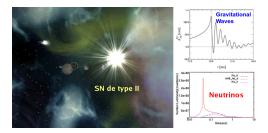
- GWHEN -Gravitational Waves & High Energy Neutrinos Coincidences


GWHED

- ANTARES Contact : Th. Pradier (IPHC, Strasbourg)
 - APC (Paris) : B. Baret, B. Bouhou, C. Donzaud, A. Kouchner, V. Van Elewyck
 - GRPHE (UHA) to be joining soon : A. Albert
- VIRGO Contact : E. Chassande-Mottin (APC, Paris)
 - LAL (Orsay) to be joining soon : M.-A. Bizouard, P. Hello, F. Robinet detection of GW Bursts
- LIGO Contact : S. Márka (Columbia U., USA)
 - Oclumbia U. (USA) : I. Bartos, Z. Márka
 - Cardiff (UK) : P. Sutton, G. Jones
 - Potsdam (Germany) : I. Di Palma + M.-A. Papa
- IceCube : C. Finley (OKC, Sweden)

See arXiv:0807.2562, arXiv:0906.4957

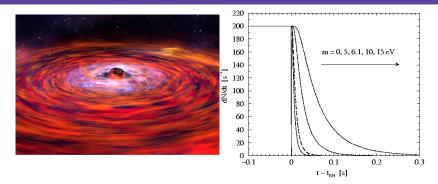
Scientific motivations

An example of GW- ν Coincidences : Type II SN

Type II SN

• $m_{\nu} \neq 0$: $\delta t_{\text{propagation}} \simeq 5.15 ms \left(\frac{L}{10 k \rho c}\right) \left(\frac{m_{\nu} c^2}{1 eV}\right)^2 \left(\frac{10 M eV}{E_{\nu}}\right)^2$

•
$$E_
u^{SN} \sim MeV$$
, $\delta t_{
m GW-
u_e^{flash}} \lesssim 0.5$ ms

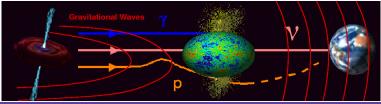

 \Rightarrow Limits on u absolute mass scale from Δt_{GWu}

N. Arnaud,..., Th. P. - Phys.Rev. D65 (2002) 033010

イロト イボト イヨト イヨト

Scientific motivations

An example of GW- ν Coincidences : Type II SN



Collapse of NS into BH induced by accretion ⇒ Sudden stop of neutrino signal

- \Rightarrow Strong GW Signal
 - \Rightarrow Limits on ν absolute mass scale from $\Delta t_{GW-\nu}$

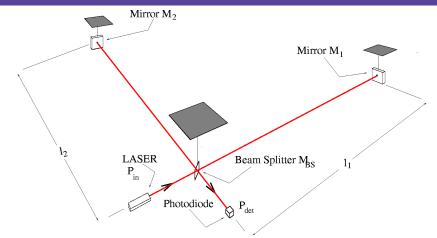
J. F. Beacom et al. - Phys.Rev. D63 (2001) 073011

GWHEN in 2 words...

High Energy Neutrinos and Gravitational Waves

- 1 Coincident Detection (time+space) validates detections
- 2 Sources invisibles in photons : Dark Bursts
- 3 Unique Information on internal processes : accretion, ejection...
- 4 Fundamental Physics :

• Quantum Gravity :
$$c^2 p^2 = E^2 \left[1 + \xi \left(\frac{E}{E_{QG}} \right) + \mathcal{O} \left(\frac{E^2}{E_{QG}^2} \right) + \dots \right]$$

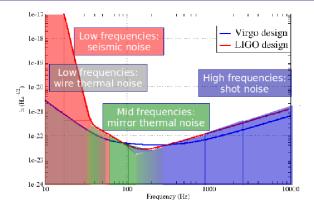

$$\Rightarrow |\Delta t_{QG}| \simeq 0.15 ms \left(\frac{d}{10 \ kpc}\right) \left(\frac{E_{\nu}^{HE}}{1 \ TeV}\right) \left(\frac{10^{19} \ GeV}{E_{QG}}\right) \text{ for } z \ll 1$$

S. Choubey & S. F. King - Phys. Rev. D 67, 073005 (2003)

æ

Introduction			
	The Network	of Detectors	Data Taking Periods

Detecting GW...



