General Exotics review of ATLAS and CMS

LHC France – Annecy 2013

Samuel Calvet (LPC – Clermont-Ferrand)

Exotic Searches

- Strategy:
 - Mainly: look at signatures and interpret the results within various models
 - Sometime: consider a specific model, and look for it in the data

- This talk will focus on 8TeV results
 - Will talk about 7TeV results when a French team is involved

Will include quick reminders on the various exotic models

Leptonic Signatures

- Dilepton resonances
- Non-resonant dileptons
- Lepton + MET
- Dilepton + gamma
- 4 leptons (type III Seesaw Model heavy fermions)

- - New dimensions compactified → excitations of the fields are quantified
 - Excitation modes seen as new heavy particles

- The hierarchy problem can be addressed by adding new space dimensions (→Kaluza-Klein resonances)
 - New dimensions compactified

 → excitations of the fields are quantified
 - Excitation modes seen as new heavy particles

Arkani-Hamed, Dimopoulos and Dvali (ADD):

- n compactified (radius R) flat extra-dimensions
- Only the gravity (G) can propagate in these dimensions
 - \rightarrow dilution of the gravity

• M_D : new Planck Scale in 4+n dimensions

$$M_{Pl}^2 \sim M_D^{2+n} R$$

 New resonances, but small splitting between modes → ~continuum

- - New dimensions compactified
 → excitations of the fields are quantified

- Excitation modes seen as new heavy particles

Arkani-Hamed, Dimopoulos and Dvali (ADD):

- n compactified (radius R) flat extra-dimensions
- Only the gravity (G) can propagate in these dimensions
 - $\rightarrow\,$ dilution of the gravity

- M_D: new Planck Scale in 4+n dimensions $M_{Pl}^2 \sim M_D^{2+n} R^n$
- New resonances, but small splitting between modes → ~continuum

Randall-Sudrum (RS):

1 additional compactified extra-dimension

First resonances are well-defined/separated

🔴 🔴 🔴 🏲 M

with a Z_2 symmetry:

- gravity almost constant
- Higgs vev exponentially suppressed

6

- The hierarchy problem can be addressed by adding new space dimensions (→ Kaluza-Klein resonances)
 - New dimensions compactified \rightarrow excitations of the fields are quantified
 - Excitation modes seen as new heavy particles

Arkani-Hamed, Dimopoulos and Dvali (ADD):

- n compactified (radius R) flat extra-dimensions
- Only the gravity (G) can propagate in these dimensions
 - \rightarrow dilution of the gravity

- M_{p} : new Planck Scale in 4+n dimensions $M_{Pl}^2 \sim M_D^{2+n} R^n$
- New resonances, but small splitting between modes → ~continuum

Randall-Sudrum (RS):

1 additional compactified extra-dimension

🔴 🔴 🔴 🏲 M

with a Z_2 symmetry:

. . .

Equivalent to 2 branes:

- gravity almost constant
- Higgs vev exponentially suppressed

Others models with new bosons

- Universal ExtraDimension (UED):
 - SM particles can propagate in the additional dimensions
 - KK-parity
 - KK=1 particle: produced by pair, dark matter candidate
 - KK=2 particle can be produced single

Others models with new bosons

- Universal ExtraDimension (UED):
 - SM particls can propagate in the additional dimensions
 - KK-parity
 - KK=1 particle: produced by pair, dark matter candidate
 - KK=2 particle can be produced single
- Grand Unification Theory (GUT):
 - Aim to unify the strong and weak forces into a simple gauge group
 - The simplest group compatible with the experiments is SO(10)
 - Predict one extra neutral boson (Z') and heavy right handed neutrinos
 - Larger groups (E(6),...) predict more Z' and additional fermions

Others models with new bosons

- Universal ExtraDimension (UED):
 - SM particls can propagate in the additional dimensions
 - KK-parity
 - KK=1 particle: produced by pair, dark matter candidate
 - KK=2 particle can be produced single
- Grand Unification Theory (GUT):
 - Aim to unify the strong and weak forces into a simple gauge group
 - The simplest group compatible with the experiments is SO(10)
 - Predict one extra neutral boson (Z') and heavy right handed neutrinos
 - Larger groups (E(6),...) predict more Z' and additional fermions
- Sequential Standard Model (SSM):
 - Generic model \rightarrow benchmark
 - Add a boson (Z'/W') with the same coupling than the SM's one (Z/W)
 - Sometime with a slightly modified coupling so the relative width (Γ /m) is constant

