Physics of the B-Factories Book

CKM sides: V_{td} and V_{ts}

Kevin Flood

California Institute of Technology

Chapter Outline

- Basic plan of the chapter is to describe extraction of |Vtd/Vts| from two sets of experimental results:
 - Δm_d and Δm_s
 - Forward reference(s) to mixing chapter
 - HFAG plot of Δm_d results is currently included here
 - Need Tevatron Δm_s result, and a few other inputs
 - Agree on values/uncertainties with (most?) global fits folks
 - B->X_{s,d} γ branching fractions
 - Babar has done two correlated analyses (same dataset)
 - Exclusive B->K*γ and B->rho/omega γ
 - Semi-inclusive B-> $X_s\gamma$ and B-> $X_d\gamma$
 - · One Belle exclusive modes result
 - PRL 101, 111801 (2008)
 - Give Vtd/Vts for all three results separately
 - · Final average will use Babar semi-incl plus Belle excl

14.2 $V_{\rm td}$ and $V_{\rm ts}$

Editors: Kevin Flood (BABAR) Tobias Hurth (theory)

The CKM matrix elements V_{td} and V_{ts} are fundamental parameters of the Standard Model (SM) which can only be determined experimentally using $\Delta F = 1$ loop-mediated B or K rare decays, or $\Delta F = 2$ box diagram processes involving top quarks. Measurement of the single top quark production cross-section allows for a model-independent direct determination of V_{tb} , but the magnitudes of V_{td} and V_{ts} cannot be similarly extracted from tree-level decays. Derivation of V_{td} and V_{ts} from the experimental observables necessarily assumes the SM although the FCNC observables used, e.g. from $B_{d,s}$ mixing, $B \to X(s,d)\gamma$, or ϵ in the kaon sector, may receive new physics contributions from unrelated sources. Independent determination of the magnitudes of V_{td} and V_{ts} from several different sources, along with V_{tb} from single top cross-section measurements, can provide a robust model-independent check of the unitarity of the CKM matrix or, conversely, offer a powerful probe for the possible presence of new BSM physics.

In the past few years, the experimental and lattice QCD inputs necessary to calculate V_{td} and V_{ts} to good precision have become available. The B-Factories have contributed measurements of Δm_d , the mass difference between B^0 and \overline{B}^0 , and branching fractions from the inclusive and exclusive one-loop radiative penguin processes $B \rightarrow X(s,d)\gamma$, while the Tevatron collaborations have measured Δm_x , the mass difference between B_x and \bar{B}_x , to sub-percent precision. These results have been matched by progress in lattice QCD calculations leading to increased precision in the additional parameters which are required to extract V_{td} and V_{ts} from the experimental results. At the time of publication of all of the Δm_d analyses from both Babar and Belle, knowledge of the required lattice inputs was so significantly worse than the experimental precision that no attempts were made to calculate V_{td} at

Equation ?? relates Δm_d to V_{td} [add cite]:

[eq 1 from Belle hep-ex/0211065 goes here]

where m_t , m_B and m_W are respectively the top quark, B^0 and W masses; G_F is the Fermi constant; η_t is a QCD correction [add cite]; S is a function of m_t^2/m_W^2 [add cite]; f_B is the B-meson decay constant; and \hat{B}_B is the B-meson bag parameter. Although most of these parameters are well-characterized, an unavoidable dependence on lattice QCD enters in the product $\hat{B}_B f_B^2$.

In order to extract V_{td} using Eq. ??, we adopt the latest combination of unquenched lattice QCD results available from "www.latticeaverages.org" [add cite], who report $f_b\sqrt{B_B} = 216\pm15$. This result is obtained by combin—[cite] and an expression for V_{ts} analogous to Eq. ??, and ing the average decay constant f_b obtained from the MILC we find $V_{td}/V_{ts} = xxx \pm xxx$. and HPQCD collaborations, along with the HPQCD determination of the bag parameter \hat{B}_B , which minimizes the total uncertainty with respect to taking the two parameters separately. Using the seven B-Factory results shown in Fig 1, which are averaged by the Heavy Flavor Averaging Group (HFAG) [cite] to obtain a final value of $\Delta m_d = 0.508 \pm 0.005 \text{ ps}^{-1}$, we find $V_{td} = xxx \pm xxx$.