Michelson Interferometers

• $L \sim$ km for enhanced sensitivity, with $P_{
m det} \propto h = f(t)$

Introduction			
	The Network	of Detectors	

Detecting GW...

Michelson Interferometers

- $L \sim$ km for enhanced sensitivity, with $P_{
 m det} \propto h = f(t)$
- Background from seismic noise, photon noise, resonances...

æ

イロト 不得 トイヨト イヨト

The GWHEN Project

Conclusions

Data Taking Periods

GW Detectors : VIRGO+LIGO

6 / 23

2

	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
ANTARES	5L	10L	1	2L					КМЗ	NeT
Ice Cube	9 <mark>s</mark> 22s	40s	59s	79s	lc	e Cube 8(6 strings			
LIGO	S5			S6					Advanc	ed LIGO
VIRGO	VSR1		VSR	2 VS R3					Advance	d VIRGO

GWHEN Data for coincidences

- 2007 : Antares 5 Lines + Virgo VSR1+LIGO S5
- $\bullet~2009\text{--}2010$: Antares 12 Lines + Virgo VSR2+LIGO S6
- 2015 : km3 in the Mediterranean + Advanced Interferometers

	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
ANTARES	5L	10L	1	2L					КМЗ	NeT
Ice Cube	s 22s	40s	59s	79s	lc	e Cube 8	6 strings			
LIGO	S5			S6					Advance	ed LIGO
VIRGO	VSR1		VSR	2 VS R3					Advance	d VIRGO

GWHEN Data for coincidences

- 2007 : Antares 5 Lines + Virgo VSR1+LIGO S5
- $\bullet~2009\text{--}2010$: Antares 12 Lines + Virgo VSR2+LIGO S6
- 2015 : km3 in the Mediterranean + Advanced Interferometers

	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
ANTARES	5L	10L	1	2L					КМЗ	NeT
Ice Cube	9 <mark>s</mark> 22s	40s	59s	79s	lc	e Cube 8(6 strings			
LIGO	S5			S6					Advanc	ed LIGO
VIRGO	VSR1		VSR	2 VS R3					Advance	d VIRGO

GWHEN Data for coincidences

- 2007 : Antares 5 Lines + Virgo VSR1+LIGO S5
- 2009-2010 : Antares 12 Lines + Virgo VSR2+LIGO S6
- 2015 : km3 in the Mediterranean + Advanced Interferometers

	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
ANTARES	5L	10L	1	2L					КМЗ	NeT
Ice Cube	9 <mark>s</mark> 22s	40s	59s	79s	lc	e Cube 8(6 strings			
LIGO	S5			S6					Advance	ed LIGO
VIRGO	VSR1		VSR	2 VS R3					Advance	d VIRGO


GWHEN Data for coincidences

- 2007 : Antares 5 Lines + Virgo VSR1+LIGO S5
- 2009-2010 : Antares 12 Lines + Virgo VSR2+LIGO S6
- 2015 : km3 in the Mediterranean + Advanced Interferometers

イロト イボト イヨト イヨト

æ

GW interferometers and HEN Telescopes

The GWHEN Group

Proposed independently by :

- Aso et al. (LIGO) [Class. Quant. Grav. 25 :114039, 2008]
- Th. P. (ANTARES) [VLVNT 08 proceedings, N.I.M. A 602 :268, 2009] ⇒ now all authors part of the same GWHEN group

2008 - 2010 : birth of the project

- $\bullet~End$ of 2008 : MoU $\rm Antares-Virgo/LIGO$ on data exchange
- Common Workshop in 2009 @ APC (GWHEN 2009)
- \bullet Joint Working Group : <code>Antares+IceCube+Virgo/LIGO</code>
 - \Rightarrow Regular Phone Meetings

The GWHEN Project

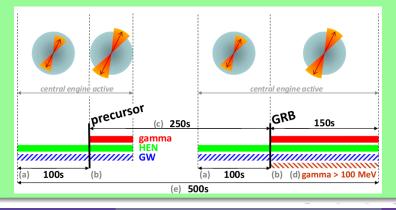
Conclusions

Visibility of Galactic Sources

Gamm-Ray Bursters (GRBs)

