

2011 situation

GPDs and DVCS Leading twist, leading order Selected data

Status of GPD analysis

Extraction methods Universality Key results

Future orientations

COMPASS-II

JLab's 12 GeV upgrade Spin observables on an EIC Phenomenology Toolkit

Conclusions

A pivotal year for Generalized Parton Distributions

J. Ball, G. Charles, B. Moreno, H. Moutarde, F. Sabatié, S. Procureur

Irfu/SPhN, CEA-Saclay

GdR PH-QCD - 21 / 10 / 2011

2011 situation

2 Status of GPD analysis of data

Future orientations

Viewing nucleon structure in 3d.

Viewing nucleon structure in 3d.

Future orientations

analysis

methods

COMPASS-II JLab's 12 GeV upgrade

Spin observables on an EIC Phenomenology Toolkit

Conclusions

• Correlation of the longitudinal momentum and the transverse position of the struck guark.

Viewing nucleon structure in 3d.

2011 situation

GPDs and DVCS Leading twist,

leading order Selected data

Status of GPD analysis

Extraction methods Universality Key results

Future orientations

COMPASS-II

JLab's 12 GeV upgrade Spin observables on an EIC Phenomenology Toolkit

Conclusions

- Correlation of the **longitudinal momentum** and the **transverse position** of the struck quark.
- 3-dimensional description of the nucleon.
- Insights on :
 - spin structure,
 - energy-momentum structure.

Viewing nucleon structure in 3d.

2011 situation

GPDs and DVCS Leading twist, leading order Selected data

Status of GPD analysis

Extraction methods Universality Key results

Future orientations

COMPASS-II

JLab's 12 GeV upgrade Spin observables on an EIC Phenomenology Toolkit

Conclusions

- Correlation of the longitudinal momentum and the transverse position of the struck quark.
- 3-dimensional description of the nucleon.
- Insights on : •
 - spin structure.
 - energy-momentum structure.

Image: A matrix

Viewing nucleon structure in 3d.

2011 situation

GPDs and DVCS Leading twist, leading order Selected data

Status of GPD analysis

Extraction methods Universality Key results

Future orientations

COMPASS-II

JLab's 12 GeV upgrade Spin observables on an EIC Phenomenology Toolkit

Conclusions

GdR PH-QCD - 21 / 10 / 2011

2011 situation

GPDs and DVCS Leading twist, leading order Selected data

Status of GPD analysis

Extraction methods Universality Key results

Future orientations

COMPASS-II

JLab's 12 GeV upgrade Spin observables on an EIC Phenomenology Toolkit

Conclusions

DVCS described by 4 Compton Form Factors. Approximations : guark sector, leading twist and leading order.

• GPD
$$F = H, E(-)$$
 or $H, E(+)$.
 $\mathcal{F} = \int_{-1}^{+1} dx F(x,\xi,t) \left(\frac{1}{\xi - x - i\epsilon} \mp \frac{1}{\xi + x - i\epsilon}\right)$

• Integration yields real and imaginary parts to ${\mathcal F}$:

Compton Form Factor at Leading Order

$$Re\mathcal{F} = \mathcal{P} \int_{-1}^{+1} dx F(x,\xi,t) \left(\frac{1}{\xi-x} \mp \frac{1}{\xi+x}\right)$$
$$Im\mathcal{F} = \pi \left(F(\xi,\xi,t) \mp F(-\xi,\xi,t)\right)$$

• Existence of dispersion relations at fixed t.

2011 situation

GPDs and DVCS Leading twist, leading order Selected data

Status of GPD analysis

Extraction methods Universality Key results

Future orientations

COMPASS-II

JLab's 12 GeV upgrade Spin observables on an EIC Phenomenology Toolkit

Conclusions

(Part of) Selected DVCS measurements.

Fine kinematic binning, large kinematic coverage, several observables.

JLab Hall A : helicity-dependent and independent cross sections

C. Muñoz Camacho *et al.*, Phys. Rev. Lett. **97**, 262002 (2006) Restricted kinematic range, highly-precise helicity-dependent cross sections.

JLab Hall B : Beam Spin Asymmetries

F.-X. Girod *et al.*, Phys. Rev. Lett. **100**, 162002 (2008) Wide kinematic range, precise BSAs.