Dilepton resonances

ATLAS-CONF-2013-017 CMS-PAS-EXO-12-061

- Search for high mass dilepton (e or μ) resonance, using RS Z' or G* as benchmarks
- Select events with 2 high pT leptons
- Backgrounds from MC, apart for fake leptons
 - ee: multijet/W+jets from data
 - μμ: multijet/W+jets negligible

I APP

Saclay

MC normalized to data in the Z peak region

Dilepton resonances

ATLAS-CONF-2013-017 CMS-PAS-EXO-12-061

$$R_{\sigma} = \frac{\sigma(\mathrm{pp} \to \mathrm{Z}' + \mathrm{X} \to \ell\ell + \mathrm{X})}{\sigma(\mathrm{pp} \to \mathrm{Z} + \mathrm{X} \to \ell\ell + \mathrm{X})}$$

- SSM Z' mass excluded up to 3TeV
- Limits strongly depend on signal (Z'/G*) and on model's parameters

Non-resonant dileptons

Similar analysis than for the resonance but search for excess/deficit in the tail

Lepton + MET

CMS-PAS-EXO-12-060 ATL: Eur. Phys. J. C (2012) 72: 2241

- Typical selection (CMS):
 - High pT (100/45GeV) e/μ
 - High MET : 0.4<MET/pT<1.5</p>
 - Lepton and MET back-to-back : $\Delta \phi > 0.8\pi$
- Sensitive to W' production
- CMS also looks at impact of interferences

CMS-PAS-EXO-12-060

Lepton + MET

 $\sigma \times B \; [fb]$

10⁴

 10^{3}

10²

10

σ_{excl.} / σ_{SSM W'}

10

10-2

10⁻³

Many models can be probed

M^{Min} [GeV]

Seesaws

Explain the very low mass of v_{μ}

- Type I
 - 2 v_R, m~10¹⁴GeV
 - Inaccessible

- Type II
 - Higgs sector extented to a triplet (H⁰, H[±], H^{±±})
 - Searches for H^{±±} done with 7TeV data (see back-up)
- Type III
 - Add a SU(2)_L triplet (N⁻, N⁰, N⁺)
 - $N^0 \sim v_R^0$ of type I

Type III Seesaw Model Heavy Fermions

Jet/gamma Signatures

- Dijet resonances
- Diphoton
- Jet + missing E_{τ}
- Monophoton + missing E_{τ}
- Diphoton + missing E_{T}

Di-jet resonance

ATLAS-CONF-2012-148 CMS-PAS-EXO-12-059

2 high pT jets

Diphoton

- 2 high pT photons
- Look for ADD and RS signal
- Complementary to 2-lepton searches

talk by Quentin Buat

Monojet + missing E_{τ}

Theory prediction LO

Theory prediction NLO

1σ

+/- 2σ

4

3 3.5

- Predicted by supersymmetry (gravitino), Large Extra Dimension (graviton), ...
- Missing E_{τ} + high pt jet

CMS Preliminary

L dt = 19.5 fb⁻¹

2.5

√s = 8 TeV

ADD δ=3

σ (pb)

10³

10

Monojet + missing E_{τ}

Can also probe the WIMP pair production

CMS 2012 Axial Vector

CMS 2011 Axial Vector

CDF 2012

SIMPLE 2012

CDMSII 2011

COUPP 2012

Super-K W⁺W

IceCube W⁺W

10²

^{10⁵} Μ_χ [GeV/c²]

Candidate for dark matter

Section [cm²⁷] 10⁻²⁷ 10⁻³² 10⁻³² 10⁻³⁴

S 1 10 10 10⁻⁴ 10⁻⁴⁴

10⁻²⁸

10-30 E

10^{-32 |}

10⁻³⁶ μ

10^{-38 |}

10-40

10-42

10⁻⁴⁶

CMS Preliminary

Spin Dependent

10

√s = 8 TeV

L dt = 19.5 fb

Colliders complementary to other experiments, for the low mass regime

Jet+MET analyses sensitive to an large number of models \rightarrow see more results in backup

