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We will discuss implications of the recently discovered scalar boson at 125 GeV on the physics
Beyond Standard Model(BSM). The proceedings will be focused on the constraints coming
from the measurements of the Higgs couplings at LHC on the composite and supersymmetric
theories

1 Introduction

Higgs1 field is the only missing element of the Electroweak Symmetry breaking mechanism.
Recently both collaborations at LHC reported discovery 2,3 of a new resonance, which might
be the Higgs boson of the Standard Model(SM). However the mass of the Higgs boson in the
SM suffers from the hierarchy problem, which predicts its natural value to be of the order of
the Planck scale. This issue can be addressed within various BSM scenarios, where the new
resonances at the scale of a few TeV stabilize the radiative corrections to the Higgs mass. Direct
searches for the new states at LHC put strong constraints on these theories. Discovery of the
new boson at LHC provides a new way of testing these ideas: generically the BSM Higgs boson
couplings are modified compared to the SM values and observation of the significant deviation
will be a new physics signal. In this proceedings we will discuss bounds on supersymmetry and
composite Higgs models coming from the measurements of the Higgs couplings at LHCa. The
paper is organized as follows : first we will discuss the single Higgs effective lagrangian, then
we will review the constraints on the Composite Higgs models and supersymmetric theories and
after that we will conclude.

2 Single Higgs effective theory

As we mentioned in the previous section, the generic BSM theories predict modifications of the
Higgs couplings. We can parametrize these couplings using electroweak chiral lagrangian with
all the possible additional interactions involving a singlet scalar h5. LEP constraints6,7 on ∆ρ
parameter force our lagrangian to be symmetric under custodial SU(2)L×SU(2)R symmetry, and
we will assume that the electroweak symmetry breaking pattern is SU(2)L×SU(2)R → SU(2)V .
Then the Nambu-Goldstone (NG) bosons of SU(2)L×SU(2)R/SU(2)V symmetry breaking can
be described by the 2× 2 matrix field

Σ(x) = exp (iσaχa(x)/v) , (1)

aSee for an example 4 for exhaustive list of the literature on the subject



where σa, χa are the Pauli matrices and the corresponding Goldstones bosons and v = 246 GeV.
The chiral lagrangian can then be systematically expanded in numbers of derivatives acting on
the Σ field. In our case, when we have an additional custodial singlet scalar h we should add all
the possible interactions between this field and the chiral lagrangian, which can be written as

L = −V (h) + L(2) + L(4) + . . . , (2)

where L(n) includes the terms with n derivatives and V (h) is the potential for h. At the level of
two derivatives we have
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SM corresponds to the point where all a = b = ci = 1 and c2i = 0. At the level of four derivatives
the bosonic operators that lead to cubic and quartic vertices of NG bosons and gauge fields with
one or two Higgs bosons are:
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We can see that at the level of four derivatives we have ten operators, and all of them have a
priori arbitrary coefficients, however some of them are irrelevant for discussing Higgs physics
at LHC. For example O1 and O2 operators always involve at least two Higgses bosons, thus
we can safely ignore them now. OGG(OBB) are very important because they contribute to the
Higgs production from gluon fusion and decays to gluons/photons. OW and OB are constrained
from the electroweak precision S parameter6,7, so that we expect them to be small. OWH/OBH
involve at least three W bosons and we can ignore them. OW∂H/OB∂H contribute to the Higgs
couplings to Zγ,ZZ and WW and are phenomenologically important, however these operators
are generated at least at one loop level so we expect their effects in WW/ZZ couplings to be
suppressed compared to the a parameter of Eq.3, and experimental Zγ constraints are still
weak8.

3 Bounds on the Composite Higgs

One of the most attractive solutions to the SM hierarchy problem is provided in the Composite
Higgs models, where the Higgs boson appears as a composite state9 of some new strong dynamics.
The Higgs can be made much lighter than the rest of the composite resonances by implementing
Pseudo-Goldstone Mechanism9. This symmetry is explicitly broken by the SM gauge and Yukawa
interactions, which lead to the generation of the Higgs mass. Note that the same symmetry
arguments constrains heavily the operators, which can appear in the effective Higgs theory once
all the composite resonances are integrated out. For the Higgs interactions with vector bosons
we get
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Figure 1: Fit of the Higgs couplings in the (a, c) plane, coloured contours indicate the bounds coming from
individual contributions, black- 68, 95, 99% probability contours from the LHC and Tevatron, red-the same with