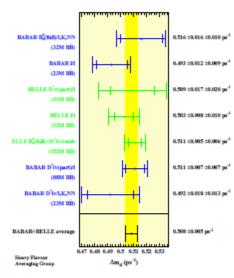


Fig. 1. Measurements and HFAG averaged Δm_d from Babar

The uncertainty in V_{td} induced by the uncertainty in $f_b\sqrt{\dot{B}_B}$ can be reduced by rewriting this factor as $f_b\sqrt{\hat{B}_B} = f_s\sqrt{\hat{B}_B s}/\xi$, where $\xi = f_s\sqrt{\hat{B}_B s}/f_b\sqrt{\hat{B}_B}$. The factor ξ can be more accurately determined in lattice QCD calculations than its individual terms because of the inclusion of $f_s \sqrt{\hat{B}_B s}$, which is obtained directly at the physical strange quark mass rather than by extrapolation to the down quark mass, and approximate cancellation of some uncertainties in the ratio. Using the values $\xi = 1.243 \pm$ 0.028 and $f_s\sqrt{\hat{B}_B s}=275\pm13$, we find $V_{td}=xxx\pm xxx$, a reduction of $\sim xx\%$ in the uncertainty relative to the result above based solely on $f_b\sqrt{\hat{B}_B}$. The lattice parameter uncertainties can be further reduced by taking the ratio V_{td}/V_{ts} , which directly uses ξ^{-1} , and incorporating the combined CDF/DO result for $\Delta m_s = 17.78 \pm 0.12 \text{ ps}^{-1}$

14.2.1 $B \rightarrow X(s,d)\gamma$

Exclusive Babar and Belle BF results: $B \rightarrow K^* \gamma$ and $B \rightarrow$

Semi-inclusive Babar BF results: $B \rightarrow X_{s,d}\gamma$

14.2.2 Summary

Recapitulation . . . Future prospects . . .

Vtd, Vtd/Vts from ∆m

 Final result is ratio Vtd/Vts using both B(d,s) mass difference and B->X(s,d)gamma, but want also to discuss Vtd from Δm alone and would like to have agreement with others on values of inputs

$$\Delta m_d = \frac{G_F^2}{6\pi^2} f_B^2 m_B m_W^2 \eta_t S |V_{tb}^* V_{td}|^2 B_B ,$$

$$\frac{\Delta m_s}{\Delta m_d} = \frac{m_{B_s}}{m_{B_d}} \frac{f_{B_s}^2 B_{B_s}}{f_{B_d}^2 B_{B_d}} \left| \frac{V_{ts}}{V_{td}} \right|^2$$

- Need a table of non-lattice inputs agreed upon by all
 - m₊, m_w, etc. do not seem controversial . . .
 - · Should be part of the book (perhaps an appendix?), but all needed inputs that can be trivially agreed upon should be memorialized soon
 - This task falls most naturally to global fit editors

Vtd/Vts from Exclusive Radiative Penguins

• Babar and Belle use similar methods to extract Vtd/Vts from the exclusive B->(ρ/ω) γ and K* γ BFs

P. Ball, G.W. Jones, and R. Zwicky, J. High Energy Phys. 04 (2006) 046; P. Ball, G.W. Jones, and R. Zwicky, Phys. Rev. D 75, 054004 (2007).

$$R_{
m exp} \equiv rac{\overline{\mathcal{B}}(B
ightarrow (
ho, \omega) \gamma)}{\overline{\mathcal{B}}(B
ightarrow K^* \gamma)} \, ,$$

where $\overline{\mathcal{B}}(B \to (\rho, \omega)\gamma)$ is defined as the CP-average $\frac{1}{2}[\mathcal{B}(B \to (\rho, \omega)\gamma) + \mathcal{B}(\bar{B} \to (\bar{\rho}, \omega)\gamma)]$ of

$$\mathcal{B}(B \to (\rho, \omega)\gamma) = \frac{1}{2} \left\{ \mathcal{B}(B^+ \to \rho^+ \gamma) + \frac{\tau_{B^+}}{\tau_{B^0}} \left[\mathcal{B}(B^0 \to \rho^0 \gamma) + \mathcal{B}(B^0 \to \omega \gamma) \right] \right\},$$

and $\overline{\mathcal{B}}(B \to K^*\gamma)$ is the isospin- and CP-averaged branching ratio of the $B \to K^*\gamma$

Vtd/Vts from Exclusive Radiative Penguins

Within QCD factorisation, and using the notations of Ref. [6], the amplitude for $B \rightarrow V\gamma$ can be written as

$$A(\bar{B} \to V \gamma) = \frac{G_F}{\sqrt{2}} \left[\lambda_u a_7^u(V \gamma) + \lambda_c a_7^c(V \gamma) \right] \langle V \gamma | Q_7 | \bar{B} \rangle ,$$

where λ_q are products of CKM matrix elements and the factorisation coefficients $a_7^{u,c}$ consist of Wilson coefficients and non-factorisable corrections from hard scattering and annihilation; explicit expressions can be found in Ref. [6]. $a_7^{u,c}$ depends in particular on the form factor T_1 and the twist-2 DA $\phi_{V;\perp}$. The theoretical expression for R is then given by

$$R_{\rm th} = \left| \frac{V_{td}}{V_{ts}} \right|^2 \frac{1}{\xi^2} \left(\frac{1 - m_{\rho}^2 / m_B^2}{1 - m_{K^*}^2 / m_B^2} \right)^3 \left| \frac{a_7^c (\rho \gamma)}{a_7^c (K^* \gamma)} \right|^2 \left(1 + \text{Re} \left(\delta a_{\pm} + \delta a_0 \right) \left[\frac{R_b^2 - R_b \cos \gamma}{1 - 2R_b \cos \gamma + R_b^2} \right] \right.$$