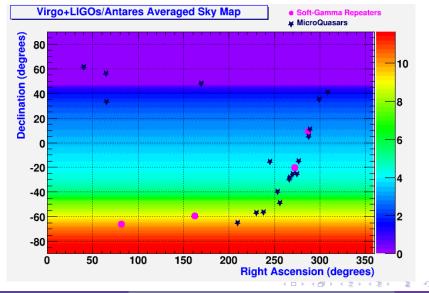
Short GRBs

Binary Mergers : BH or NS


Long GRBs

Collapsars - massive star collapse

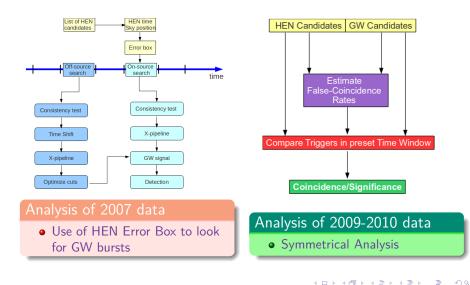
Time Window for long GRBS


- Bounding the Time Delay between High-energy Neutrinos and Gravitational-wave Transients from Gamma-ray Bursts
- $\bullet~{\rm GWHEN}~{\rm GROUP},$ B. Baret et al., submitted to AstroParticle Physics
 - $\Rightarrow \Delta T = \pm 500s$ [arXiv:1101.4669]

Th. Pradier (IPHC & University of Strasbourg) GWHEN - April 5th, 2011 - From Neutrino to MultiMessenger Astronomy @ Marseille

GWHEN Sources and Visibility	
	Visibility of Galactic Sources

Visbility of some Galactic sources



Th. Pradier (IPHC & University of Strasbourg) GWHEN - April 5th, 2011 - From Neutrino to MultiMessenger Astronomy @ Marseille

11 / 23

	The GWHEN Project	
Analysis Strategy		

GWHEN Analysis Strategy

12 / 23

	The GWHEN Project	

GWHEN with 2007 data

Current Analysis : ANTARES 5L + VSR1/S5 in 2007

- List of HEN candidates (Feb-Sept.'07) \rightarrow VIRGO/LIGO 08/2010
- GW Bursts Search performed
- Waiting for green light for opening the box...
 - ⇒ Coincident GW candidates soon to be known...

HEN List for 5 Line Data : \approx 220 events

- $\bullet~\sim90\%$ events reconstructed with 2/5 Lines
- Only 10% with 3 Lines or more (more energetic ones)
- More than 2 interferometers needed for direction reconstruction :
 - $\Rightarrow~\sim$ 30% with < 2 interferometers taking data
 - $\Rightarrow~~70\%$ of the original HEN list have analyzable GW counterpart

(4 個) トイヨト イヨト

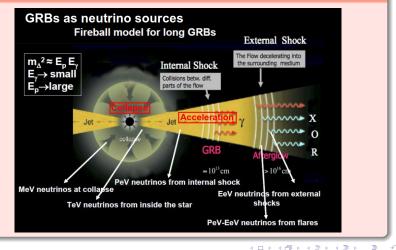
	The GWHEN Project	
		Expected Results
M/hat : f 2		

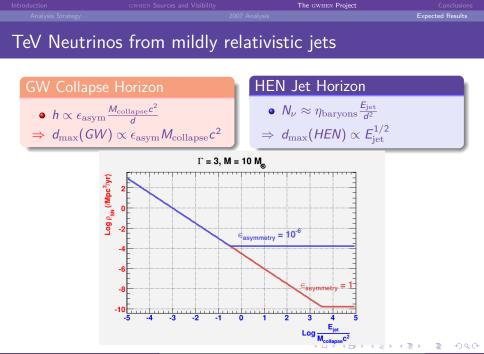
Target Significance in case of detection

• Depends on False-Coincidence Rate : $f_{coinc} = f_{HEN} \times f_{GW} \times \Delta T$

1000*s*

< ロ > < 同 > < 回 > < 回 >


- Note : No Solid Angle factor $\frac{\Delta\Omega}{\Omega}$
 - $\Rightarrow\,$ GW signals only searched for in the HEN Angular Search Window !
- \Rightarrow Tuning of $f_{
 m GW}$ to get Significance \gtrsim 3 σ if detection
- \Rightarrow Choice independent of any models


If no detection ...

