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I elaborate on a link between the string–scale breaking of supersymmetry that occurs in a class
of superstring models and the onset of inflation. The link rests on spatially flat cosmologies
supported by a scalar field driven by an exponential potential. If, as in String Theory, this
potential is steep enough, under some assumptions that are spelled out in the text the scalar
can only climb up as it emerges from an initial singularity. In the presence of another mild
exponential, slow–roll inflation is thus injected during the ensuing descent and definite imprints
are left in the CMB power spectrum: the quadrupole is systematically reduced and, depending
on the choice of two parameters, an oscillatory behavior can also emerge for low multipoles
l < 50, in qualitative agreement with WMAP9 and PLANCK data.

1 Brane SUSY breaking in String Theory

Key progress in String Theory 1 in the mid nineties was spurred by the identification of dualities
relating to one another spectra that appear vastly different at first sight. Some of these dual-
ities are non perturbative from the string vantage point but find a partial justification in the
low–energy Supergravity, while others are captured by string perturbation theory. The latter
include the orientifold projections 2 that can associate open sectors to corresponding closed–
string spectra, whose simplest manifestation is the link between the type–IIB theory of oriented
closed strings and the SO(32) type–I theory. In the geometrical picture proposed in 3, this
particular projection is induced by spacetime–filling non–dynamical extended objects, the O9−
orientifolds, whose negative tension T and charge Q are identical in suitable units. Since the cor-
responding lines of force would have nowhere to come from, the charge Q is to be compensated
via dynamical extended objects, the D9–branes. These carry in their turn identical tension T
and charge Q that are however positive, so that both the total charge and the total tension
cancel in the vacuum of the SO(32) type–I superstring. Another option, whose significance was
appreciated later, rests on a different type of orientifold, also visible in perturbation theory 4

and whose first manifestation was found long before in 5. Commonly referred to as O9+, this
orientifold is somehow more standard, since it carries identical and positive tension T and charge
Q. It results in a different projection 6,7 that is still supersymmetric, but now D9 anti–branes
are to be present in the vacuum to compensate the positive charge, with the end result that
the tensions add up rather that canceling as before while supersymmetry appears non–linearly
realized in the low–energy spectrum 8. More in detail, in the open sector Bose and Fermi excita-
tions that would be paired in the SO(32) superstring display mass differences sized by the string
scale 1/

√
α′ and include a goldstino that conveys the breaking to the closed sector. The latter



appears supersymmetric in the partition function only because in this “brane SUSY breaking”
(BSB) phenomenon 6,7 the open sector emerges at a higher order in the genus expansion, from
(projective) disk amplitudes, and a similar pattern is found in lower–dimensional BSB models 7.

The potential applications of BSB are apparently hampered by the “smoking gun” that it
leaves behind, an exponential potential that takes a universal form in the “string frame”, i.e. if
the terms in the low–energy Supergravity are accompanied by powers of the string coupling

gs = eϕ (1)

that reflect their origin in the Polyakov genus expansion:

S10 =
1

2κ210

∫
d10x

√
−g

{
e− 2ϕ

(
−R + 4 (∂ϕ)2

)
− T e−ϕ + . . .

}
. (2)

The exponential potential clearly complicates matters since flat space does not solve the field
equations, and therefore insisting on the standard setting would require that resummations be
implemented in String Theory 9. Still, the basic BSB phenomenon that we have illustrated has
the encouraging feature of being free from tachyon instabilities at the classical level.

A vastly different option is suggested by the link introduced by BSB between the SUSY
breaking and string scales, which are naturally, albeit not necessarily, identified with GUT scales
O(1016)GeV . Could models of this type be perhaps of interest for the Early Universe 10,11?

2 A climbing scalar in d dimensions

Let us turn to consider the behavior of a minimally coupled scalar field Φ for which

S =

∫
ddx

√
−g

[
− 1

2κ2d
R − 1

2
(∂Φ)2 − V (Φ) + . . .

]
(3)

in spatially flat cosmologies of the type

ds2 = − e 2B(t) dt2 + e 2A(t) dx · dx , dtc = eB(t) dt , (4)

where B(t) connects the “parametric” time variable t to the actual cosmological time tc. If the
potential V (Φ) never vanishes, combining the convenient gauge choice

V (Φ) e 2B =
M

2

2κ 2
d

(
d− 2

d− 1

)
(5)

with the redefinitions

τ = M t , A = (d− 1)A , φ = κd

√
d− 1

d− 2
Φ , V(φ) = 2κ2d

(
d− 1

d− 2

)
V (Φ) , (6)

one arrives at a neat universal form for the resulting equations in an expanding Universe:

φ̈ + φ̇
√

1 + φ̇ 2 +
(
1 + φ̇ 2

) 1

2V
∂V
∂φ

= 0 , Ȧ =
√

1 + φ̇ 2 . (7)

Here “dots” denote derivatives with respect to the rescaled parametric time τ , and interestingly
the driving force results from the logarithm of the scalar potential.

