INVISIBLES 14 SCHOOL

Gif-Sur-Yvette 8-13 July 2014

Neutrino Physics (BSM and phenomenological implications)

Ferruccio Feruglio University of Padova

Lecture 3 Neutrinos and LFV

LFV expected at some level

neutrino masses and
$$U_{PMNS} \neq 1$$

$$L_i$$
 violated (i=e, μ , τ)

evidence for lepton flavor conversion

direct
$$v_e \rightarrow v_\mu, v_\tau$$
 sol, LBL expindirect $v_\mu \rightarrow v_\tau$ atm

should show up in processes with charged leptons

Process	Relative probability	Present Limit	Experiment	Year	prospects
$\mu \to e\gamma$	1	5.7×10^{-13}	MEG	2012	6×10^{-14}
$\mu^- \mathrm{Ti} \to e^- \mathrm{Ti}$	$Z\alpha/\pi$	4.3×10^{-12}	SINDRUM II	2006	
$\mu^{-}\mathrm{Au} \to e^{-}\mathrm{Au}$	$Z\alpha/\pi$	7×10^{-13}	SINDRUM II	2006	$-10^{-15} \div 10^{-16}$
$\mu \to eee$	α/π	4.3×10^{-12}	SINDRUM	1988	
$ au o \mu \gamma$	$(m_{\tau}/m_{\mu})^{2 \div 4}$	3.3×10^{-8}	B-factories	2011	
$ au o e \gamma$	$(m_{\tau}/m_{\mu})^{2\div4}$	4.5×10^{-8}	B-factories	2011	

Table 1: Relative sensitivities and experimental limits of the main CLFV processes.

here: focus on radiative decays of charged leptons

in the SM, minimally extended to accommodate e.g. Dirac neutrinos

$$BR(\mu \to e\gamma) \approx \frac{3\alpha}{32\pi} \left| U_{\mu i}^* U_{ei} \frac{m_i^2}{m_W^2} \right|^2 \approx 10^{-53}$$

Exercise 10: reproduce this

[solution in Cheng and Li]

[unobservable also within type I see-saw] $m_{i} \approx 0.05 \, eV$ $U_{fi} \approx O(1)$

depleted by

- -- weak interactions
- -- loop factor
- -- GIM mechanism (mixing angle large, but neutrino masses tiny)

GIM suppression for quarks: small mixing angles large top mass

a good place to look for BSM physics

general parametrization of LFV effects BSM

$$L = L_{SM} + \sum_{i} c_{i}^{5} \frac{O_{i}^{5}}{\Lambda} + \sum_{i} c_{i}^{6} \frac{O_{i}^{6}}{\Lambda^{2}} + \dots$$

Odi gauge invariant operators dimension d

low-energy effective Lagrangian in the lepton sector

$$L = L_{SM} + i \frac{e}{\Lambda^2} e^c \left(\sigma^{\mu\nu} F_{\mu\nu}\right) \mathcal{Z}(\Phi^+ l) + \frac{1}{\Lambda^2} [4-\text{fermion}] + h.c. + \dots$$

[relation between the scale Λ and new particle masses M' can be non-trivial in a weakly interacting theory $q \Lambda/4\pi \approx M'$]

 Z_{ij} a matrix in flavour space

$$L_{Y} = -e^{c} y_{e}(\Phi^{+}l) + h.c. + ...$$

in the basis where charged leptons are diagonal

$$\operatorname{Im} \left[\mathcal{Z} \right]_{ii}$$

 $\text{Re}[\mathcal{Z}]_{ii}$

$$\left[\left[\mathcal{Z}\right]_{ij}\right]^{2} \quad (i \neq j)$$

[4-fermion operators]

$$a_i = \frac{(g-2)_i}{2}$$

$$R_{ij} = \frac{BR(l_i \to l_j \gamma)}{BR(l_i \to l_j v_i \overline{v}_j)}$$

other LFV transitions

electric dipole moments

anomalous magnetic moments

radiative decays

$$\mu \rightarrow e \gamma \quad \tau \rightarrow \mu \gamma \quad \tau \rightarrow e \gamma$$

