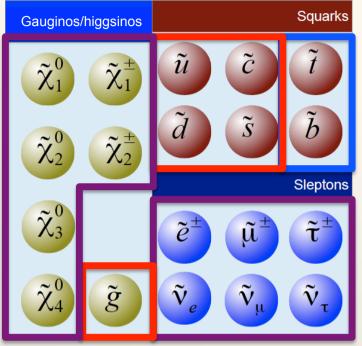
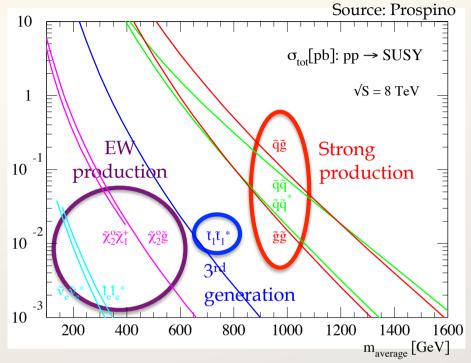


EW SUSY production searches at ATLAS and CMS

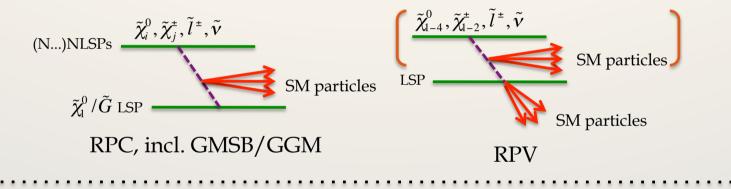

XLIX Rencontres de Moriond Electroweak interactions and unified theories 21st March 2014

Mike Flowerdew (MPI für Physik) On behalf of the ATLAS and CMS collaborations

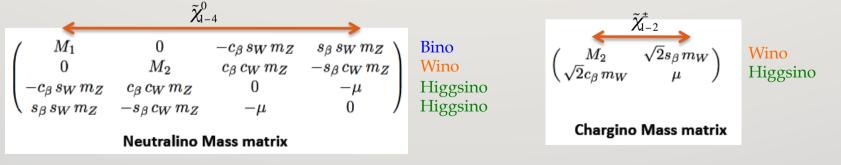


Why EW SUSY?

- Weak-scale supersymmetry (SUSY) eagerly anticipated but not yet observed
 - Postulates partners to SM particles, different by $\Delta s = \frac{1}{2}$
 - Solves electroweak hierarchy problem
 - Points to gauge coupling unification
 - Often assume R-parity conservation (RPC)
 - Lightest SUSY particle (LSP) stable
 - Dark matter candidate $(\tilde{\chi}_1^0)$
 - Potential mechanisms for neutrino masses (with R-parity violation , RPV)

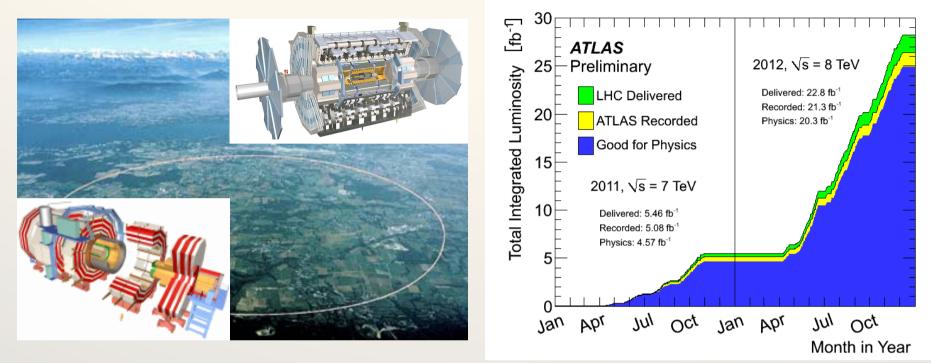


- Squark & gluino production (incl. 3rd gen) now highly constrained
 - See presentation by P Bargassa
- Electroweak (EW) SUSY covers direct production of sleptons, neutralinos and charginos
 - Ensure full search coverage
 - Small cross-sections \rightarrow challenging!


21st March 2014

EW SUSY phenomenology

- Observable signatures in pp collisions depends on EWKino and slepton properties
 - With some assumptions, 9 relevant parameters: $M_1, M_2, \mu, \tan\beta, m_{\tilde{e}_L}^2, m_{\tilde{e}_R}^2, m_{\tilde{\tau}_L}^2, m_{\tilde{\tau}_R}^2, \theta_{\tilde{\tau}}$
 - Gauge-mediated SUSY breaking (GMSB) or general gauge mediation (GGM): + $c\tau_{\text{NLSP}}$
- Typical scenario: EW SUSY production, followed by cascade to LSP



Many possible SM particles in SUSY cascades: **fermions**, **W**, **Z**, **h**, dependent on **bino/wino/higgsino** mixing

NB: generally only **minimal** models are considered

LHC data-taking: 2011-12

- Analyses use pp collision data collected in 2011 and 2012
 Many thanks to the LHC for delivery of so much data!
- Experiments performed well, operating with high efficiency
 - Challenging trigger and pile-up conditions ($<\mu>\sim10-35$ in 2012)
 - Huge efforts in data quality, detector calibration, Grid computing etc
 all essential for the final results