Eqs. (7) are exactly solvable if

V(φ) =
(
M

) 2
e 2 γ φ , (8)



and many explored this type of systems after Halliwell’s identification of the gauge choice (5) 12,
until the exact solution was first presented for γ = 1 by Dudas and Mourad in 13 and then
for all γ by Russo in 12. Let us review some key features of these solutions following 10, where
the climbing behavior was identified, taking into account that up to redefinitions of φ one can
restrict the attention to positive values of γ. There are then two vastly different regions:

1. For 0 < γ < 1 two distinct types of solutions exist: a climbing scalar, for which

φ̇ =
1

2

[√
1− γ

1 + γ
coth

(τ
2

√
1− γ2

)
−

√
1 + γ

1− γ
tanh

(τ
2

√
1− γ2

)]
, (9)

and a descending scalar, for which

φ̇ =
1

2

[√
1− γ

1 + γ
tanh

(τ
2

√
1− γ2

)
−

√
1 + γ

1− γ
coth

(τ
2

√
1− γ2

)]
. (10)

In the former solution φ emerges from the initial singularity, set here at τ = 0, climbing
up the exponential potential to then revert its motion and descend along it, while in the
second it emerges directly climbing it down. In both cases, the scalar is readily driven by
cosmological friction to approach the limiting speed

vl = − γ√
1− γ 2

, (11)

and for any 0 < γ < 1 there is also an exact solution of eq. (7) where φ proceeds all the
way at the limiting speed (11). This is the Lucchin–Materrese (LM) attractor 14, which
takes such a simple form in the convenient gauge (5). If γ < 1√

d−1
the limiting speed

corresponds to a slow–roll inflationary phase of the Universe.

2. As γ → 1 the limiting speed diverges, while the LM attractor disappears at the “critical”
point γ = 1. The descending solution is not present anymore for γ ≥ 1, where the scalar
can only emerge from the initial singularity while climbing up the corresponding steep
potentials. For γ = 1 the climbing solution is particularly simple, and reads

φ̇ =
1

2 τ
− τ

2
, (12)

so that for large τ it approaches a uniformly accelerated motion in the gauge (5).

No additive constants are present in φ̇, while φ clearly does contain an initial–value parameter
φ0, and this can effectively tune the strength of its interaction with the exponential barrier.

3 String realizations

Can these solutions play a role in String Theory? The actual link entails an interesting subtlety,
which I can briefly illustrate starting from the compactification of the Lagrangian (2) to d
dimensions on the metric

ds2 = e
− (10−d)

(d−2)
σ
gµν dx

µ dxν + eσ δij dx
i dxj , (13)

whose dependence on the scalar σ that sizes the internal volume has been arranged in such a
way that the system ends up in the Einstein frame. The reduced Lagrangian,

Sd =
1

2κ2d

∫
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√
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2
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3
2
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σ
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}
(14)



Figure 1: Mukhanov–Sasaki potentials for the two–exponential case of eq. (16) (left two plots, with increasing
values of φ0) and for a single–exponential case obtained from it removing the BSB term (right two plots, with
increasing values of φ0). The former system takes a far longer time to approach the LM curve (dashed line).

can be turned into the more conventional form

Sd =
1

2κ2d

∫
d dx

√
−g

{
− R − 1

2
(∂Φs)

2 − 1

2
(∂Φt)

2 − T e∆Φt + . . .

}
(15)

by field redefintions but then, remarkably, rescalings similar to those in eq. (6) show that the
exponential potential for Φt has γ = 1, and is thus “critical” for all d 15! The presence of the
second scalar Φs clearly complicates matters, but we shall assume nonetheless that it is somehow
stabilized and we shall thus follow the common practice of concentrating on one–field models of
inflationary Cosmology.

A climbing scalar is of special significance in String Theory, since it is naturally compatible
with an upper bound on the dilaton ϕ and thus with a perturbative string regime. However,
while later epochs will be central in what I am about to describe, let me stress that I am not
aware of fully convincing arguments to ignore, as we did in 10,11, higher–derivative corrections to
the effective action (2) near the initial singularity, which generally make climbing not inevitable.
Nonetheless, let me conclude this section on a positive note, mentioning briefly another little
miracle 10: in four dimensions the climbing behavior persists even if one includes the axion
partner θt of Φt, since its non–minimal kinetic term freezes it out near the initial singularity.