Hermes : BSAs, BCAs, TSAs

A. Airapetian et al., JHEP 0806, 017 (2008)

D. Zeiler et al., arXiv:0810.5007 [hep-ex]

Restricted kinematic range, several different observables.

2011 situation

GPDs and DVCS Leading twist, leading order Selected data

Status of GPD analysis

Extraction methods Universality Key results

Future orientations

COMPASS-II

JLab's 12 GeV upgrade Spin observables on an EIC Phenomenology Toolkit

Conclusions

(Part of) Selected DVCS measurements.

Fine kinematic binning, large kinematic coverage, several observables.

JLab Hall A : helicity-dependent and independent cross sections

C. Muñoz Camacho *et al.*, Phys. Rev. Lett. **97**, 262002 (2006) Restricted kinematic range, highly-precise helicity-dependent cross sections.

JLab Hall B : Beam Spin Asymmetries

F.-X. Girod *et al.*, Phys. Rev. Lett. **100**, 162002 (2008) Wide kinematic range, precise BSAs.

Hermes : BSAs, BCAs, TSAs (Update in progress)

A. Airapetian *et al.*, JHEP **0806**, 017 (2008) D. Zeiler *et al.*, arXiv:0810.5007 [hep-ex]

Restricted kinematic range, several different observables.

2011 situation

GPDs and DVCS Leading twist, leading order Selected data

Status of GPD analysis

Extraction methods Universality Key results

Future orientations

COMPASS-II

JLab's 12 GeV upgrade Spin observables on an EIC Phenomenology Toolkit

Conclusions

Overview of current extraction methods. Problems : Model dependence ? Degrees of freedom ? Extrapolations ?

Local fits

Take each kinematic bin independantly of the others. Extraction of $Re\mathcal{H}$, $Im\mathcal{H}$, ... as independent parameters.

Global fit

Take all kinematic bins at the same time. Use a parametrization of GPDs or CFFs.

Hybrid : Local / global fit

Combine two previous methods to estimate model dependence.

Neural networks

Already used ofr PDF fits. In progress for GPDs.

2011 situation

GPDs and DVCS Leading twist, leading order Selected data

Status of GPD analysis

Extraction methods Universality Key results

Future orientations

COMPASS-II JLab's 12 GeV upgrade Spin observables on an EIC Phenomenology Toolkit

Conclusions

Overview of current extraction methods.

Problems : Model dependence ? Degrees of freedom ? Extrapolations ?

Local fits

Take each kinematic bin independantly of the others. Extraction of $Re\mathcal{H}$, $Im\mathcal{H}$, ... as independent parameters.

- □ or : "7-CFF" fit results.
- \diamond : " $\mathcal{H} \tilde{\mathcal{H}}$ " fit results.
- + : VGG.

M. Guidal, Phys. Lett. B689 (2010) 156

H. MOUTARDE (Irfu/SPhN, CEA-Saclay)

GdR PH-QCD - 21 / 10 / 2011

2011 situation

GPDs and DVCS Leading twist, leading order Selected data

Status of GPD analysis

Extraction methods Universality Key results

Future orientations

COMPASS-II JLab's 12 GeV upgrade Spin observables on an EIC Phenomenology Toolkit

Conclusions

Overview of current extraction methods.

Problems : Model dependence ? Degrees of freedom ? Extrapolations ?

Global fit

Take all kinematic bins at the same time. Use a parametrization of GPDs or CFFs.

- Without Hall A data.
- With Hall A data.
- △ : neural network.
- : "7-CFF" fit results.

: hybrid fits,

• \diamond : " $\mathcal{H} - \tilde{\mathcal{H}}$ ".

2011 situation

GPDs and DVCS Leading twist, leading order Selected data

Status of GPD analysis

Extraction methods Universality Key results

Future orientations

COMPASS-II

JLab's 12 GeV upgrade Spin observables on an EIC Phenomenology Toolkit

Conclusions

Overview of current extraction methods.

Problems : Model dependence ? Degrees of freedom ? Extrapolations ?

Global fit

Take all kinematic bins at the same time. Use a parametrization of GPDs or CFFs.

• BSA at 90°.

- Test of *H* contribution.
- Negligible *E* contribution.