$$\mu \rightarrow eee \quad \tau \rightarrow \mu\mu\mu \quad \tau \rightarrow eee \quad ...$$

$$BR(\mu \rightarrow e\gamma) < 5.7 \times 10^{-13}$$

$$\frac{\mathcal{Z}_{\mu e}}{\Lambda^2} < 2 \times 10^{-9} \text{ TeV}^{-2}$$

either the scale of new physics is very large or flavour violation from New Physics is highly non-generic

$$\Lambda > 2 \times 10^4 \left[\sqrt{Z_{\mu e}} \right] TeV$$

not a specific problem of the lepton sector

here: constraints from flavour physics on d=6 $|\Delta F|$ =2 operators

<
ш
_
8
0
α
٥
α
\supset
0
>
V
_
ட

<

Operator	Bounds on Λ	in TeV $(c_{ij} = 1)$	Bounds on a	$c_{ij} (\Lambda = 1 \text{ TeV})$	Observables
	Re	${ m Im}$	Re	${ m Im}$	
$(\bar{s}_L \gamma^\mu d_L)^2$	9.8×10^{2}	1.6×10^4	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^4	3.2×10^5	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
$(\bar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	2.9×10^3	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^{3}	1.5×10^4	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$(\bar{b}_L \gamma^\mu d_L)^2$	5.1×10^2	9.3×10^2	3.3×10^{-6}	1.0×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	1.9×10^3	3.6×10^3	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_L \gamma^\mu s_L)^2$	1.1	$\times 10^2$	7.6	$\times 10^{-5}$	Δm_{B_s}
$(\bar{b}_R s_L)(\bar{b}_L s_R)$	3.7	7×10^2	1.3	$\times 10^{-5}$	Δm_{B_s}

TABLE I: Bounds on representative dimension-six $\Delta F = 2$ operators. Bounds on Λ are quoted assuming an effective coupling $1/\Lambda^2$, or, alternatively, the bounds on the respective c_{ij} 's assuming $\Lambda = 1$ TeV. Observables related to CPV are separated from the CP conserving ones with semicolons. In the B_s system we only quote a bound on the modulo of the NP amplitude derived from Δm_{B_s} (see text). For the definition of the CPV observables in the D system see Ref. [15].

[Isidori, Nir, Perez, 2010]

Minimal Flavour Violation (quarks) [Chivukula. Georgi 1987 D' Ambrosio, Giudice, Isidori, Strumia 2002]

- useful benchmark: a framework where the only source of flavour violation beyond the SM are the Yukawa coupling. Well-defined in the quark sector.
 - in the limit $y_u = y_d = 0$, the SM lagrangian is invariant under a U(3)³ flavour symmetry

$$G_q = SU(3)_{u^c} \times SU(3)_{d^c} \times SU(3)_q \times \dots$$

$$q = (1,1,3) u^c = (\overline{3},1,1) d^c = (1,\overline{3},1)$$

if the Yukawa couplings y_u and y_d are promoted to non-dynamical fields (spurions) transforming conveniently, the SM lagrangian remains formally invariant under the flavour group G_q

$$L_{SM} = ... - d^{c} y_{d} (\Phi^{+} q) - u^{c} y_{u} (\tilde{\Phi}^{+} q) + h.c.$$

$$y_u = (3,1,\overline{3})$$
 $y_d = (1,3,\overline{3})$

MFV assumes that new operators coming from New Physics do not involve any additional field/spurions and that they are still invariant under G_q [additional assumption: no additional sources of CPV other than those in $y_{u,d}$]

