRY</u>¹, Dirk ZERWAS³

Laboratoire de Physique Corpusculaire (LPC) - Clermont-Ferrand
 Institut Pluridisciplinaire Hubert Curien (IPHC) - Strasbourg
 Laboratoire de l'Accélérateur Linéaire (LAL) - Orsay

GDR Terascale @ Clermont-Ferrand April 23rd, 2012

Outline

Theoretical context - Sgluon phenomenology

Signals, backgrounds and simulation

Dileptonic 4-top and *tjtj* signatures

Semileptonic tjtj signature

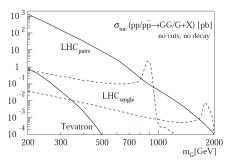
Conclusions - Outlooks

Loïc VALÉRY sgluons 2 / 26

Theoretical context - Sgluon phenomenology
Theoretical context
Sgluon phenomenology
Summary

Signals, backgrounds and simulation

Dileptonic 4-top and tjtj signatures

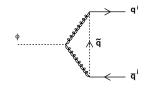

Semileptonic tjtj signature

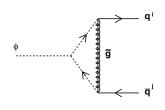
Conclusions - Outlooks

Theoretical context

- We consider an extension of the Minimal Supersymmetric Standard Model.
- By adding a new symmetry (R-symmetry), new particles are predicted.
- Among them, a new color-octet scalar field, named **sgluon**, partner of the the gluon and gluino, denoted σ in the next slides.

slguon production




Cross section of sgluon [pb] vs mass of sgluon [GeV].

- Sgluon sensitive to strong interaction: large coupling to quarks and gluons. Important production at the LHC.
- The pair production is always the main way to produce sgluons.
- The cross section is quite important for low masses, but decreases quickly.

arXiv :0810.3919v2 [hep-ph]

sgluon decays

- The coupling between sgluon and quarks is mediated by squarks and gluinos.
- Assuming a maximal mixing between the up-type squarks.
- Final states with at least one top quark are equiprobable.

Loïc VALÉRY sgluons 6 / 26

Theoretical context Sgluon phenomenology Summary

Summary

Production

The sgluon pair production is the most favoured one.

Theoretical context Sgluon phenomenolog Summary

Summary

Production

The sgluon pair production is the most favoured one.

Decays

Mainly, each sgluon decays equiprobably with at least one top quark. This leads to two different final states.

Theoretical context Sgluon phenomenolog Summary

Summary

Production

The sgluon pair production is the most favoured one.

Decays

Mainly, each sgluon decays equiprobably with at least one top quark. This leads to two different final states.

tjtj topology

Each sgluon decays into one top quark and a up-type ligh quark (u or c).

Theoretical context Sgluon phenomenolog Summary

Summary

Production

The sgluon pair production is the most favoured one.

Decays

Mainly, each sgluon decays equiprobably with at least one top quark. This leads to two different final states.

tjtj topology

Each sgluon decays into one top quark and a up-type ligh quark (u or c).

4-top topology

Each sgluon decays into two top quarks.

Loïc VALÉRY sgluons 7 / 26

Theoretical context - Sgluon phenomenology

Signals, backgrounds and simulation Generation of samples Cross sections

Dileptonic 4-top and tjtj signatures

Semileptonic tjtj signature

Conclusions - Outlooks

In this study, we consider an integrated luminosity of 10 fb^{-1} at 7 TeV using pp collisions.

Framework

- Parton level: MadGraph 5.1.2/5.1.3.
- Parton showering + hadronization : Pythia 6.
- Detector simulation : DELPHES with ATLAS card.
 - Fast simulation of ATLAS and CMS detectors
 - Smearing and reconstruction of objects (electron, jets, ...)
 - Using a *b*-tagging efficiency of 60%.

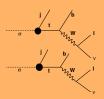
Signal

- Model generated by FeynRules 1.6. for the 2 topologies. Test for each topology : BR($\sigma \to t\bar{t}$)=100% and BR($\sigma \to tq'$)=100% with q'=u,c.
- Two mass points : 400 and 1000 GeV.