EW SUSY searches

ATLAS & CMS searches with EW SUSY interpretations

Lepton-based searches

CMS	$2-4e/\mu/\tau$	SUS-13-006
ATLAS	2τ	CONF-2013-028
ATLAS	2e/µ	CERN-PH-EP-2014-037
ATLAS	3e/μ/τ	arXiv:1402.7029 [hep-ex]
ATLAS	4e/μ/τ	CONF-2013-036*
CMS	3e/μ/τ	SUS-13-002*
CMS	$\mu^{\pm}\mu^{\pm}$	SUS-13-005
ATLAS (7 TeV)	eμ/eτ/μτ resonance	PLB 723 (2013) 15
ATLAS (7 TeV)	eµ/eτ/μτ	EPJC 72 (2012) 2040

Searches utilising $h \rightarrow bb$

CMS	4b	SUS-13-022		
CMS	WH	SUS-13-017		
ATLAS	ebb/µbb	CONF-2013-093		

Photon-based searches

ATLAS	γγ	CONF-2014-001*
ATLAS (7 TeV)	γ+b	PLB 719 (2013) 261*
ATLAS (7 TeV)	γ + 1	CONF-2012-144*

(Meta)stable particle searches

ATLAS	Disappearing track	PRD 88 112006 (2013)
CMS	Long-lived particle	JHEP 07 (2013) 122* + EXO-13-006
ATLAS	Long-lived particle	CONF-2013-058
ATLAS (7 TeV)	Non-pointing γ	PRD 88 012001 (2013)

Not covered here: Mono-X searches (X = jet, photon, W, Z, ...) See presentation by Philippe Calfayan

21st March 2014

Moriond EW 2014

* Production of squarks/ gluinos also considered

EW SUSY searches

ATLAS & CMS searches with EW SUSY interpretations

Primary interpretation: RPC EWKino/slepton, GMSB/GGM, RPV

Lepton-based searches

CMS	2-4e/μ/τ	SUS-13-006
ATLAS	2τ	CONF-2013-028
ATLAS	2e/µ	CERN-PH-EP-2014-037
ATLAS	3e/μ/τ	arXiv:1402.7029 [hep-ex]
ATLAS	4e/μ/τ	CONF-2013-036*
CMS	3e/μ/τ	SUS-13-002*
CMS	$\mu^{\pm}\mu^{\pm}$	SUS-13-005
ATLAS (7 TeV)	eμ/eτ/μτ resonance	PLB 723 (2013) 15
ATLAS (7 TeV)	eµ/eτ/μτ	EPJC 72 (2012) 2040

Searches utilising $h \rightarrow b\overline{b}$

CMS	4b	SUS-13-022
CMS	WH	SUS-13-017
ATLAS	ebb/µbb	CONF-2013-093

Photon-based searches

ATLAS	γγ	CONF-2014-001*
ATLAS (7 TeV)	γ+b	PLB 719 (2013) 261*
ATLAS (7 TeV)	γ+1	CONF-2012-144*

Many results, not enough time... Will focus on the most recent results

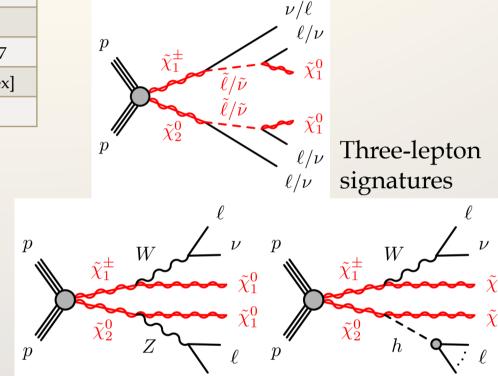
Not covered here: Mono-X searches (X = jet, photon, W, Z, ...) See presentation by Philippe Calfayan

(Meta)stable particle searches

ATLAS	Disappearing track	PRD 88 112006 (2013)
CMS	Long-lived particle	JHEP 07 (2013) 122* + EXO-13-006
ATLAS	Long-lived particle	CONF-2013-058
ATLAS (7 TeV)	Non-pointing γ	PRD 88 012001 (2013)

21st March 2014

Moriond EW 2014


* Production of squarks/ gluinos also considered

Lepton-based wino/slepton searches

Searches rely on detection of multiple charged leptons (including τ)

CMS	2-4e/μ/τ	SUS-13-006
ATLAS	2τ	CONF-2013-028
ATLAS	2e/µ	CERN-PH-EP-2014-037
ATLAS	3e/μ/τ	arXiv:1402.7029 [hep-ex]
ATLAS	4e/μ/τ	CONF-2013-036