Exercise 11: build the leading operator contributing to $b \rightarrow s \gamma$ in MFV

a convenient basis:

$$y_d = \hat{y}_d \qquad y_u = \hat{y}_u V_{CKM}$$

leading order MFV invariant

$$i\frac{e}{\Lambda^2}d^c\left(\sigma^{\mu\nu}F_{\mu\nu}\right)\mathcal{Z}^d\left(\Phi^+q\right)+h.c.$$

$$b \to s \gamma \qquad \Leftrightarrow \qquad \left(\mathcal{Z}^d \right)_{32}^*, \quad \left(\mathcal{Z}^d \right)_{23}$$

$$\left(\mathcal{Z}^d\right)_{32}^* = \frac{2\sqrt{2}}{v^3} m_b \left(m_t^2 V_{tb} V_{ts}^*\right)$$

$$\left(\mathcal{Z}^d\right)_{23} = \frac{2\sqrt{2}}{v^3} m_s \left(m_t^2 V_{tb} V_{ts}^*\right)$$

$$\hat{y}_{u,d}$$
 diagonal

$$Z^{d} = y_{d} y_{u}^{+} y_{u}$$

$$= \frac{2\sqrt{2}}{v^{3}} \left(\hat{m}_{d} V_{CKM}^{+} \hat{m}_{u}^{2} V_{CKM} \right)$$

$$\hat{m}_{u} \approx \text{diag}(0, 0, m_{t})$$

MFV is nothing but the GIM mechanism extended to BSM contributions

$$\left[b^{c}\left(\sigma F\right)s\right]^{+} \text{ dominates over } s^{c}\left(\sigma F\right)b$$
by $\left(m_{t}/m_{b}\right)$

$$BR(B \to X_s \gamma) = (3.55 \pm 0.24 \pm 0.09) \times 10^{-4}$$

$$\Lambda > 6.1 \, TeV$$

Exercise 12: build the leading operator with $\Delta F=2$ in MFV

same basis as before:

$$y_d = \hat{y}_d$$
 $y_u = \hat{y}_u V_{CKM}$ $\hat{y}_{u,d}$ diagonal

leading MFV invariant

$$\overline{q}_{Li}\gamma^{\mu}(y_{u}^{\dagger}y_{u})_{ij}q_{Lj}\overline{q}_{Lk}\gamma_{\mu}(y_{u}^{\dagger}y_{u})_{kl}q_{Ll}$$

looking at the down quark sector and selecting i=k=d,s and j=l=b we get the MFV operator contributing to $\Delta B=2$

$$O_{MFV}(\left|\Delta B\right|=2) = \frac{c}{\Lambda_{NP}^2} y_t^4 (V_{tb} V_{tq}^*)^2 \ \overline{q}_L \gamma^{\mu} b_L \ \overline{q}_L \gamma_{\mu} b_L \qquad (q=d,s) \quad \text{where we used} \\ \hat{m}_u \approx \text{diag}(0,0,m_t)$$

again same CKM suppression as in the SM. Now the bound on the scale of New Physics reads

$$\Lambda_{NP} > 5.9 \ TeV$$

define 2 New Physics parameters

$$\Delta_q \equiv \frac{M_{12}^q}{M_{12}^{q,SM}} \qquad \text{(q=d,s)} \qquad \begin{array}{l} [O_{\text{MFV}} \text{ modify } M_{12} \text{ for } B_{\text{d}} \text{ and } B_{\text{s}} \text{ in the same way:} \\ \text{i.e } \Delta_{\text{d}} \text{ and } \Delta_{\text{s}} \text{ are identical and real in MFV]} \end{array}$$