Cross sections

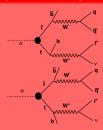
Sample	Cross section [pb]	
σ (M=400 GeV)	1.86	
σ (M=1000 GeV)	8.2×10^{-4}	
W+jets	14350	
$\gamma/Z+{\sf jets}$	1672	
$t \bar t$	20.3	
single top	13.91	
Dibosons	12.28	
$t\bar{t}X+{\sf jets}$	0.26	
ttt	3.7×10^{-4}	

Theoretical context - Sgluon phenomenology

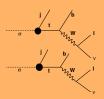

Signals, backgrounds and simulation

Dileptonic 4-top and *tjtj* signatures
Selection criteria
Summary

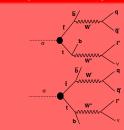
Semileptonic tjtj signature


Conclusions - Outlooks

Dileptonic tjtj signature


- 4 jets (2 *b*-jets and two high- P_T jets)
- 2 charged leptons
- Missing transverse energy (neutrinos)

Dileptonic 4-top signature


- 8 jets (2 *b*-jets and two high- P_T jets)
- 2 charged leptons
- Missing transverse energy

Dileptonic tjtj signature

- 4 jets (2 *b*-jets and two high-*P*_T jets)
- 2 charged leptons
- Missing transverse energy (neutrinos)

Dileptonic 4-top signature

- 8 jets (2 *b*-jets and two high-*P_T* jets)
- 2 charged leptons
- Missing transverse energy

In both cases, both leptons can have the same sign.

Loïc VALÉRY sgluons 12 / 26

Selection criteria

Common selection

- 2 same-sign leptons (ee, $\mu\mu$ and $e\mu$)
- $M(lepton, lepton) \ge 20 \text{ GeV}$
- E_T ≥ 40 GeV

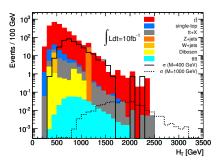
Dileptonic titi signature

- At least 4 jets with $P_T \ge 25$ GeV
- At least 1 *b*-jet

Results (for 400 GeV sgluon)

- Exp. signal events : 150 (eff : 2%)
- Exp. $t\bar{t}$ events : 348 (eff : 0.02%)

Dileptonic 4-top signature


- At least 8 jets with $P_T \ge 25$ GeV
- At least 2 *b*-jets

Results (for 400 GeV sgluon)

- Exp. signal events : 144 (eff : 2%)
- **Exp.** $t\bar{t}$ events : 0.57 (eff : $10^{-5}\%$)

Backgrounds

- After the selection, essentially SM $t\bar{t}$, single top and SM $t\bar{t}t\bar{t}$ backgrounds.
- $t\bar{t}$ and single top backgrounds : lower activity than the signal. This activity can be described by H_T .

- H_T: scalar sum of the P_T of all objects (leptons, jets, MET).
- Further discrimination is provided by an additional selection wrt H_T .
- ← H_T distribution after tjtj selection

Sensitivity & Results

Sensitivity: minimal cross section that can be excluded at 95% CL taking into account the fluctuations of the background.

$$s = \frac{\sqrt{N_b} \times 1.64}{\epsilon \times L}$$

where N_b is the number of expected background events, ϵ the efficiency of the signal selection and \mathcal{L} is the integrated luminosity.

Dileptonic titi topology

Without additional selection

■ 400 GeV: 380 fb

■ 1 TeV: 209 fb

■ With a selection wrt/ H_T

■ 400 GeV : 216 fb $(H_T \ge 650 GeV)$

■ 1 TeV : 15 fb $(H_T > 1550 GeV)$

Dileptonic 4-top topology

Without additional selection

■ 400 GeV: 17 fb

■ 1 TeV: 6 fb

■ With a selection wrt/ H_T

■ 400 GeV : 11.8 fb $(H_T > 850 GeV)$

■ 1 TeV : 0.5 fb $(H_T > 1650 GeV)$

Summary

- These signatures could **lead to a discovery**. But **few information on the nature of the excess** (no visible resonance).
- One can look at the lepton+jets signature : **possible** (and easier than in dilepton signature) **reconstruction**.
- lacksquare Can test whether the excess comes from a $\sigma
 ightarrow tj$ resonance

16/26

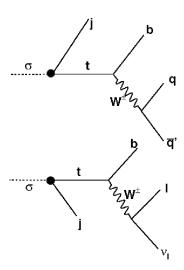
Theoretical context - Sgluon phenomenology

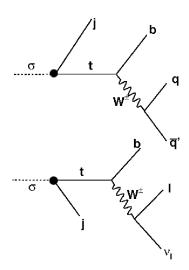
Signals, backgrounds and simulation

Dileptonic 4-top and tjtj signatures

Semileptonic *tjtj* signature

Selection criteria - semileptonic events


Reconstruction algorithm


Results

Conclusions - Outlooks

17/26

Selection criteria - semileptonic events Reconstruction algorithm Results

If one W boson decays leptonically and the other one hadronically, the final state contains:

- 1 charged lepton (electron or muon).
- Missing transverse momentum (associated to the neutrino).
- 6 jets (2 *b*-jets and 2 jets with high P_T).