∑ 1400 5

≥*1200

1000

800

600⊢

400

200

scale

Suppression

Operator D8, SR3, 90%CL

Thermal relic

ATLAS Preliminary

∖s=8 TeV

Ldt = 10.5 fb⁻¹

Expected limit $(\pm 1 \pm 2\sigma_{exp})$

 10^{2}

not valid

Observed limit (± $1\sigma_{\text{theory}}$

 $\alpha_s/4M_*^3$

 $\bar{\chi}\gamma^5\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$

D14

Monophoton + missing E_{τ}

Sensitive to many model, just like mono-jet+MET Extra-dimension ۲ $\tilde{\chi}$ WIMPS ĩ Section [cm²] 10⁻³² CMS. $\sqrt{s} = 7 \text{ TeV}$ Spin Independent (b) (a) َدَ^{10-3:} 10^{-3:} --- CMS (90%CL) ····· CDMS II 2011 90% CL, Spin Independent 5.0 fb⁻¹ 90% CL, Spin Dependent ___CDMS ___CDF, D5, αα→ j(χ7ζ) XENON100 ---- CDMS II 2010 SIMPLE - Picasso $- CoGeNT = -CDF, D5, q\overline{q} \rightarrow CDS (5 fb⁻¹), D5, q\overline{q} \rightarrow \gamma(\chi\overline{\chi})_{Dirac}$ $- ATLAS, D5, q\overline{q} \rightarrow \gamma(\chi\overline{\chi})_{Dirac}$ CDF, D8, $q\bar{q} \rightarrow j(\chi \bar{\chi})_{\text{Dirac}}$ 010⁻³⁵ XENON100 CoGeNT 2011 CMS (5 fb⁻¹), D8, $q\overline{q} \rightarrow \gamma(\chi \overline{\chi})_{\text{Dirac}}$ 10⁻³⁷ ' 10⁻³⁷ --- ATLAS, D1, $q\overline{q} \rightarrow \gamma(\chi \overline{\chi})$ Cross S 10⁻³⁷ S 10⁻³⁸ 10⁻³⁹ **Б** 10⁻³⁶ **ζ-Nucleon** 10^{-4⁻} 10¹ N-X Spin Dependent - ATLAS, D8, $q\overline{q} \rightarrow \gamma(\chi \overline{\chi})_{\text{Dirac}}$ CMS (90%CL) **COUPP 2011** 10⁻⁴³ --- ATLAS, D9, $q\bar{q} \rightarrow \gamma(\chi \bar{\chi})_{\text{Dirac}}$ IceCube ($\chi\chi \rightarrow W^+W^-$) 5.0 fb⁻¹ 10-42 - - CDF CMS, $\sqrt{s} = 7 \text{ TeV}$ SIMPLE 2010 Super-K I+II+III (χχ→W⁺W) 10-43 10⁻⁴⁵ 10⁻⁴⁵ **ATLAS** √s =7 TeV, Ldt = 4.6 fb 10^{2} 10² 10 10 10³ 10 M, [GeVĬ M, [GeV] 10² 10^{3} 10² 10^{3} 10 10 m_γ [GeV] m_γ [GeV]

Diphoton + missing E_{τ}

ATL: PLB 718 (2012) 411 CMS: JHEP03 (2013) 111

LAPP

Lepton+jets Signatures

- WZ/ZZ
- $-W\gamma/Z\gamma$
- t', b', t^{5/3}
- t-jet resonances
- ttbar resonances

Di-boson resonances (WW, WZ, ZZ)

- Interesting signature:
 - Sensitive to heavy bosons (W'), graviton, ...
 - Potentially...
 - many leptons
 - MET
 - high mass jet (for a high mass resonance the bosons are boosted)

Di-boson resonances CMS : JHEP02(2013)036

ATLAS-CONF-2013-015 ATLAS-CONF-2012-150

ATL: Submitted to PRD

$W\gamma/Z\gamma$

- Technicolor predict W_{γ}/Z_{γ} resonances
 - Technicolor disfavored by Higgs-like particle
 - ... some technicolor models still alive
- $\omega_{\tau} \rightarrow W\gamma$, $a_{\tau} \rightarrow Z\gamma$
- Recycling a SM analysis of W_{γ}/Z_{γ} couplings, with higher γ 's pT cut

Vector-like quarks

- Add weak-isospin singlets/doublets/triplets \rightarrow top quark partner
 - Cancelation of Higgs divergences ("Little-Higgs")
 - Heavy top resonance in extra-dimensions

```
• ...
```

- Examples of particles/decays:
 - $t' \rightarrow tH, tZ, bW$
 - $T_{5/3} \rightarrow tW$
 - In b' → tW, bZ, bH
 - •••
- They are not 4th generation quarks !