bound on the scale of New Physics in MFV

Operator	Bound on Λ	Observables
$\overline{H^{\dagger}\left(\overline{D}_{R}Y^{d\dagger}Y^{u}Y^{u\dagger}\sigma_{\mu\nu}Q_{L}\right)\left(eF_{\mu\nu}\right)}$	6.1 TeV	$B \to X_s \gamma, B \to X_s \ell^+ \ell^-$
$\frac{1}{2}(\overline{Q}_L Y^u Y^{u\dagger} \gamma_\mu Q_L)^2$	5.9 TeV	$\epsilon_K, \Delta m_{B_d}, \Delta m_{B_s}$
$H_D^{\dagger} \left(\overline{D}_R Y^{d\dagger} Y^u Y^{u\dagger} \sigma_{\mu\nu} T^a Q_L \right) \left(g_s G_{\mu\nu}^a \right)$	3.4 TeV	$B \to X_s \gamma, B \to X_s \ell^+ \ell^-$
$\left(\overline{Q}_L Y^u Y^{u\dagger} \gamma_\mu Q_L\right) \left(\overline{E}_R \gamma_\mu E_R\right)$	$2.7~{ m TeV}$	$B \to X_s \ell^+ \ell^-, B_s \to \mu^+ \mu^-$
$i\left(\overline{Q}_L Y^u Y^{u\dagger} \gamma_\mu Q_L\right) H_U^{\dagger} D_\mu H_U$	2.3 TeV	$B \to X_s \ell^+ \ell^-, B_s \to \mu^+ \mu^-$
$\left(\overline{Q}_L Y^u Y^{u\dagger} \gamma_\mu Q_L\right) \left(\overline{L}_L \gamma_\mu L_L\right)$	$1.7~{ m TeV}$	$B \to X_s \ell^+ \ell^-, B_s \to \mu^+ \mu^-$
$\left(\overline{Q}_L Y^u Y^{u\dagger} \gamma_\mu Q_L\right) \left(e D_\mu F_{\mu\nu}\right)$	$1.5 \mathrm{TeV}$	$B \to X_s \ell^+ \ell^-$

TABLE II: Bounds on the scale of new physics (at 95% C.L.) for some representative $\Delta F = 1$ [27] and $\Delta F = 2$ [12] MFV operators (assuming effective coupling $\pm 1/\Lambda^2$), and corresponding observables used to set the bounds.

[Isidori, Nir, Perez, 2010]

Minimal Flavour Violation (leptons)

extension of MFV to leptons is ambiguous: we can describe neutrino masses in several ways

B-L conserved, pure Dirac neutrino masses just copy the quark sector

$$G_l = SU(3)_{v^c} \times SU(3)_{e^c} \times SU(3)_l \times ...$$
 y_v
 $l = (1,1,3) \ v^c = (\overline{3},1,1) \ e^c = (1,\overline{3},1)$ y_e

$$y_{v} = (3,1,\overline{3})$$

 $y_{e} = (1,3,\overline{3})$

$$i\frac{e}{\Lambda^2}e^c(\sigma^{\mu\nu}F_{\mu\nu})\mathcal{Z}(\Phi^+l) + h.c.$$

choose as basis:

$$y_e = \hat{y}_e \qquad y_v = \hat{y}_v U_{PMNS}^+$$

$$Z = y_e y_v^+ y_v$$

$$= \frac{2\sqrt{2}}{v^3} \left(\hat{m}_e U_{PMNS} \hat{m}_v^2 U_{PMNS}^+ \right)$$

dominant contribution to $\mu \rightarrow e \gamma$

$$(Z)_{21}^* = \frac{2\sqrt{2}}{v^3} m_{\mu} (U_{\mu i}^* U_{e i} m_i^2)$$

$$\approx 10^{-28}$$

 $\mu \rightarrow e \gamma$ unobservable even for $\Lambda \approx 1 \text{ TeV}$

[Cirigliano, Grinstein, Isidori, Wise 2005]

$$L = \dots + e^{c} y_{e}(\Phi^{+}l) + \frac{1}{2\Lambda_{I}} (\tilde{\Phi}^{+}l) w(\tilde{\Phi}^{+}l) + h.c.$$

an important assumption: $\Lambda_L \neq \Lambda$

$$G_l = SU(3)_{e^c} \times SU(3)_l \times \dots$$

$$l = (1,3)$$
 $e^c = (\overline{3},1)$

$$y_e = (3, \overline{3})$$

$$w = (1, \overline{6})$$

the only sources of G_1 breaking

$$y_e = \sqrt{2} \frac{m_e^{diag}}{v}$$

$$w = \frac{2\Lambda_L}{v^2} U^* m_v^{diag} U^+$$

spurions expressed in terms of known quantities and $\Lambda_{\rm L}$

$$Z = y_{\varrho} w^{\dagger} w$$

$$=\frac{4\sqrt{2}}{v^3}\frac{\Lambda_L^2}{v^2}\left(\hat{m}_e U_{PMNS}\hat{m}_v^2 U_{PMNS}^+\right)$$