Selection criteria

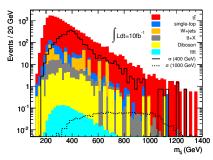
To suppress the physical backgrounds, each event is required to contain :

- Exactly one lepton (electron or muon) with $P_T \ge 25 GeV$.
- At least 6 jets with $P_T \ge 25 GeV$.
- $\cancel{E}_T \ge 40$ GeV.
- $\blacksquare \ M_T(W) = \sqrt{2P_T^{lept}.\cancel{E_T}} \left[1 \cos\left(\Delta\varphi(lept,\cancel{E_T})\right)\right] \geq 25 \ \text{GeV}.$

Sample	Before selection	After selection	Efficiency
$\sigma (M = 400 \text{ GeV})$	18 050	792	4.4%
σ ($M=1000$ GeV)	7.93	1.07	6.75%
Backgrounds	5.15×10^{8}	7870	0.02%

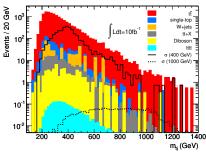
Reconstruction algorithm

- One can also compute the sensitivity by 2 methods.
- Like for the 2^{nd} method, we need a discriminant variable.
- As the sgluon can be reconstructed in this final state, the mass should be a good discriminant variable.


The χ^2 algorithm

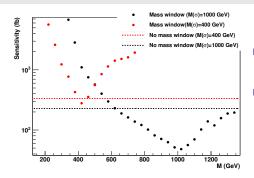
- We want to find the combination of jets, lepton and MET that comes from the sgluon decay.
- For each event, we can estimate the χ^2 given by :

$$\begin{split} \chi^{2}(j_{1},j_{2},b_{1},b_{2},q_{1},q_{2},l,MET) &= \\ &\left[\frac{m_{jj}-m_{W}}{\sigma_{W}}\right]^{2} + \left[\frac{m_{jjb}-m_{jj}-m_{th-W}}{\sigma_{th-W}}\right]^{2} + \left[\frac{m_{jl\nu}-m_{tl}}{\sigma_{tl}}\right]^{2} + \\ &\left[\frac{(M(\sigma_{lep})-M(t_{lep})) - (M(\sigma_{had})-M(t_{had}))}{(M(\sigma_{lep})-M(t_{lep})) + (M(\sigma_{had})-M(t_{had}))} \times \frac{1}{\sigma_{sgluon}}\right]^{2} \end{split}$$


- All possible combinations (jets, lepton, \mathcal{E}_T) are estimated.
- The combination that minimizes the χ^2 is chosen.

Results

tj invariant mass


Results

ti invariant mass

- Quite clear peak for the 400 GeV sgluon.
- Broader one for the 1000 GeV (due to combinatorial background).

Results

- Sensitivity computable by 2 methods.
- 2^{nd} method : the mass is chosen as discriminant variable. Test mass M, sensitivity in the window [M-10%; M+10%].

The optimal sensitivity in the semileptonic signature is :

- 278 fb for the 400 GeV sgluon (compared to the cross section of 1.86 pb for the same sgluon mass).
- **48 fb** for the 1 TeV sgluon (compared to the cross section of 0.82 fb for the same sgluon mass).

Signals, backgrounds and simulation Dileptonic 4-top and titi signatures Semileptonic tjtj signature Conclusions - Outlooks

Theoretical context - Sgluon phenomenology

Signals, backgrounds and simulation

Dileptonic 4-top and titi signatures

Semileptonic titi signature

Conclusions - Outlooks

sgluons 24/26

Conclusions - Outlooks

- Two different final states studied : a same-sign dilepton final state and a semileptonic one.
- Dileptonic final states allow to exclude cross sections higher than :
 - 216 fb (resp. 15 fb) in the *tjtj* topology for a 400 (resp. 1000)
 GeV sgluon (the cross sections considered in this model are 1.86 pb (resp. 0.82 fb)).
 - 11.8 fb (resp. 0.5 fb) in the 4-top topology for a 400 (resp. 1000) GeV sgluon.
- Semileptonic signature allows to reconstruct the mass of the slguons and to probe the *tj* nature of the resonance.
- Up to now, semileptonic channel is sensitive to low mass sgluons but not yet for high masses.
- Work still ongoing to improve the selection efficiency (ex : using multivariate methods).

Loïc VALÉRY sgluons 25 / 26

References

Phenomenological papers

- Hadronically decaying color-adjoint scalars at the LHC S. Schumann, A. Renaud, D. Zerwas http://dx.doi.org/10.1007/JHEP09(2011)074
- Searching for sgluons in multitop production at the LHC
 S. Calvet, B. Fuks, P. Gris, A. Renaud, L. Valéry, D. Zerwas http://arxiv.org/abs/1203.1488

Experimental paper

■ Search for Massive Colored Scalars in Four-Jet Final States in sqrts=7 TeV proton-proton collisions with the ATLAS Detector.

The ATLAS Collaboration http://arxiv.org/pdf/1110.2693

Loïc VALÉRY sgluons 26 / 26