CMS-PAS-B2G-12-012 ATLAS-CONF-2013-018 Vector-like quarks CMS-PAS-SUS-12-027 ATLAS-CONF-2012-130 Phys. Lett. B 718 (2013)1284-1302 Search for VLQ using events enriched in top quark, bosons and heavy flavors \rightarrow high usage of b-tagging, leptons, MET **CPPM IPNL** LAL LPC-CI W Saclay $T_{5/3}$ -peppeggggg 00000 gg 99999 $\bar{T}_{5/3}$ W (qd) 2 H (b β · 10⁻² **CMS** Preliminary s = 8 TeV, L_ = 9.2 fb⁻¹ CMS Preliminary 19.6 fb⁻¹ at $\sqrt{s} = 8$ TeV දු¹⁰³ $T_{5/3} \rightarrow Wb$ _ Wt σ [pb] × BR(b'→tW) ь ATLAS Preliminary Ldt = 4.7 fb⁻¹. vs = 7 TeV 10² 10⁻¹ b'b' to tWtW 10^{-3} Observed Limit observed 95% CLs Limits 10 T_{⊑/2}/b' → Wt expected 95% CLs Limits **Expected Limit** expected±1\sigma 10^{-2} Expected Limit ± 1σ expected±2σ Expected Limit $\pm 2\sigma$ Expected limit at 95% C Theoretical o_{NLO} Observed limit - Signal Cross-Section Expected limit ± 1 σ 10⁻⁴ 550 600 650 700 750 800 850 900 9501000 10^{-3} Expected limit ± 2 σ

650

600

550

M₇₅₃ (GeV)

700

750

800

m_{h'} (GeV)

Theory approx NNI C

0.4

0.5

0.6

0.7

0.8

m_{b'/Ten}[TeV]

0.3

Vector-like quarks

Limits also provided as function of the various BR

ATLAS-CONF-2013-018

ATLAS-CONF-2012-130

Phys. Lett. B 718 (2013)1284-1302

CMS-PAS-B2G-12-012

CMS-PAS-SUS-12-027

More details in Daniela Paredes' talk

top+jet

ATL: PRD 86, 091103 (2012) CMS-PAS-B2G-12-014

Ttbar resonance

- Sensitive to models with extra-dimensions
- Use the W and top mass constraints to reconstruct the resonance
- Possibility to look at boosted top

q

b

Other Signatures

- Black holes
- Long-lived multicharged

Black holes

- Quantum black holes typically decay into pair of high pT jets
- Semiclassical BH and string balls decay into high number of energetic particles

Long-lived, multi-charged particles

ATL: Sub to PLB CMS-PAS-EXO-12-026

- Particles predicted by many models
 - magnetic monopoles, long-lived micro black holes, Q-balls
- Particles up to Q=6e : highly ionizing \rightarrow large dE/dx
- Request low momentum or large dE/dX in the various sub-detectors
- Issues:
 - Slow particles → large time window
 - High charge \rightarrow large track bending \rightarrow pT=90GeV , Q=6e reconstructed as pT=15GeV Q=e

Long-lived, multi-charged particles

ATL: Sub to PLB CMS-PAS-EXO-12-026

- Low background
- Limits dominated by the statistic uncertainty

Conclusion

- Searches with 8TeV dataset are closing in on many models
- Tighter and tighter limits on various models
 - Extra-dimension
 - Compositeness
 - Vector-like quark
 - Black hole
 - Long-lived multi-charge particle
 - ..
 - But need to keep in mind we exclude benchmarks, there may be signal with a small mass and small cross-section....
- The funniest part of the data is still to come : 300fb⁻¹ @ 13/14TeV !

Backup

Dilepton resonances

Search for high mass dilepton resonance, using Z' or G* as benchmarks

♦ ee:

- Diphoton trigger (for good background estimation)
- 2 electrons with E_{T} >40GeV and 30GeV
- Acc x eff =73% @ 2TeV
- µµ:
 - Single muon trigger
 - 2 muons with pT>25GeV, opposite charge
 - Acc x eff =46% @ 2TeV
- Backgrounds from MC, apart for fake leptons
 - ee: multijet/W+jets from data
 - μμ: multijet/W+jets negligible
 - MC normalized to data in the Z peak region (80-110GeV)