G. Goldstein et al, Phys. Rev. D84 (2011) 034007

2011 situation

GPDs and DVCS Leading twist, leading order Selected data

Status of GPD analysis

Extraction methods Universality Key results

Future orientations

COMPASS-II JLab's 12 GeV upgrade

Spin observables on an EIC Phenomenology Toolkit

Conclusions

Overview of current extraction methods. Problems : Model dependence ? Degrees of freedom ? Extrapolations ?

Hybrid : Local / global fit

Combine two previous methods to estimate model dependence.

Comparison to VGG model on JLab Hall B kinematics.Loss of information during the extraction.

H. Moutarde, Phys. Rev. D79 (2009) 094021

GdR PH-QCD - 21 / 10 / 2011 5

2011 situation

GPDs and DVCS Leading twist, leading order Selected data

Status of GPD analysis

Extraction methods Universality Key results

Future orientations

COMPASS-II JLab's 12 GeV upgrade Spin observables on an EIC Phenomenology Toolkit

Conclusions

Overview of current extraction methods. Problems : Model dependence ? Degrees of freedom ? Extrapolations ?

Neural networks

Already used ofr PDF fits. In progress for GPDs.

Pivotal year for GPDs

2011 situation

GPDs and DVCS Leading twist, leading order Selected data

Status of GPD analysis

Extraction methods Universality Key results

Future orientations

COMPASS-II

JLab's 12 GeV upgrade Spin observables on an EIC Phenomenology Toolkit

Conclusions

- DVCS and DVMP measurements since the early 2000's.
- Extractions of GPDs from DVCS and DVMP since \simeq 2008.
- Current DVCS kinematics suitable for GPD analysis. Situation less clear for DVMP.
- First step : Compare GPDs extracted from DVCS and DVMP measurements.
- Input : S. Goloskokov and P. Kroll (GK) GPD model.
 - S. Goloskokov and P. Kroll, Eur. Phys. J. C42 (2005) 281
 - S. Goloskokov and P. Kroll, Eur. Phys. J. C53 (2008) 367
- Designed for DVMP analysis.
- Double Distribution model.

э

Pivotal year for GPDs

2011 situation

GPDs and DVCS Leading twist, leading order Selected data

Status of GPD analysis

Extraction methods Universality Key results

Future orientations

COMPASS-II

JLab's 12 GeV upgrade Spin observables on an EIC Phenomenology Toolkit

Conclusions

• JLab Hall A. • Data with $\frac{|t|}{Q^2} < \frac{1}{2}$.

for GPDs 2011 situation

Pivotal year

GPDs and DVCS Leading twist, leading order Selected data

Status of GPD analysis

Extraction methods Universality Key results

Future orientations

COMPASS-II JLab's 12 GeV upgrade Spin observables on an EIC

Phenomenology Toolkit

Conclusions

• Similar VGG results ($\chi^2/dof \simeq 5.86$). M. Vanderhaeghen, P. Guichon and M. Guidal Phys. Rev. D60 (1999) 094017 K. Goeke, M.V. Polyakov and M. Vanderhaeghen Prog. Part. Nucl. Phys. 47 (2001) 401

- Fair agreement between GK model and extractions for \mathcal{H} .
- Further studies needed to clarify the situation (and optimize GPD extractions !).
- Work in progress.

Key results. Common features of different extractions.

Pivotal year for GPDs

2011 situation

GPDs and DVCS Leading twist, leading order Selected data

Status of GPD analysis

Extraction methods Universality Key results

Future orientations

COMPASS-II JLab's 12 GeV upgrade Spin observables on an EIC Phenomenology Toolkit

Conclusions

- **Dominance** of twist 2 and **validity** of a GPD analysis of DVCS data.
- ImH best determined. Large uncertainties on ReH.
- However sizeable **higher twist contamination** for DVCS measurements.
- Already some indications about the invalidity of the *H*-dominance hypothesis.
- Today cross-sections seem a bigger constraint to phenomenology than BSAs.
- Question : What observable should be measured ? Accuracy ?

COMPASS-II.

Kinematic domain in between collider and fixed-target experiments.

for GPDs 2011 situation

Pivotal year

GPDs and DVCS Leading twist, leading order Selected data

Status of GPD analysis

Extraction methods Universality Key results

Future orientations

COMPASS-II

JLab's 12 GeV upgrade Spin observables on an EIC Phenomenology Toolkit

Conclusions

 Access to several observables with beam spin and charge differences.