4 Implications for the CMB power spectrum

The critical exponential potential of eq. (15) is not alone in String Theory. Already in the simple
model of 6 it is accompanied in principle by a similar term with γ = 1/2 that originates from
the non–BPS D3 brane of 16 and is capable of supporting an inflationary phase, so that in the
following I shall focus on the more general class of potentials

V(φ) = M
2
(
e 2φ + e 2 γ φ

)
. (16)

The comparison with the actual CMB power spectrum tilt determines γ ≈ 1/12 as an optimal
choice, but I shall not attempt to associate a definite origin to the slow–roll term. This class
of potentials combines an early climbing phase, a sort of bounce against a “hard exponential
wall” and a final inflationary descent. It is not exactly solvable in general, but two choices of
qualitatively similar integrable potentials will be described in 15.

Let me now turn to examine the implications of the potential (16) for the CMB scalar power
spectrum. The key tool is provided by the Mukhanov–Sasaki (MS) equation 17,

d 2vk(η)

dη2
+

[
k2 − Ws(η)

]
vk(η) = 0 , (17)

where φ(η) and A(η) are background values and η denotes the conformal time, so that

ds2 = e
2
3
A(η)

(
− dη2 + dx · dx

)
, Ws =

1

z

d 2 z

dη 2
, z(η) ∼ e

1
3
A(η) dφ(η)

dA(η)
. (18)



Figure 2: Scalar power spectra for two increasing values of φ0, φ0 = −4 (left) and φ0 = 0 (left).

Details on the spectrum of tensor perturbations, which also overshoots the attractor curve and
disappears as k → 0, can be found in 11.

The evolution described by the MS equation finds an instructive analogy in the time–
independent boundary–value Schrödinger problem, with the important proviso that in infla-
tionary dynamics one is actually solving an initial–value problem for the counterparts of the
flat–space exponentials e−iEkt. The MS potential Ws(η) has some universal features, since it
behaves near the initial singularity (at a finite negative conformal time −η0) and at late times
(η → 0−) as

Ws ˜η→−η0
− 1

4

1

(η + η0)2
, Ws

η̃→0−

ν2 − 1
4

η2

[
ν =

3

2

1 − γ 2

1 − 3 γ 2

]
. (19)

As a result,Ws must cross the real axis, and actually does it once in the models of interests, before
reaching an infinite barrier at the origin of conformal time. In Quantum Mechanics this barrier
would result in total reflection, but in the MS initial–value problem the growing mode generally
dominates in the classically forbidden region. In other words, the WKB “barrier penetration
factor” leaves way here to a “barrier amplification factor”, and after a (large) number of e–folds
that depends on ϵ

vk(− ϵ) ∼ 1
4
√

|Ws(− ϵ) − k2|
exp

(∫ −ϵ

−η⋆

√
|Ws(y) − k2| dy

)
, (20)

where −η⋆ denotes the classical inversion point. The extent of the amplification reflects the area
below the positive portion of Ws, and therefore an inspection of fig. 1 suffices to acquire a clear
qualitative picture of the power spectrum

P (k) ∼ k3
∣∣∣∣vk(− ϵ)

z(− ϵ)

∣∣∣∣2 . (21)

The plots in fig. 1 show typical MS potentials Ws for the two–exponential problem and for
a potential V(φ) containing only the milder term, and finally in all cases the dashed curves
correspond to the LM attractor, for which the second of eqs. (19) applies for all negative η’s.
Notice that P (k) must tend to zero as k → 0 simply due to the initial singularity, which
forces the curve to cross the real axis, so that the area below it is bounded as k → 0. As
a result, the power spectra for our climbing systems experience a k3–falloff for small k, in
contrast with the k3−2ν–growth that occurs for the LM attractor. On the other hand, for large
k our “climbing” power spectra approach the attractor result, albeit more slowly in the two–
exponential system, whose Ws stay well below the attractor curves of fig. 1 for a while. These
considerations are well reflected in fig. 2, but for the oscillations that are missed altogether by
the WKB approximation, here as in Quantum Mechanics, where they would reflect resonant
transmission through a potential well. The phenomenon becomes more pronounced in fig. 1 as
φ “hits harder” the potential, and indeed larger values of φ0 (right portion of fig. 2) give rise to
deeper wells located around the epoch where the climbing phase terminates.
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Figure 3: A qualitative comparison between the low–ℓ portion of the WMAP9 plot and the first Cℓ’s for the
BSB–inspired potential (16), normalized with respect to C30 and computed for φ0 = 0 and for a climbing phase
that occurred about one e–fold before the horizon exit of the current Hubble scale. The oscillations are very
sensitive to φ0 and disappear if the current Hubble scale exited more than 3–4 e–folds after the onset of inflation.