Dilepton resonances

107

ATLAS-CONF-2013-017

Events Events • Data 2012 ATLAS Preliminary ATLAS Preliminary Data 2012 Main systematic 10⁶ $\Box Z/\gamma^*$ 10⁶ $G^* \rightarrow ee Search$ $Z' \rightarrow \mu\mu$ Search Ζ/γ* +Ŧ Dijet & W+Jets $L dt = 20 \text{ fb}^{-1}$ $L dt = 20 \text{ fb}^{-1}$ 10⁵ 10⁵ uncertainties: Diboson Diboson vs = 8 TeV s = 8 TeV G* (1000 GeV) x10 10⁴ 10⁴ Z'(1500 GeV) G* (2000 GeV) x100 Z'(2500 GeV) $k/M_{p_1} = 0.01$ 10³ 10³ Variation (15%) and choice 10² 10² (17%) of PDF 10 10 ee μμ 1 1 W+jets/multijet (9%) 10-1 10-1 10-10 ă 0.6 0.6 100 200 300 400 1000 2000 3000 200 300 400 2000 3000 Obse 100 1000 m_{ee} [GeV] m_{μμ} [GeV] σ B [pb] σ B [pb] ATLAS Preliminary ATLAS Preliminary --- Expected limit --- Expected limit √s = 8 TeV √s = 8 TeV Expected ± 1σ Expected ± 1σ 10 $Z' \rightarrow H$ 10 $G^* \rightarrow H$ Expected $\pm 2\sigma$ Expected $\pm 2\sigma$ - Observed limit Observed limit $k/\overline{M}_{pl} = 0.1$ Z'_{SSM} G* 10⁻² 10⁻² $-k/\overline{M}_{Pl} = 0.05$ ·Ζ'_χ $-k/\overline{M}_{Pl} = 0.03$ - Z'_w **Combined limits** $- k/\overline{M}_{Pl} = 0.01$ 10⁻³ 10⁻³ 10-4 ee, $\mu\mu$: L dt = 20 fb⁻ 10-4 ee, μμ: L dt = 20 fb 10⁻⁵ 2.5 3.5 0.5 1.5 2 3 10⁻⁵ 1.5 2.5 3.5 M₇, [TeV] 2 З M_{G*} [TeV]

WZ resonances

Events / 40

- Resonance decaying into WZ(IvI'I') search for with 2 benchmark models:
 - Extended gauge model (EGM), W': g_{wwz}=g_{wwz}x(m_wm_z/m²_w)
 - Low Scale Technicolor (LSTC), $\rho_{\tau} \rightarrow WZ$
- Selection:
 - Single lepton trigger
 - Missing E_{T} (MET)>25GeV, exactly 3 leptons (e or μ), pT>25GeV
 - ενεε, ενμμ, μνεε, μνμμ
 - Same flavor leptons: opposite sign, within 20GeV of the Z mass
 - v' s p_z recovered from W's mass constraint
 - Δy(W,Z)<1.8, Δφ(W,Z)>2.6
- Backgrounds
 - WZ, ZZ, Zγ: from MC
 - Z+jets, ttbar, ...: II+fake lepton \rightarrow fake rate from data
 - Backgrounds (apart WZ) from a fit for m(WZ)>300GeV
 - WZ from a fit for m(WZ)>500GeV

WZ resonances

 $\sigma \times BR(WZ)$ (pb)

ATLAS-CONF-2013-015

ZZ resonances

- Use spin-2 Randall-Sundrum Graviton as benchmark model
- Select Z boson in ee/ $\mu\mu$ events: 66<m_u<116GeV.
- Second Z depending on the topology: resolved or merged (2 quarks fall into the same jet)
 - Resolved selection (m<1TeV)
 - pT_I>50GeV
 - 65<m_{jj}<115GeV, $\Delta \phi_{jj}$ <1.6
 - Merged selection (m>1TeV)
 - pT₁>200GeV
 - pT_i>200GeV, m_i>40GeV

- Background estimated from a fit on the data :
 - If fit's χ^2 has probability<1%, exclude the region of disagreement \rightarrow re-fit
 - Cross-checked with MC

Excited leptons

- Benchmark model: contact interaction
- Selection:
 - eeγ: 2 electrons with pT>40GeV and 35GeV
 - μμγ: 2 muons with 25GeV
 - pT_{y} >30GeV, isolated from lepton
 - m_l>100GeV
- Background from MC
 - Z+jets scaling from data 70<m_µ<110 (correct fake-γ rate)
 - For $m_{\mu\gamma}$ >250GeV:
 - Low statistics for Z+X
 - Fits Z+jet and Z+ γ in the range 110< m_{IIy}<1050GeV₂

Type III Seesaw Model Heavy Fermions

ATLAS-CONF-2013-0

• Type III seesaw (\rightarrow neutrino masses) predicts heavy fermions N⁰, N[±]

N

- m(N⁰)~m(N[±])
- Search for pair production
- Selection:
 - Single lepton trigger
 - At least 4 leptons (e or μ), pT₁>25GeV, pT_{2,3,4}>10GeV
 - m(II) within 10GeV of the Z mass.
 - Veto events with a second Z
- N[±] from the Z candidate + the closest lepton
- Backgrounds from MC
 - Z+jets (bb/cc): low statistics