the data from LEP

where f is an analogue of the pion decay constant. Embedding of the SM fermions in the
composite framework is model dependent and within this paper we will consider only the theories,
where the SM fermion masses are generated using the partial compositeness mechanism10, which
protects the flavor violating observables (see for example 11 for the most recent discussion of the
constraints). The Higgs interactions with fermions within this framework are rescaled by some
trigonometric function
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where the parameters (m,n) are fixed by the representations of the global group and are model
dependentb. In the case when top, bottom and tau mix with the same representations of the
composite fermions, all the modifications of the Higgs couplings are characterized by only two
parameters a, c and the model space can be represented as contours in the (a, c) plane. The
Fig.1 shows fits of the couplings in the (a, c) plane as well contours for various composite Higgs
models. The point a = c = 1 corresponds to the SM and is achieved in the decoupling limit
when f → ∞. We see from the Fig.1 that electroweak precision observables push towards the
a = 1 point, which require

v2

f2
< 0.04→ f > 1.2TeV (7)

note that the strongest constraints are still from the electroweak precisions and are indirect,
thus they can be overcome with the contributions of the new resonances.

4 Constraints on Supersymmetry

The other solution to the Planck weak hierarchy problem is realized within the models with
TeV scale supersymmetry. These type of models also predict generic modifications of the Higgs

bNote that there are additional terms in the expression for the fermion mass, however they are suppressed
by the additional powers of the mass of the composite resonance M∗, so the Eq. 6 becomes exact in the limit
f/M∗ � 1
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Figure 2: Fit of the Higgs couplings in the (a, ct, cb) plane. The plot is result of the marginalization over the a
parameter in the [0, 1] range

couplings and the constraints from LHC already put interesting bounds on the susy parameter
space. Note that supersymmetric theories require the presence of the second doublet by the
holomorphy of the superpotential as well as by the anomaly freedom of the theory. The holo-
morphy of the superpotential requires that one of the Higgs doublets couples only to the up
quarks and the other doublet couples only to the down quarks, as a result couplings to down
and up quarks are modified in a different way, so we need to analyse the couplings in the three
dimensional parameter space (a, cb, cτ )

a = sin(β − α), ct =
cosα

sinβ
, cb = cτ = − sinα

cosβ
,

where tanβ = vu/vd is ratio of the vevs of two doublets and α is the mixing angle between
two CP even scalars. Generically we have also independent contributions to the OGG and OBB
operators from the loops with stops and staus, which we will ignore for the beginning. This
approximation is justified in the limit, when both stops and staus are much heavier than the
second Higgs doublet, the contribution to the cγγ of the charged Higgs is generically small and
we will ignore it here. The results of the three dimensional scan are shown on the Fig.2, where
we have marginalized over the a -Higgs coupling to the vector bosons. Note that supersymmetric
models can populate only the white regions of the plot and the MSSM is located almost always
in the region with up suppressed and down enhanced Higgs couplings. Another way to look at
the Higgs couplings in supersymmetry is to assume that “supersymmetric” parametrization of
the couplings in Eq.(8) is correct and look for the preferred direction in the (sinα, tanβ) space(
see Fig.3). In this parametrization the SM point becomes a line (β − α = π/2), which is the
MSSM in the decoupling limit, i.e. when the masses of the all new particles tend to infinity.
The plot on on Fig.3, shows generic preference for the decoupling limit, without any specific
preference for any tanβ. Note that the shape of the contours on the Fig.3 are dominated by the
constraints on cb parameter, indeed expressing α in terms of the decoupling parameter m2

Z/m
2
A
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Figure 4: Fit of the Higgs couplings in the cgg, cγγ plane. New contributions are normalized to the SM values.
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4
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2
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is the most sensitive parameter to the scale of new physics.

4.1 Loops of new fields

So far we have been ignoring completely direct contributions of the new fields to the OGG and
OBB operators. However in the case of the light stops (or any other charged/colored resonances)
these might be the dominant modifications to the Higgs couplings. The contribution to the
cgg/cγγ coefficients can be easily calculated using the Higgs Low Energy Theorems 12 and for
example in the case of stops we get
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where cgg = 1 corresponds to the contribution by the infinitely heavy top quark. The results
of the fit are shown on the Fig.4, where both cgg and cγγ are normalized in terms of their SM
contributions. In the case, when we have only one new particle in the loop only two regions
(unshaded on Fig.4) are possible, where region I(II) corresoponds to the large(small) mixing
((Xt) term). We can see from the Fig.4 that the SM prediction is within 68% probability
contour.

5 Summary

We have reviewed the current status of the fits of the Higgs couplings, and the corresponding
constraints on the new physics models. We have discussed the composite Higgs and supersym-
metric models, both of these models provide a solution to the hierarchy problem and can be
also tested by the measurements of the Higgs couplings. So far the experimental data prefers
SM limit of these models.
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