5 An observable window in the Cosmic Microwave Background ?

Can this class of string–inspired models capture some features of the WMAP9 or PLANCK
multipole plots 18? The actual comparison depends, so to speak, on the portion of the power
spectra of 11 that is accessible to current observations. One can anticipate that any significant
effects should only concern the low–ℓ portions, since the power spectra of fig. 2 merge eventually
with the attractor curve, but our real chance of connecting the current data to String Theory
via BSB rests on the enticing possibility that Nature is unveiling the onset of inflation. The
low–k portions of the power spectra translate directly, via the Fourier–Bessel integrals

Cℓ =
2

9π

∫
dk

k
P (k) j2ℓ

[
k∆η

]
, (22)

where ∆η denotes our current comoving distance from the last scattering surface, into corre-
sponding predictions for the multipole coefficients with ℓ < 50. Since the squared jℓ’s are peaked
for arguments of order ℓ, if our Universe were confronting us with the growing portions in fig. 2
one could anticipate that the quadrupole should be reduced for all models under scrutiny. On
the other hand, the behavior of subsequent multipoles should depend on the details of the dy-
namics, and thus on the value of φ0. Small values of φ0 give rise indeed to Cℓ’s that increase
monotonically with ℓ, and we contented ourselves with this result in11. However, as we have seen
larger values of φ0 enhance the oscillations, and playing with them one can end up with the left
curve of fig. 3. This is qualitatively similar to the low–ℓ portion of the WMAP9 results, which
is surrounded by the ellipse in fig. 3, so that String Theory and BSB are perhaps finding some
indirect evidence in the CMB! Of course, cosmic variance adds more than a word of caution
to this suggestion, but nonetheless one can explore the possibility of arriving at a best fit of
the present data playing with the two parameters at our disposal, the observable window of the
spectrum and the value of φ0. The optimal model would be an ideal starting point to analyze
the bispectrum, which could then lend further support to this picture (or perhaps disprove it)19.

6 Conclusion

I have reviewed the work of 10, where a link was proposed between a peculiar string–scale SUSY
breaking mechanism, “brane SUSY breaking” or BSB for short, and the onset of inflation. I
have also reviewed its application to the CMB power spectrum presented in 11, and I have
mentioned some recent results that are in qualitative agreement with the low–ℓ tails of WMAP9
or PLANCK data. BSB results in a “critical” logarithmic slope for a tree–level exponential
potential, and under some assumptions this forces the inflaton (a mixture of the dilaton and



Figure 4: The step potential of eq. (23) (left) and a graceful exit from climbing and inflation (right): the dotted
curve and the continuous one represent, respectively, φ(t) and the acceleration of the Universe.

the scalar related to the volume of the extra dimensions, in the setting that we have analyzed)
to emerge from the initial singularity while climbing it up. The subsequent descent could have
injected the inflationary phase of our Universe, so that String Theory and BSB are perhaps
providing some clues on why and how inflation started. As we have seen, this picture could
have left tangible signs in the CMB power spectrum that are intriguingly along the lines of
the WMAP9 plot of fig. 3. How about the subsequent evolution, then? Admittedly, we are
not addressing key issues like the graceful exit and reheating, since our current grasp of String
Theory would be of little help in this respect. However, the relevant scalar actors of the early
phase couple to other fields in the rich fashion that is typical of Supergravity, in a version with
non–linear supersymmetry but containing nonetheless the types of matter couplings that are
generally associated with reheating (see e.g. 20 and references therein). More work is needed to
clarify the issue, but let me close mentioning a remarkable exact solution 15 whose potential (left
portion of fig. 4)

V(φ) ∼ arctan
(
e− 2φ

)
(23)

combines a “critical” tree–level exponential with similar, if ad hoc, higher–genus terms to provide
a vivid picture of a graceful exit from an initial climbing phase. This potential is essentially
a step function with a slight tilt and φ has the option of emerging from the right to climb it
up, linger for quite a while on the plateau and then eventually roll down as inflation ends. The
right portion of fig. 4 displays an example where 50 e–folds of inflation are produced in this
fashion. The early climbing phase, however, is not inevitable in this example: the scalar could
also emerge from the left and move fast all the way, giving rise to no inflation at all.
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