 $\mu \rightarrow e \gamma$ dominated by

$$(Z)_{21}^* = \frac{4\sqrt{2}}{v^3} \frac{\Lambda_L^2}{v^2} m_{\mu} (U_{\mu i}^* U_{e i} m_i^2)$$

enhancement factor can be huge

$$\frac{\Lambda_L^2}{v^2}$$

experimental bound satisfied by $(\Lambda_{L}/\Lambda)\!<\!10^{9}$

 $\mu \rightarrow e \gamma$ observable if $\Lambda_{l} >> \Lambda$

[qualitatively similar conclusion when MFV extended to the type I see-saw case]

Exercise 13: show that

$$Z_{ij} = \frac{4\sqrt{2}}{v^3} \frac{\Lambda_L^2}{v^4} \left[\Delta m_{sol}^2 U_{i2} U_{j2}^* \pm \Delta m_{atm}^2 U_{i3} U_{j3}^* \right]$$

and estimate
$$\frac{R_{\mu e}}{R_{\tau u}} = \frac{BR(\mu \to e\gamma)}{BR(\tau \to \mu\gamma)} \times \frac{BR(\tau \to \mu\nu_{\tau}\overline{\nu}_{\mu})}{BR(\mu \to e\nu_{u}\overline{\nu}_{e})}$$

solution
$$\frac{R_{\mu e}}{R} \approx \left| \frac{2}{3} r \pm \sqrt{2} \sin \vartheta_{13} e^{i\delta} \right|^2 \approx (0.035 \div 0.055)$$
 $r \equiv \frac{\Delta m_{sol}^2}{\Delta m^2}$

$$= \frac{\Delta m_{sol}^2}{\Delta m_{atm}^2}$$

from present bound on $\mu \rightarrow e \gamma$

$$R_{\tau\mu} < (1.0 \div 1.6) \times 10^{-11}$$

hints:

- -- use unitarity relation for U_{PMNS}
- -- use approximate values

$$U_{\mu 3} \approx U_{\tau 3} \approx 1/\sqrt{2}$$

$$U_{e2} \approx U_{\mu 2} \approx -U_{\tau 2} \approx 1/\sqrt{3}$$

LFV in the limit of vanishing neutrino masses

MFV extended to the lepton sector reproduces the GIM suppression in particular LF is conserved when m_i=0

GIM suppression can be evaded in several models of fermion masses e.g. in partial compositness where elementary fermions acquire a mass through their mixing with a composite sector

a toy model

$$\begin{split} L_{Y} &= -e^{c} \Delta_{E} E - L^{c} \Delta_{L} l \\ &- E^{c} M E - L^{c} M L \\ &- E^{c} Y (\Phi^{+} L) - (L^{c} \tilde{\Phi}^{+}) \tilde{Y} E + h.c. \end{split}$$

elementary-composite mixing

⇒ Dirac masses for composite fermions

Yukawa coupling of composite fermions

by integrating out the composite sector [Exercise 14]

$$L_{Y} = -e^{c} y_{e}(\Phi^{+}l) + h.c.$$

$$e^{c} \xrightarrow{\Delta_{E}} Y \xrightarrow{\Delta_{L}}$$

$$y_{e} = (\Delta_{E}M^{-1})Y(M^{-1}\Delta_{L}) + ...$$

$$higher-orders in (\Phi/M)$$

Exercise 15

compute the corrections to previous LO relations by using the equation of motion for the composite sector. Start with 1 generation and then discuss the 3 generation case.

write L_y in matrix notation

$$L_{Y} = -\begin{pmatrix} e^{c} & E^{c} & L^{c} \end{pmatrix} \begin{pmatrix} 0 & \Delta_{E} & 0 \\ 0 & M & Y\Phi^{+} \\ \Delta_{L} & \tilde{\Phi}^{+}\tilde{Y} & M \end{pmatrix} \begin{pmatrix} l \\ E \\ L \end{pmatrix} + h.c.$$

write the e.o.m. for the composite fields (E^c , L^c) and (E,L) in the limit of negligible kinetic term and substitute them back into L_y

$$L_{Y} = e^{c} \begin{pmatrix} \Delta_{E} & 0 \end{pmatrix} \begin{pmatrix} M & Y\Phi^{+} \\ \tilde{\Phi}^{+}\tilde{Y} & M \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ \Delta_{L} \end{pmatrix} l + h.c.$$

expand this expression in powers of the Higgs field

$$y_e = F_{E^c} Y F_L$$

$$F_{E^c} = \Delta_E M^{-1}$$

$$F_L = M^{-1} \Delta_L$$

an intriguing possibility (anarchic scenario):