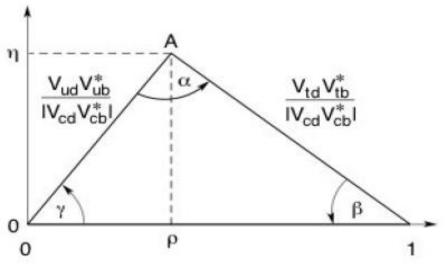
$$\left. + \frac{1}{2} \left(|\delta a_{\pm}|^2 + |\delta a_0|^2 \right) \left\{ \frac{R_b^2}{1 - 2R_b \cos \gamma + R_b^2} \right\} \right)$$
(19)

with $\delta a_{0,\pm} = a_7^u(\rho^{0,\pm}\gamma)/a_7^c(\rho^{0,\pm}\gamma) - 1$. Here, γ is one angle of the CKM unitarity triangle and R_b one of its sides:

$$R_b = \left(1 - \frac{\lambda^2}{2}\right) \frac{1}{\lambda} \left| \frac{V_{ub}}{V_{cb}} \right|.$$

Vtd/Vts from Semi-Incl Radiative Penguins

Method for extracting Vtd/Vts from inclusive B-> X(s,d) gamma



Unitarity Triangle using Wolfenstein parameterisation

At O(
$$\lambda^4$$
) $\left| \sqrt{\eta^2 + (1-\rho)^2} = \frac{1}{\lambda} \left| \frac{V_{td}}{V_{ts}} \right| = \frac{1}{\lambda} X \right|$

At O(
$$\lambda^7$$
) $\sqrt{\bar{\eta}^2 + (1-\bar{\rho})^2}$

$$R(d\gamma/s\gamma) = \frac{|\xi_t|^2}{|\lambda_t|^2} + \frac{D_u}{D_t} \frac{|\xi_u|^2}{|\lambda_t|^2} + \frac{D_r}{D_t} \frac{Re(\xi_t^*\xi_u)}{|\lambda_t|^2} \\ = \frac{|\xi_t|^2}{|\lambda_t|^2} + \frac{D_u}{D_t} \frac{|\xi_u|^2}{|\lambda_t|^2} + \frac{D_r}{D_t} \frac{Re(\xi_t^*\xi_u)}{|\lambda_t|^2} \\ = \frac{|\xi_t|^2}{|\xi_q|^2} + \frac{|\xi_u|^2}{|\xi_q|^2} + \frac{|\xi_u|^2}{|\xi$$

$$\xi_q = V_{qb} V_{qd}^{*}; \ \lambda_q = V_{qb} V_{qs}^{*}$$

D functions contain contributions from Wilson Coeffs, etc. Evaluated numerically in paper

Vtd/Vts from Semi-Incl Radiative Penguins

Ali et al rewrite R as

$$R = \lambda^2 [1 + \lambda^2 (1 - 2\overline{\rho})] \left[(1 - \overline{\rho})^2 + \overline{\eta}^2 + \frac{D_u}{D_t} (\overline{\rho}^2 + \overline{\eta}^2) + \frac{D_r}{D_t} (\overline{\rho} (1 - \overline{\rho}) - \overline{\eta}^2) \right]$$

 To remove dependence on earlier estimates of Vtd/Vts, rewrite as a function of Vtd/Vts and φ_2 , and after some algebra end up with

$$R = \kappa_1 X^2 + \kappa_2 X + \kappa_3$$

$$\kappa_1 = 1 + \frac{D_u}{D_t} (1 - 2\lambda^2 \cos^2 \beta) - \frac{D_r}{D_t} (\lambda^2 \cos^2 \beta + 1),$$

$$\kappa_2 = \lambda \cos \beta \left[\frac{D_u}{D_t} (3\lambda^2 - 2) + \frac{D_r}{D_t} \left(1 + \frac{\lambda^2}{2} \right) \right],$$

$$\kappa_3 = \lambda^2 \frac{D_u}{D_t} (1 - \lambda^2).$$

Summary

- Draft of full text for Vtd,Vts from mass difference committed a few days ago
 - Clean up, then commit final draft in near future
 - Will use central values and uncertainties for lattice inputs from "latticeaverages.org", which UT and CKM global fit editors have also agreed to use
- Formalism for extracting Vtd/Vts from radiative penguins is well-defined, but needs updating for latest values and uncertainties of several input parameters
 - CKM, UT, Scan? I'll probably go with UT ...
- Would like to see non-controversial physics inputs globally defined and put into a table somewhere in the book
 - Perhaps in an appendix?
- Theory editor has agreed to review whatever I write ©
- · Belle (TB) has also agreed to review the text
- · Final word will be comparison of mass diff vs radpen ratios