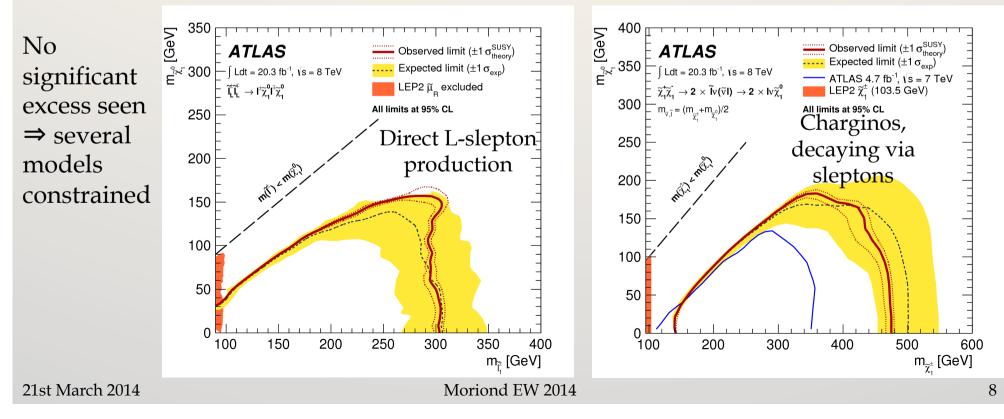
Two-lepton signatures

Interpretations: Simplified Models usually pure states, decays fixed to 100% Phenomenological MSSM (pMSSM) 19 parameter specialisation of minimal SUSY models GMSB/GGM specific model of SUSY breaking

 $\tilde{\chi}_1^0$

 $\tilde{\chi}_1^0$

p

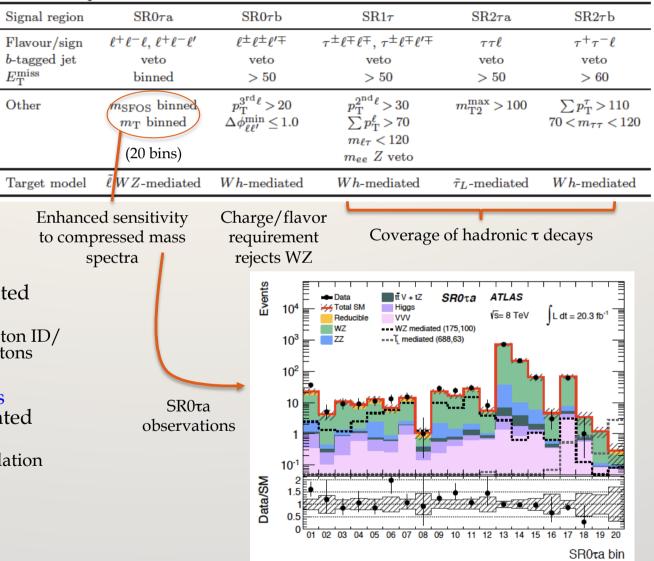

p

NEW ATLAS 2-lepton search CERN-PH-EP-2014-037, to be submitted to JHEP

- Two leptons selected (ee, $e\mu$, $\mu\mu$) with opposite charges
- Signal regions targeting specific two-lepton signatures:
 - Slepton/chargino-like and WW-like regions
 - Rely on m_{T2} variable to reject WW and top background using kinematic edge at m_W

$$m_{\mathrm{T2}} = \min_{\mathbf{q}_{\mathrm{T}}} \left[\max \left(m_{\mathrm{T}} \left(\mathbf{p}_{\mathrm{T}}^{\ell 1}, \mathbf{q}_{\mathrm{T}} \right), m_{\mathrm{T}} \left(\mathbf{p}_{\mathrm{T}}^{\ell 2}, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} - \mathbf{q}_{\mathrm{T}} \right) \right) \right]$$

- Main background sources normalised with data in control regions
- Z+jets-like region
 - Uses jet smearing in well-measured Z+jets events to reduce QCD modelling uncertainty