- -- Yukawa coupling Y in the composite sector are O(1)
- -- fermion mass hierarchy entirely due to the amount of mixing F it arises is many SM extensions

split fermions in an Extra Dimension

$$F_{X_i} = \sqrt{\frac{2\mu_i}{1 - e^{-2\mu_i r}}}$$

no symmetry: hierarchy produced by geometry

ED	$\mu_{_i}$	r	
Flat [0,π <i>R</i>]	M_{i}/Λ	$\Lambda \pi R$	
Warped [R,R']	$1/2-M_{i}R$	$\log R'/R$	

 M_i = bulk mass of fermion X_i

 $Y_{u,d} = O(1)$ Yukawa couplings between bulk fermions and a Higgs localized at one brane

fermion masses from abelian flavour symmetries $Q(X_i) \ge 0$

$$F_{X_i} = \operatorname{diag}\left(\lambda^{Q(X_1)}, \lambda^{Q(X_2)}, \lambda^{Q(X_3)}\right) \quad \lambda = \frac{\langle \varphi \rangle}{\Lambda}$$

chiral multiplets X_i of the MSSM coupled to a superconformal sector [Nelson-Strassler 0006251]

$$F_{X_i} = \left(\frac{\Lambda_c}{\Lambda}\right)^{\frac{\gamma_i}{2}} < 1$$

$$\gamma_i$$
 anomalous dimension of X_i

$$\Lambda_c = M_{GUT} \qquad \Lambda = M_{Pl}$$

so far neutrino are massless do we expect LFV in our toy model?

one-loop contribution to lepton dipole operator from Higgs exchange (assuming M proportional to identity)

$$\frac{Z}{\Lambda^{2}} \approx \frac{1}{16\pi^{2}M^{2}} (\Delta_{E}M^{-1})Y\tilde{Y}Y(M^{-1}\Delta_{L}) + \dots$$
in general these combinations not diagonal in the same basis
$$e^{C} \frac{\Delta_{E}}{M^{-1}} Y \frac{Y}{M} \frac{\Delta_{L}}{M^{-1}} \frac{\Delta_{E}}{M^{-1}} M^{-1}$$

$$\Phi^{+}$$

LFV not suppressed by neutrino masses and unrelated to (B-L) breaking scale

rough estimate

$$\frac{Z_{\mu e}}{\Lambda^2} < 2 \times 10^{-9} \text{ TeV}^{-2}$$

M > 10 TeV

$$\Delta_E \approx \Delta_L$$

$$\frac{\Delta_f}{M} \approx \sqrt{\frac{m_f}{v}}$$

$$Y \approx \tilde{Y} \approx O(1)$$

Exercise 16: reproduce flavour pattern of Z from a spurion analysis

$$\frac{\mathcal{Z}}{\Lambda^2} \approx \frac{1}{16\pi^2 M^2} (\Delta_E M^{-1}) Y \tilde{Y} Y (M^{-1} \Delta_L) + \dots$$

- -- identify the maximal flavour symmetry G of our toy model
- -- identify the transformation properties of the spurions Δ_L , Δ_E , Y , Y , that guarantee the invariance of L_y
- -- using previous tools, build the relevant dipole operator invariant under G

summary

LFV expected in charged leptons = CLFV

CLFV probes physics beyond the vSM [=SM minimally extended to accommodate v masses]

observable rates for CLFV require new physics at a scale well below the GUT or the L-violation scales $[\Lambda << \Lambda_L \text{ in our example of MFV}]$

GIM suppression in CLFV is a special feature of MFV: it can be violated in models of fermion masses and relation to neutrino masses and mixing angles can be more indirect