- Link with GWHEN emission models :
 - No detection \Rightarrow $N_{coinc} \le 2.44$ (90% C.L.)
 - $N_{\text{coinc}} = \rho_{\text{GWHEN}} \frac{4\pi}{3} d_{\text{horizon}}^3 T_{\text{observation}}$
 - $d_{\text{horizon}} = min\left(d_{\max}^{\text{HEN}}, d_{\max}^{\text{GW}}\right)$
 - \Rightarrow Exclusion plot ρ_{GWHEN} vs Model Parameters

	The GWHEN Project	
		Expected Results

Ando & Beacom Model : PRL 95 061103 (2005)

Outlook and Conclusions

2007 Data : GW Analysis in coincidence with HEN finished

• Results expected in few days then checks for possible candidates...

Outlook and Conclusions

2007 Data : GW Analysis in coincidence with HEN finished

• Results expected in few days then checks for possible candidates...

۲ġ

۲¢

2009-2010 Data : Joint Analysis to be started

• Joint Simulations (consider different GWHEN models)

Outlook and Conclusions

2007 Data : GW Analysis in coincidence with HEN finished

• Results expected in few days then checks for possible candidates...

2009-2010 Data : Joint Analysis to be started

• Joint Simulations (consider different GWHEN models)

Towards a new joint astronomy...

- Unique way of confirming both GW+HEN detections
- Access to dark sources (failed GRBs)...

16 / 23

< <p>A 目 > < </p>

Back-Up !

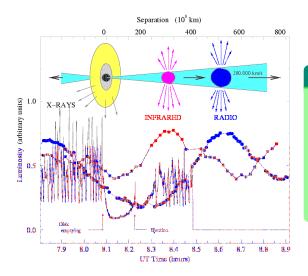
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

GW signals and GW+HEN

imits on Astrophysical Parameters

Soft-Gamma Repeaters

GW Signal : star-quake \Rightarrow pulsation

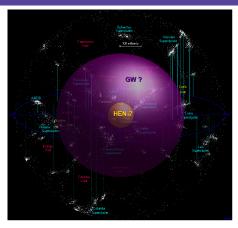

- Depends on Star Models (EoS)
- \bullet Energy liberated in GW linked to γ Flux

HEN Signal : acceleration of CRs in \vec{B}

• N_{ν} detectable, if intense *Flare* (SGR 1806-20 in Dec. 2004)

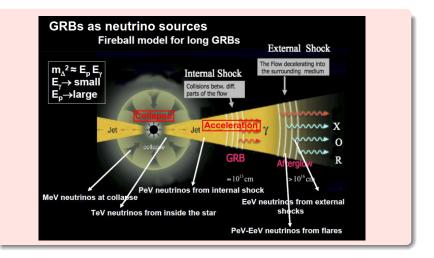
18 / 23

MicroQuasar Outbursts


Accretion/Ejection

- Accretion : infall of matter onto BH/NS
- Ejection : acceleration of matter

$$\begin{array}{l} \Rightarrow \ h \propto \frac{ \Gamma \delta m c^2}{d} \\ \Rightarrow \ f \sim \tau_{\rm acceleration}^{-1} \\ \Rightarrow \ L_{\nu} \propto \frac{ \Gamma \delta m c^2}{\tau_{\rm acceleration}} \\ \Rightarrow \ \Delta t_{\rm GW-\nu} \Rightarrow \tau_{\rm acc} \end{array}$$


H 5

Optimization of the Analysis

Efficiency limited by weakest experiment

- ⇒ Equalization/optimization of Horizons necessary...
- \Rightarrow Depends on considered Model : GW frequency, HEN spectral index...