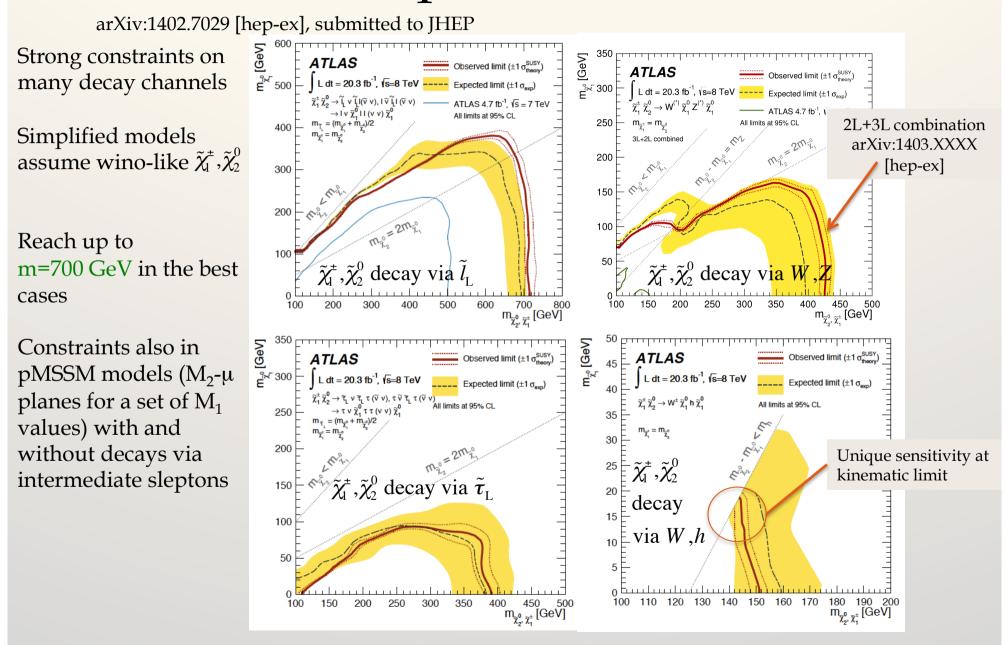
ATLAS 3-lepton search

NEW in 2014

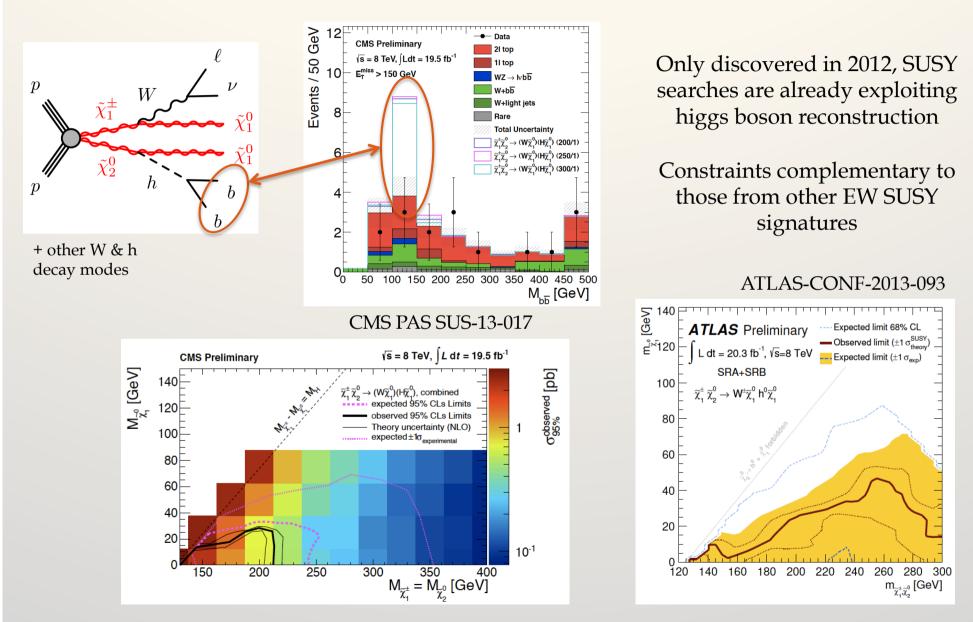
arXiv:1402.7029 [hep-ex], submitted to JHEP

- Search for EW production of charginos & neutralinos
 - 3 leptons, up to 2 taus
 - Different charge/flavor combinations explored in 5 signal regions
 - b-jet veto rejects ttbar
- Background estimation
 - ttbar, Z+jets, W+jets estimated from data
 - Control regions invert lepton ID/ isolation on up to two leptons
 - Matrix method model
 - WZ, ZZ, ttV, tZ, VVV, higgs (≥3 isolated leptons) estimated using simulation
 - Checked in multiple validation regions

ATLAS 3-lepton search


NEW in 2014

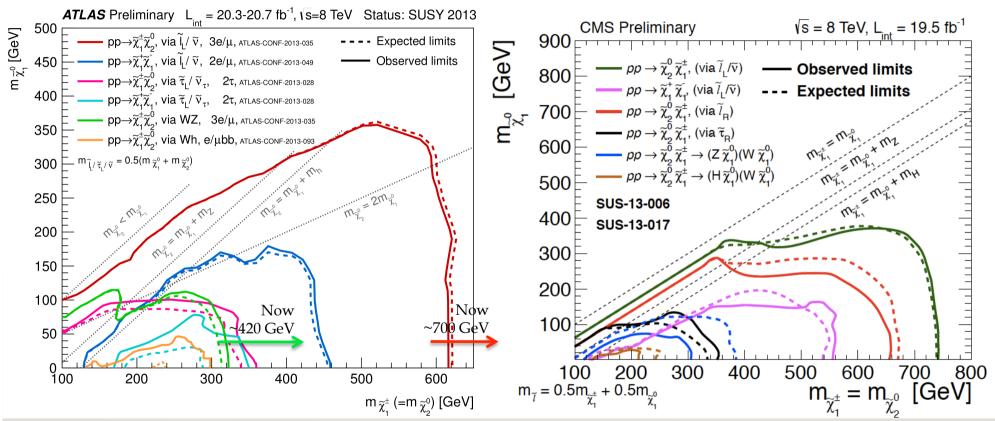
arXiv:1402.7029 [hep-ex], submitted to JHEP


- Search for EW production of charginos & neutralinos
 - 3 leptons, up to 2 taus
 - Different charge/flavor combinations explored in 5 signal regions
 - b-jet veto rejects ttbar
- Background estimation
 - ttbar, Z+jets, W+jets estimated from data
 - Control regions invert lepton ID/ isolation on up to two leptons
 - Matrix method model
 - WZ, ZZ, ttV, tZ, VVV, higgs
 (≥3 isolated leptons) estimated using simulation
 - Checked in multiple validation regions
- No significant excess observed
 ⇒ limits set in benchmark models