0.5

0.4

 $\gamma^2 = 7.63$

0.6 XB

2011 situation

GPDs and DVCS Leading twist, leading order Selected data

Status of GPD analysis

Extraction methods Universality Key results

Future orientations

- COMPASS-II
- JLab's 12 GeV upgrade
- Spin observables on an EIC
- Phenomenology Toolkit

Conclusions

- Projection : CLAS12 data.
- Tentative fit.
- Preliminary !

Pivotal year for GPDs

2011 situation

GPDs and DVCS Leading twist, leading order Selected data

Status of GPD analysis

Extraction methods Universality Key results

Future orientations

COMPASS-II

JLab's 12 GeV upgrade

Spin observables on an EIC Phenomenology

Phenomenology Toolkit

Conclusions

- Projection : CLAS12 data.
- Tentative fit.
- Preliminary !

2011 situation

GPDs and DVCS Leading twist, leading order Selected data

Status of GPD analysis

Extraction methods Universality Key results

Future orientations

COMPASS-II

JLab's 12 GeV upgrade

Spin observables on an EIC Phenomenology

Phenomenology Toolkit

Conclusions

JLab's 12 GeV upgrade. Dealing with 1 % statistical accuracy.

- $\chi^2/dof \simeq 7.63$ goes to 6.91 assuming more realistic 5 % uncertainty (statistical + systematic).
- Despite high χ^2 , **fair agreement** with previous extractions of *H* at 6 GeV.
- Need careful analysis to see the (low) quality of the fit !
- Current hypothesis (*H*-dominance, ...) **no longer useable**.
- What observable should be measured ? High precision asymmetries seem a big constraint !

2011 situation

GPDs and DVCS Leading twist, leading order Selected data

Status of GPD analysis

Extraction methods Universality Key results

Future

compass-II

JLab's 12 GeV upgrade

Spin observables on an EIC

Phenomenology Toolkit

Conclusions

Local fits.

Is the accuracy sufficient for model-independent fitting ?

• Structure of BSA at twist 2 (Guichon-Vanderhaeghen formalism) :

$$BSA = \frac{a \sin \phi + b \sin 2\phi}{1 + c \cos \phi + d \cos 2\phi + e \cos 3\phi}$$

where

$$egin{aligned} &a = \mathcal{O}(Q^{-1}) & d = \mathcal{O}(Q^{-2}) \ b = \mathcal{O}(Q^{-4}) & e = \mathcal{O}(Q^{-5}) \ c = \mathcal{O}(Q^{-1}) \end{aligned}$$

- Underconstrained problem (8 fit parameters : real and imaginary parts of 4 CFFs *H*, *E*, *H* and *E*).
- Need other asymmetries on same kinematic bin (or add ~ 5-10 % systematic uncertainty).

Electron Ion Collider.

Spin observables : both polarized ions and electrons.

Pivotal year for GPDs

2011 situation

GPDs and DVCS Leading twist, leading order Selected data

Status of GPD analysis

Extraction methods Universality Key results

Future orientations

COMPASS-II

JLab's 12 GeV upgrade Spin observables on an EIC

Phenomenology Toolkit

Conclusions

- Luminosity : $\simeq 10^{34} \text{ cm}^{-2}.s^{-1}.$
- Configuration : 20 GeV × 250 GeV.
- 3 months beam time.
- x_B range : 1.6.10⁻³ \rightarrow 2.5.10⁻³.
- Q^2 range : $3.2 \rightarrow 5.6 \text{ GeV}^2$.
- t range : $-1. \rightarrow -0.05 \text{ GeV}^2.$

Electron Ion Collider.

Spin observables : both polarized ions and electrons.

Pivotal year for GPDs

2011 situation

GPDs and DVCS Leading twist, leading order Selected data

Status of GPD analysis

Extraction methods Universality Key results

Future orientations

COMPASS-II

JLab's 12 GeV upgrade Spin observables on an EIC

Phenomenology Toolkit

Conclusions

- Luminosity : $\simeq 10^{34} \text{ cm}^{-2}.s^{-1}.$
- Configuration : 20 GeV × 250 GeV.
- 3 months beam time.
- x_B range : 1.6.10⁻³ \rightarrow 2.5.10⁻³.
- Q^2 range : $3.2 \rightarrow 5.6 \text{ GeV}^2$.
- t range : $-1. \rightarrow -0.05 \text{ GeV}^2.$

A software platform for GPD phenomenology. The path between models and data.