 → reverse the isolation cut
 and normalize it in a control region

Type III Seesaw Model Heavy Fermions

- Main systematic uncertainties:
 - Electron identification (2.7%)
 - Fast simulation vs full G4 simulation: 6.8% on signal acceptance
 - Z+jets shape (100%) and normalization (370%)

ATLAS-CONF-2013-019

Seesaw, other searches

Top-like quarks

- Top quark partner from addition of weak-isospin singlets/doublets/triplets
- 3 possible decay modes: $t' \rightarrow Wb$, $t' \rightarrow Zt$, $t' \rightarrow Ht$
 - Focus on high jet and b-jet multiplicities: t't' \rightarrow HtHt/ZtHt/WbHt (H \rightarrow bb)
- Selection
 - Single lepton triggers, exactly one lepton (e or μ)
 - MET>20GeV, MET+ W transerve mass > 60GeV
 - At least 6 jets, then split into 3 channels
 - 2 b-tagged jets and H_{τ} (=sum jet, lepton pT and MET)<700GeV Constra
 - 3 b-tagged jets
 - At least 4 b-tagged jets : drives the sensitivity
- Backgrounds:
 - tt+jets: MC, light and heavy flavor components of the jets fitted in a control region
 - Other backgrounds (small) MC apart for:
 - W+jets: MC, data-driven normalization
 - Multijet: data-driven

Constrain the systematic uncertainties

Top-like quarks

NEW

ATLAS-CONF-2013-018

- Dominant systematic uncertainties
 - Normalization of backgrounds (42%)
 - tt+heavy flavor fraction (32%)
 - b-/c-tagging (16%/11%)

t+b resonance \rightarrow J. Donini

Ttbar resonance

Di-jet resonance

- Di-jet resonances predicted by many models (compositness, extra-dimensions,...)
- Selection
 - High pT jet trigger
 - 2 anti-kt jets with R=0.6, |y|<2.8, pT>150 GeV
 - y*|=|y₁-y₂|/2 < 0.6, m_j>1 TeV
- Background fitted from data
- Search for excesses/deficits
 - Take care of Look-Elsewhere Effect
- Limits expressed as function of q* mass 10⁻² or simplified Gaussian model (backup)

Di-jet mass

ATLAS-CONF-2012-148

Monojet + missing E_{T}

M_{*}: cut-off scale

Various operators tested

56

Predicted by supersymmetry (gravitino), Large Extra Dimension (graviton), WIMPS ...
 WIMPS ...

00000000000

- Selection:
 - missing E_{T} trigger,
 - MET>120GeV
 - At most 2 anti-Kt jets (R=0.4), pT>30GeV, |η|<4.5
 - Leading jet: pT>120GeV, $|\eta|$ <2
 - Δφ(2nd jet, MET)>0.5
 - Lepton veto
- 4 signal regions: MET and leading jet pT larger than 120, 220, 350, 500 GeV
 - 350 GeV working point gives the best sensitivity

G (G

Exotics Higgs

Higgs \rightarrow hidden sector / electron jet

Accepted by NJP EXOT-2011-01

- Search using the HW($\rightarrow e/\mu \nu$) production
- Single lepton trigger, one isolated lepton, MET>25GeV, at least 2 electron-jets (high electromagnetic and charged fractions, ...)
- Backgrounds :
 - Fake electron-jets, from final state photon radiation and π^0 decays
 - Fully data-driven

Higgs \rightarrow hidden sector / muon jet

Accepted by PLB EXOT-2011-12

Assume

- heavier γ_d : 400MeV, with c τ ~O(40mm)
- m(f_{d2})=5GeV, m(f_{d1})=2GeV
 - \rightarrow muon jets, with high impact parameters (IP)
- Single production of H^0 , f_{d1} escape to the detection
 - $\gamma_d \rightarrow \mu\mu$: 45%

H

Selection:

- Trigger with the muon spectrometer, large IP prevent the use of inner tracker
- 2 isolated muon jets, back-to-back ($\Delta \phi > 2$), neutral
- Not too far from the primary vertex $|d_0| < 200$ mm, $|z_0| < 270$ mm
- Backgrounds
 - Prompt muon: negligible
 - Multijet: data-driven
 - Cosmic-ray: from data (empty bunch crossing)