	1				
Signal region	$\mathrm{SR0} au\mathrm{a}$	$\mathrm{SR0}\tau\mathrm{b}$	$\mathrm{SR}1 au$	$\mathrm{SR}2 au\mathrm{a}$	$\mathrm{SR}2\tau\mathrm{b}$
Flavour/sign b-tagged jet $E_{\rm T}^{\rm miss}$	$\ell^+\ell^-\ell, \ell^+\ell^-$ veto binned	$\begin{array}{cc} -\ell' & \ell^{\pm}\ell^{\pm}\ell^{\prime\mp} \\ & \text{veto} \\ & > 50 \end{array}$	$\tau^{\pm}\ell^{\mp}\ell^{\mp}, \tau^{\pm}\ell^{\mp}\ell^{\mp}$ veto > 50	$ \begin{array}{c} $	$\begin{array}{c} \tau^+ \tau^- \ell \\ \text{veto} \\ > 60 \end{array}$
Other	$m_{\rm SFOS}$ bin $m_{\rm T}$ binne (20 bins)	$\Delta \phi_{\ell\ell'}^{\min} \leq 1$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$m_{\rm T2}^{\rm max} > 100$	$ \sum_{\tau} p_{\rm T}^{\tau} > 110 70 < m_{\tau\tau} < 120 $
Target model	$\tilde{\ell} WZ$ -media	ted Wh-mediat	ted Wh-mediated	$\tilde{\tau}_L$ -mediated	Wh-mediated
to com	ced sensitivit pressed mas spectra		nent Coverag	ge of hadronic 1	t decays
ted		Other signa	al region observa	tions	
ton ID/ tons		$\mathrm{SR0}\tau\mathrm{b}$	$\mathrm{SR}1 au$	$\mathrm{SR}2 au\mathrm{a}$	$\mathrm{SR}2 au\mathrm{b}$
s ited	Total SM Data	$\begin{array}{c} 3.8 \pm 1.2 \\ 3 \end{array}$	$\begin{array}{c} 10.3 \pm 1.2 \\ 13 \end{array}$	6.9 ± 0.8 6	$7.2^{+0.7}_{-0.8}$ 5
lation	$p_0 (\sigma)$	0.50	0.19 (0.86)	0.50	0.50
	$N_{ m exp}^{95}$	$5.6^{+2.2}_{-1.4}$	$8.1^{+3.2}_{-2.2}$	$6.8^{+2.7}_{-1.9}$	$6.7^{+2.8}_{-1.8}$
rved	$N_{\rm obs}^{95}$	5.4	10.9	6.0	5.2
models					

ATLAS 3-lepton search results

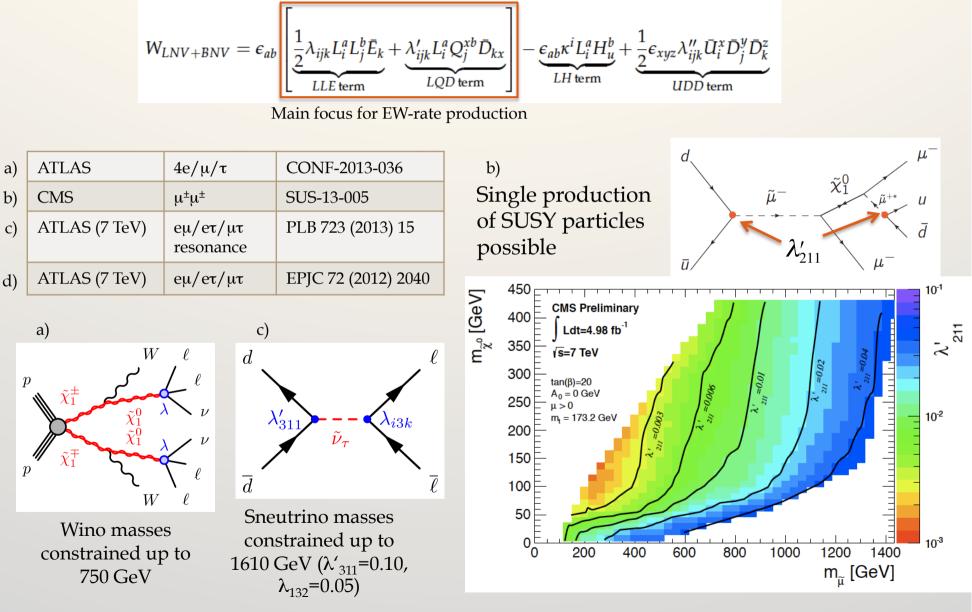
Further exploitation of higgs signatures