Pivotal year for GPDs

- 2011 situation
- GPDs and DVCS Leading twist, leading order Selected data

Status of GPD analysis

Extraction methods Universality Key results

Future orientations

- COMPASS-II
- JLab's 12 GeV upgrade Spin observables on an EIC
- Phenomenology Toolkit

Conclusions

- Comprehensive database of experimental results.
- **2** Comprehensive database of theoretical predictions.
- **§** Fitting engine.
- **9 Propagation** of statistic and systematic **uncertainties**.
- Visualizing software to compare experimental results and model expectations.
- Connection to experimental set-up descriptions to design new experiments.
- Interactive website providing free access to model and experimental values.

A software platform for GPD phenomenology.

First components already used in fits or event generators.

H. MOUTARDE (Irfu/SPhN, CEA-Saclay)

Pivotal year for GPDs

2011 situation

GPDs and DVCS Leading twist, leading order Selected data

Status of GPD analysis

Extraction methods Universality Key results

Future orientations

COMPASS-II JLab's 12 GeV upgrade Spin observables on an EIC

Phenomenology Toolkit

Conclusions

• Bag model, up quark in unpolarized proton.

H. MOUTARDE (Irfu/SPhN, CEA-Saclay)

Pivotal year for GPDs

2011 situation

GPDs and DVCS Leading twist, leading order Selected data

Status of GPD analysis

Extraction methods Universality Key results

Future orientations

COMPASS-II JLab's 12 GeV upgrade Spin observables on an EIC

Phenomenology Toolkit

Conclusions

• Bag model, up quark in transversely polarized proton.

H. MOUTARDE (Irfu/SPhN, CEA-Saclay)

Pivotal year for GPDs

2011 situation

GPDs and DVCS Leading twist, leading order Selected data

Status of GPD analysis

Extraction methods Universality Key results

Future orientations

COMPASS-II JLab's 12 GeV upgrade Spin observables on an EIC

Phenomenology Toolkit

Conclusions

• Bag model, down quark in unpolarized proton.

H. MOUTARDE (Irfu/SPhN, CEA-Saclay)

Pivotal year for GPDs

2011 situation

GPDs and DVCS Leading twist, leading order Selected data

Status of GPD analysis

Extraction methods Universality Key results

Future orientations

COMPASS-II JLab's 12 GeV upgrade Spin observables on an EIC

Phenomenology Toolkit

Conclusions

• Bag model, down quark in transversely polarized proton.

H. MOUTARDE (Irfu/SPhN, CEA-Saclay)

Conclusions. Facing very exciting times for GPDs !

- Pivotal year for GPDs
- 2011 situation
- GPDs and DVCS Leading twist, leading order Selected data

Status of GPD analysis

Extraction methods Universality Key results

Future orientations

- COMPASS-II
- JLab's 12 GeV upgrade Spin observables on an EIC Phenomenology Toolkit
- Conclusions

- Important experimental results during the last decade.
- Encouraging first results on extraction of GPDs.
- Several points still need to be clarified :
 - Universality.
 - Precise impact of subdominant GPDs and their hierarchy.
- New facilities will explore new kinematic ranges or provide challenging constraints for phenomenology.
- Need of a robust and efficient **fitting strategy** for DVCS and DVMP. Extension to TCS.
- First steps in the development of a **platform dedicated to global GPD analysis**.

Acknowledgments.

for GPDs 2011 situation

Pivotal year

GPDs and DVCS Leading twist, leading order Selected data

Status of GPD analysis

Extraction methods Universality Key results

Future orientations

COMPASS-II

JLab's 12 GeV upgrade Spin observables on an EIC Phenomenology Toolkit

Conclusions

- F.-X. Girod
- S. Goloskokov
- P. Guichon
- M. Guidal

- P. Kroll
- K. Kumericki
- D. Müller
- C. Muñoz Camacho
- K. Passek-Kumericki
- B. Pire
- K. Semenov
- M. Vanderhaeghen

3