Run Number: 119874 Event Number: 4758

EtCut > 0.4 GeV PtCut > 1.0 GeV Muon: blue

Simulation

Higgs \rightarrow hidden sector / muon jet

Accepted by PLB EXOT-2011-12

- Main systematic uncertainties: trigger (17%), reconstruction of γ_d (13%)
- Almost no background at the end:

	cut	cosmic-rays	multi-jet	total background	$m_H = 100 \mathrm{GeV}$	$m_H = 140 \text{ GeV}$	data
	$N_{\rm MJ}=2$	3.0 ± 2.1	N/A	N/A	$135 \pm 11^{+29}_{-21}$	$90\pm9^{+17}_{-13}$	871
·	$E_{\rm T}^{\rm isol} \le 5~{ m GeV}$	3.0 ± 2.1	N/A	N/A	$132 \pm 11^{+28}_{-21}$	$88 \pm 9^{+17}_{-13}$	219
	$ \Delta \phi \geq 2$	1.5 ± 1.5	$153\pm18\pm9$	$155\pm18\pm9$	$123 \pm 11^{+26}_{-19}$	$81 \pm 9^{+15}_{-12}$	104
	$Q_{MJ} = 0$	1.5 ± 1.5	57 ±15±22	$59\pm15\pm22$	$121 \pm 11^{+26}_{-19}$	$79\pm8^{+15}_{-12}$	80
	$ d_0 , z_0 $	$0^{+1.64}_{-0}$	111±39±63	111±39±63	$105 \pm 10^{+22}_{-16}$	$66\pm8^{+12}_{-10}$	70
	$\Sigma p_{\rm T}^{\rm ID} < 3~{ m GeV}$	$0^{+1.64}_{-0}$	$0.06{\pm}0.02^{+0.66}_{-0.06}$	$0.06^{+1.64+0.66}_{-0.02-0.06}$	$75\pm9^{+16}_{-12}$	$48 \pm 7^{+9}_{-7}$	0

61

Doubly-charged Higgs boson

- Extensions (type II seesaw, ...) predict the Higgs sector is extended to a triplet (H⁰, H[±], H^{±±})
- H^{±±} : narrow resonance, pair-produced
 - H^{±±} couples to left- or right-handed fermions
- Assume H^{±±} decay only into ee, eµ or μµ
- Single lepton trigger, at least two leptons with pT>20GeV, m($I^{\pm}I^{\pm}$)>15GeV
- Search for signals inside windows of ±4% [ee] or ±(6+0.007.m_H)% [eμ, μμ] of the tested m_H

is extended to a triplet

EPJC 72 (2012) 2244

EXOT-2012-18

Doubly-charged Higgs boson

Limits depend on if the H^{±±} couples to left- or right-handed fermions

EXOT-2012-18

Higgs \rightarrow hidden sector / electron jet

- The Higgs boson could decay into hidden-sector particles (string theory, unparticle model)
- 2 models considered \rightarrow 2- or 3-step decay chains
 - New particles assumed very light \rightarrow decays are boosted \rightarrow jet of electrons
 - $m(h_{d,1})=10$ GeV, $m(h_{d,2})=4$ GeV, $m(n_d)=90$ MeV, $m(\gamma_d)=100$ or 200MeV
 - Results unchanged while m($h_{d,1/2}$)<10GeV and BR($h_{d,2} \rightarrow n_d n_d$)<0.2

Di-jet mass

- Di-jet resonances predicted by many models (compositness, extra-dimensions,...)
- Selection
 - High pT jet trigger
 - 2 anti-kt jets with R=0.6, |y|<2.8, pT>150 GeV
 - |y*|=|y₁-y₂|/2 < 0.6, m_j>1 TeV
- Background fitted from data:
 - $f(x) = p_1(1-x)^{p_2} x^{p_3+p_4 \ln x}$
- Search for excesses/deficits
 - Take care of Look-Elsewhere Effect

Di-jet mass

- Jet energy scale is the main uncertainty (can be as low as 4%)
- Limits expressed as function of q* mass and simplified Gaussian model

from 7% (1TeV) to 4% (3TeV)

Monojet + missing E_{τ}

M_{*}: cut-off scale

Various operators tested

(**G**

Predicted by supersymmetry (gravitino), Large Extra Dimension (graviton), WIMPS ... معموموموموموموم

0000000000

- Selection:
 - missing E_T (MET) trigger,
 - MET>120GeV
 - At most 2 anti-Kt jets (R=0.4), pT>30GeV, $|\eta|$ <4.5
 - Leading jet: pT>120GeV, $|\eta|$ <2
 - $\Delta \varphi$ (2nd jet, MET)>0.5
 - Lepton veto
- Main backgrounds (W/Z+jets, multijet, ...) are data-driven, apart from top and dibosons
- 4 signal regions: both MET and leading jet pT larger than 120, 220, 350, 500 GeV
 - 350 GeV working point gives the best sensitivity