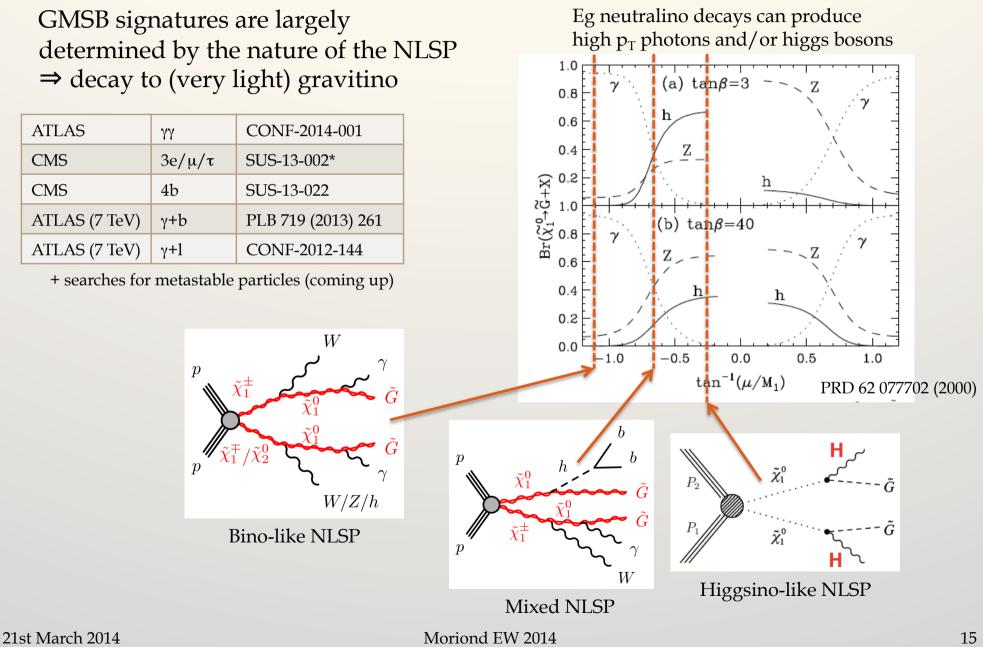
Moriond EW 2014

21st March 2014

Chargino/neutralino summary


Note: ATLAS plot does not yet include new 2L/3L results. The new version will soon appear on the public twiki.

- Constraints highly dependent on available decay channel(s)
 - Strongest for decays via sleptons, weakest for decays producing higgs bosons
 - Compressed scenarios challenging


RPV searches

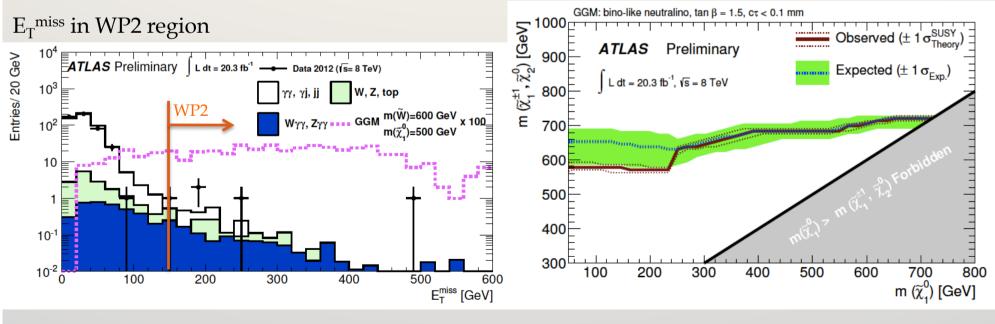
R-parity violation allows the LSP to decay via one or more RPV interactions

21st March 2014

GMSB/GGM models

ATLAS diphoton search

NEW in 2014

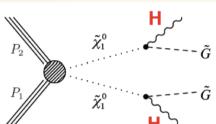

ATLAS-CONF-2014-001

- Diphoton search, sensitive to bino-like NLSP (GGM)
 - No explicit requirements/vetoes on additional leptons or jets
 - Two EW production signal regions
 WP1: E_T^{miss} > 200 GeV and H_T > 400 GeV
 WP2: E_T^{miss} > 150 GeV and H_T > 600 GeV
 - + requirements on angles between E_T^{miss} and jets/photons

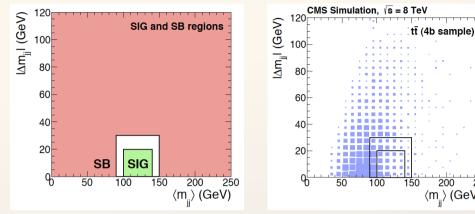
- Background estimation
 - QCD background estimated by inverting identification criteria on one photon
 - Normalised in $E_T^{miss} < 60 \text{ GeV}$ region
 - Electroweak background (W, Z, top) from e+γ control region
 - Irreducible ($W/Z+\gamma\gamma$) from MC
 - W+ $\gamma\gamma$ normalised in $l\gamma\gamma$ + E_T^{miss} control region

Interpretation in terms of wino production

(and gluino production, not shown here)