21 / 23

V signals and GW+HEN Horizons

imits on Astrophysical Parameters

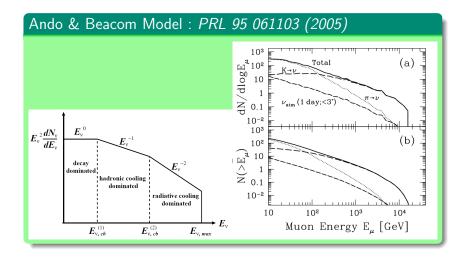
TeV Neutrinos from mildly relativistic jets

GRBs

- $\Gamma\approx 100$
- Prompt ν emission (100 TeV)
- Prompt γ emission
- Afterglows (X, V, Radio)

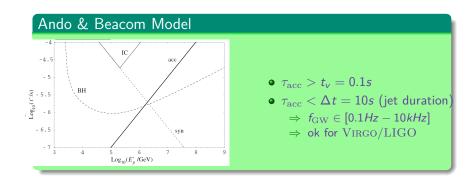
CC SNe (mild jets)

- $\Gamma \approx \text{few}$
- ν emission (100 GeV TeV)


- No γ emission (choked)
- Afterglows

Ando & Beacom Model : PRL 95 061103 (2005)

- Low Γ, high baryon density
- p p collisions $\rightarrow \pi + K \rightarrow \nu$
- Parameters :
 - $E_{\rm jet} \approx 3 \times 10^{51} \ {\rm erg}$
 - $\Gamma \sim 3$
 - $\bullet\,$ Jet opening angle $1/\Gamma\sim 0.3$ degrees
 - $t_{
 m variability} = t_v \sim 0.1 s$
 - Internal shocks at $r_{
 m shock} = 2\Gamma^2 c t_v \approx 5 imes 10^8$ m
 - Jet duration $\Delta t \sim 10$ s


< 口 > < 同 > < 三 > < 三 > 、

э

• • • • • • • • • • • • • •

- L - L

Acceleration Horizon

• $d_{\rm max}(GW) \propto \Gamma E_{\rm iet}$

• $h \propto \frac{\Gamma E_{\rm jet}}{d}$

Collapse and Acceleration

Collapse Horizon

•
$$h \propto \epsilon_{\rm asym} \frac{M_{\rm collapse}c^2}{d}$$

• $d_{
m max}(GW) \propto \epsilon_{
m asym} M_{
m collapse} c^2$

HEN Horizon

•
$$N_{
u} \propto rac{\Gamma E_{
m jet}}{d^2}$$

•
$$d_{
m max}(HEN) \propto \Gamma^{1/2} E_{
m jet}^{1/2}$$

GW+HEN Horizon determined by weakest experiment

- $d_{\text{horizon}} = min(d_{\max}(HEN), d_{\max}(GW))$
- function of :

⇒ Collapse :
$$\left(\epsilon_{asym}, \frac{E_{jet}}{M_{collapse}c^2}\right)$$

⇒ Acceleration : (Γ, E_{iot})

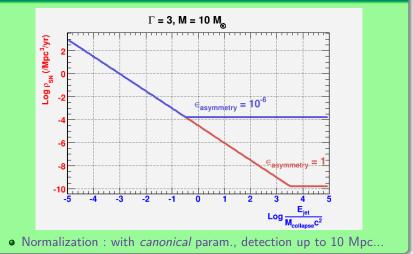
Collapse and Acceleration

...and limits if no detection after time $T_{ m observation}$

• No detection \Rightarrow N_{coinc} \leq 2.44 (90% C.L.)

•
$$N_{
m coinc} =
ho_{
m SN} rac{4\pi}{3} d_{
m horizon}^3 T_{
m observation}$$

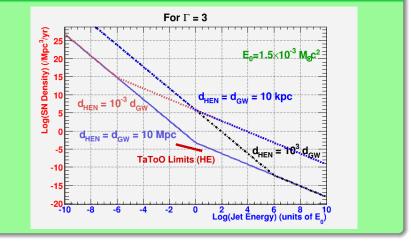
$$\Rightarrow
ho_{\mathbf{SN}} \le rac{2.44}{rac{4\pi}{3}d_{\mathrm{horizon}}^3 T_{\mathrm{observation}}}$$


< ロ > < 同 > < 回 > < 回 >

э

W signals and GW+HEN Hori

With 1 year of concomittant data...


GW Signal from Collapse

GW signals and GW+

With 1 year of concomittant data...