ĩ

ĩ

Monojet + missing E_{τ}

ATLAS-CONF-2012-147

Higgs \rightarrow hidden sector / electron jet

- The Higgs boson could decay into hidden-sector particles (string theory, unparticle model)
- 2 models considered \rightarrow 2- or 3-step decay chains
 - New particles assumed very light \rightarrow decays are boosted \rightarrow jet of electrons
 - $m(h_{d,1})=10$ GeV, $m(h_{d,2})=4$ GeV, $m(n_d)=90$ MeV, $m(\gamma_d)=100$ or 200MeV
 - Results unchanged while m($h_{d,1/2}$)<10GeV and BR($h_{d,2} \rightarrow n_d n_d$)<0.2

Hidden valley

- Squark pair production
- f_d can radiate γ_d , depending on the \overline{q} coupling a_d , increasing the number of γ_d
- Selections
 - Single muon jet with at least 4 muons,
 - Pairs of muon jet, with at least 2 muons,
 - Or pairs of electron jets, with at least 2 electrons

Background

- Mainly mulitjets and gamma+jets
- Data driven

Signal Parameters		Electron LJ	1 Muon LJ	2 Muon LJ
α_d	m_{γ_D} [MeV]	Obs (Exp) pb	Obs (Exp) pb	Obs (Exp) pb
0.0	150	0.082 (0.082)	-	-
0.0	300	0.11 (0.11)	0.060 (0.035)	0.017 (0.011)
0.0	500	0.20 (0.21)	0.15 (0.090)	0.019 (0.012)
0.10	150	0.096 (0.10)	-	-
0.10	300	0.37 (0.37)	0.064 (0.036)	0.018 (0.011)
0.10	500	0.39 (0.39)	0.053 (0.035)	0.018 (0.011)
0.30	150	0.11 (0.11)	-	-
0.30	300	0.40 (0.40)	0.099 (0.055)	0.020 (0.012)
0.30	500	1.2 (1.2)	0.066 (0.043)	0.022 (0.015)

Long-lived, multi-charged particles

Particles predicted by many models (magnetic monopoles, long-lived micro black holes, Q-balls)

Theory

Prediction

— DY |q|=6e

— DY |q|=4e

DY |q|=5e

DY |q|=3e

DY |q|=2e

400

300

Observed 95 % CL limit

-⊙·|q|=6e

-v |q|=5e

-**▲**·|**q**|=4e

500

600

m [GeV]

- Search for $2e \le |q| \le 6e$ particles: highly ionizing \rightarrow large dE/dx
- Select events with "muon" pairs (assuming Drell-Yan production),
- Request large deviation of dE/dX in the various sub-detectors

Higgs \rightarrow hidden sector / electron jet

- Search using the HW($\rightarrow e/\mu \nu$) production
- Single lepton trigger, one isolated lepton, MET>25GeV, at least 2 electron-jets:
 - |η|<2, pT>30GeV
 - High electromagnetic fraction f_{EM}>0.99
 - High charged fraction f_{CH}>0.66
 - At least 2 tracks, likely to come from electron
- Background :
 - Fake electron-jets, from final state photon radiation and π⁰ decays
 - Fully data-driven

EXOT-2011-01

Higgs \rightarrow hidden sector / electron jet

Signal	three-ste	ep model	two-step model		
$m_H (\text{GeV})$	$m_{\gamma_d} = 100 \text{ MeV}$	$m_{\gamma_d} = 200 \text{ MeV}$	$m_{\gamma_d} = 100 \text{ MeV}$	$m_{\gamma_d} = 200 \text{ MeV}$	
100	$14.3 \pm 1.7 \pm 0.8$	$12.4 \pm 1.6 \pm 0.7$	$22.6 \pm 2.1 \pm 1.2$	$23.5 \pm 2.1 \pm 1.2$	
125	$11.3 \pm 1.0 \pm 0.6$	$10.7 \pm 1.1 \pm 0.6$	$16.2 \pm 1.2 \pm 0.9$	$18.1 \pm 1.4 \pm 1.0$	
140	$9.6 \pm 0.8 \pm 0.5$	$9.0 \pm 0.8 \pm 0.4$	$13.7 \pm 0.9 \pm 0.8$	$13.9 \pm 0.9 \pm 0.8$	
Background	$0.41 \pm 0.29 \pm 0.12$				
Data	1				

Main systematic:

80% on the background estimation

 Similar results for m(y_d)=100 or 200MeV