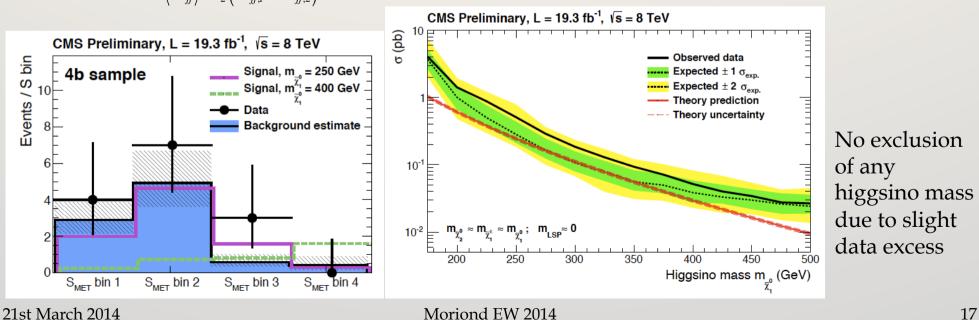
CMS 4b search


NEW in 2014

CMS PAS SUS-13-022

GMSB-inspired search for two higgs bosons + E_T^{miss}

- Selection:
 - 4-5 jets, at least 2-4 b-tags
 - Binned E_T^{miss} significance (S_{MET})
 - Higgs reconstruction uses 4 most b-like jets, in pairs with the smallest $|\Delta m_{jj}|$
 - 100 GeV < $\langle m_{jj} \rangle = \frac{1}{2} (m_{jj,1} + m_{jj,2}) < 140 \text{ GeV}$

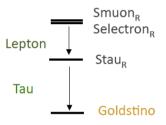

- Main background: semileptonic ttbar
 - Estimated using (nearly) inverted $|\Delta m_{jj}|, \langle m_{jj} \rangle$ selection in ABCD-like method

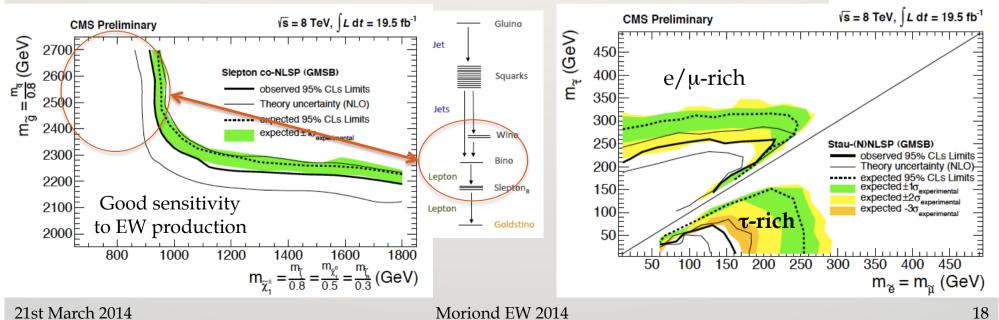
200

 $\langle m_{..} \rangle$ (GeV)

250

Likelihood fit in 6 selections * $4 S_{MET}$ bins

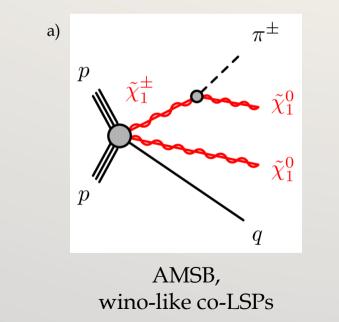


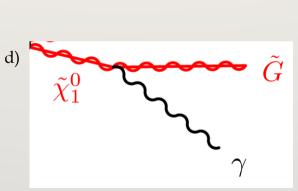

CMS 3-lepton search

CMS PAS SUS-13-002

- Selection: \geq 3 leptons, max 1 τ , data split into exclusive channels, based on
 - Number of opposite-sign same-flavor pairs (0-2)
 - Presence/absence of $Z \rightarrow l^+l^-$ candidate
 - # b-jet (0, >0) and τ (0,1) candidates
 - H_T from jets (< or > 200 GeV), E_T^{miss} (binned)
- P_{2} \tilde{l}_{R}^{+} $\tilde{\tau}_{R}^{-}$ $\tilde{\tau}_{R}^{-}$ $\tilde{\sigma}_{\tilde{G}}^{-}$ $\tilde{\sigma}_{\tilde{G}}^{+}$ $\tilde{\sigma}_{\tilde{G}}^{+}$ $\tilde{\sigma}_{\tilde{G}}^{+}$ $\tilde{\sigma}_{\tilde{G}}^{+}$ $\tilde{\sigma}_{\tilde{G}}^{+}$ $\tilde{\sigma}_{\tilde{G}}^{-}$ $\tilde{\tau}_{R}^{+}$ $\tilde{\sigma}_{\tilde{G}}^{-}$ τ^{-} ℓ^{-}

- Background estimation
 - Drell-Yan & internal photon conversions estimated from data control regions:
 - 2 leptons + isolated track, "loose" tau or photon
 - Other background sources estimated using MC
 - Top and WZ: sophisticated corrections to data for E_T^{miss} , lepton isolation, N_{jets}

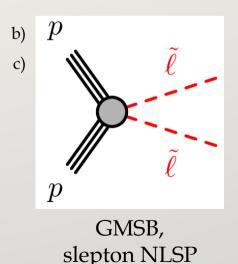




Metastable/long-lived searches

- SUSY particles may travel significant distances before they decay
 - Extremely degenerate spectra (eg anomaly mediated symmetry breaking, AMSB)
 - Weak coupling to gravitino LSP in GMSB/GGM models
 - Small RPV couplings (so far explored only for strong production)

a)	ATLAS	Disappearing track	PRD 88 112006 (2013)
b)	CMS	Long-lived particle	JHEP 07 (2013) 122 + EXO-13-006
c)	ATLAS	Long-lived particle	CONF-2013-058
d)	ATLAS (7 TeV)	Non-pointing y	PRD 88 012001 (2013)



GMSB, bino-like LSP

- Anomalously high charge deposition (dE/dx)
- Delayed/out-of-time signals
- Momentum misaligned wrt primary vertex (non-pointing)
- High-mass secondary vertices, etc

21st March 2014

CMS HSCP search

JHEP 07 (2013) 122

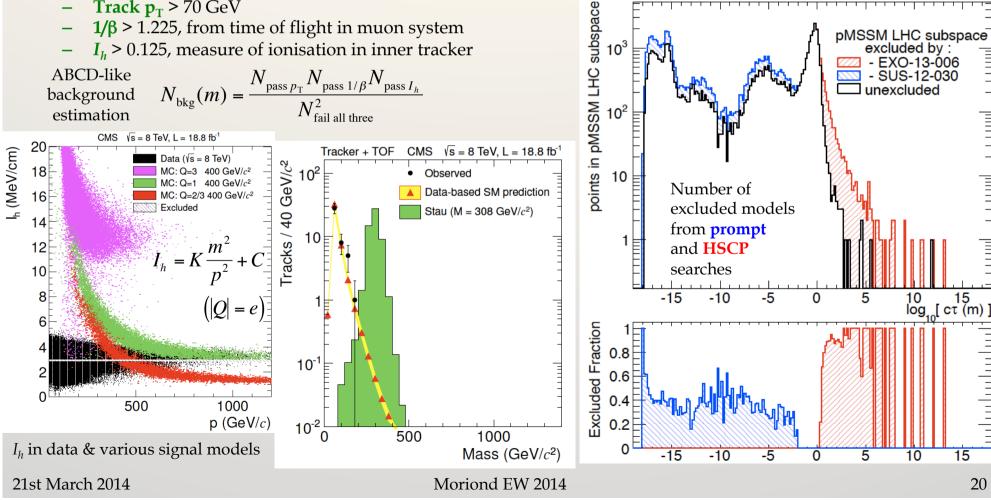
GMSB mass limits

 $m_z > 500 \text{ GeV}$

NEW in 2014

Direct production only: $m_{\tilde{\tau}} > 339 \text{ GeV}$

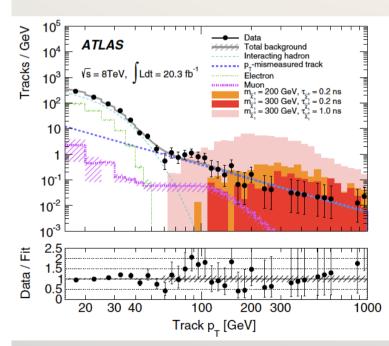
CMS Preliminary - $\sqrt{s} = 8 \text{ TeV} - L = 18.8 \text{ fb}^{-1}$

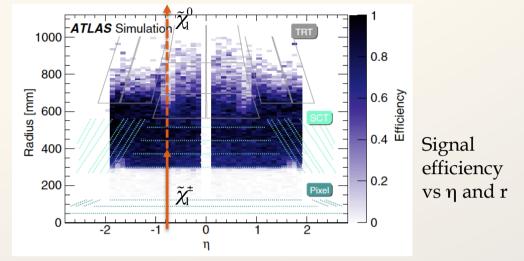

Meta-stable chargino reinterpretation in

Direct+indirect:

CMS PAS EXO-13-006

Heavy Stable Charged Particle

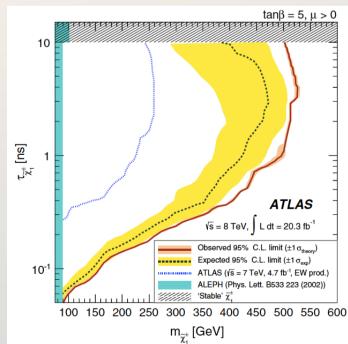

- GMSB predicts that slepton NLSPs may be detectorstable
- **5 strategies** for reconstructing HSCPs
 - Best results for sleptons combine inner tracker & muon detector information
- Three principal discriminating variables
 - Track $p_T > 70 \text{ GeV}$
 - $1/\beta > 1.225$, from time of flight in muon system



ATLAS disappearing track search

PRD 88 112006 (2013)

- In AMSB, LSP is nearly pure wino neutralino
 - Chargino has $\tau \sim O(\text{ns})$ due to small (~160 MeV) chargino/neutralino mass splitting
 - $\tilde{\chi}_{1}^{\dagger} \rightarrow \tilde{\chi}_{1}^{0} \pi^{\dagger}$ soft pion not reconstructed \Rightarrow track "disappears"
- Trigger on jet from initial state radiation
 - + E_T^{miss} requirement



Background

- p_T-mismeasured tracks dominant at high p_T Estimated using highimpact-parameter tracks
- Interacting hadrons and unidentified lepton tracks also estimated using data

Limits placed on LSP properties in mass-lifetime and mass-∆m planes

21st March 2014

Conclusion

- Coverage of EW production and decay of SUSY particles in ATLAS & CMS searches is extensive
 - Wino, higgsino production with bino-like LSP
 - GMSB/GGM scenarios
 - R-parity violation and long-lived particles
- Significant constraints on EW SUSY sector, many loopholes being closed
- For more information on these and further SUSY searches, see

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults