Ultra-high energy cosmic rays: recent results and challenges for the next years

Karim Louedec

Laboratoire de Physique Subatomique et de Cosmologie Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France

Lundi 28 avril 2014

es deux infinis

C seamon to the seamon of the

Cosmic ray energy spectrum

Origin of cosmic rays • flux in power law $J \propto E^{-\gamma}$, • up to a few 10^{17} eV : \rightarrow galactic, • beyond a few 10^{18} eV : \rightarrow extragalactic. 99% of nuclei 1% of electrons 89% of H (not neutral!) 10% of He 1% of heavy nuclei

(courtesy: E. Parizot)

Karim Louedec (LPSC / Grenoble)

Cosmic ray energy spectrum

Up to the knee: direct detection

- outside atmosphere (almost),
- :) \rightarrow particle identification,
- :(\rightarrow only at low energies.

Beyond the knee: indirect detection

- atmospheric showers,
- :) \rightarrow large collecting area,
- :(→ particle identification more difficult.

Energy spectrum at Ultra-High Energy: status of some years ago

Acceleration – astrophysical shocks (-> Hillas criterion)

$$E_{\max} = Z \left(\frac{B}{1 \,\mu \text{G}}\right) \left(\frac{L}{1 \,\text{kpc}}\right) \text{EeV}$$

Z: particle charge / *L*: size of acceleration region / *B*: magnetic field \rightarrow *candidates:* AGNs, GRBs, young pulsars, etc...

UHECR propagation – the Greisen-Zatsepin-Kuz'min cutoff (1966)

END TO THE COSMIC-RAY SPECTRUM?

Kenneth Greisen

Cornell University, Ithaca, New York (Received 1 April 1966)

interaction of UHECRs with the CMB

$$p + \gamma_{2.7K} \rightarrow n + \pi^+$$

 $\rightarrow p + \pi^0$

 energy threshold for the photo-pion production

$$E_{\rm p} \ge 6.8 \times 10^{16} \, \left(\frac{1 \, {\rm eV}}{E_{\gamma_{2.7\rm K}}}\right)$$

only the *near* universe ($\leqslant 200$ Mpc) contributes to the cosmic ray flux \rightarrow **GZK horizon**

Karim Louedec (LPSC / Grenoble)

Indirect detection – Extensive Air Showers

Indirect detection – Extensive Air Showers

Currently, two main observatories all around the world

Pierre Auger Observatory (30 x AGASA)

- \rightarrow Mendoza / Argentina,
- ightarrow 3 000 km 2 array,
- \rightarrow 500 collaborators / 19 countries,
- \rightarrow collecting data since 2004,
- \rightarrow annual expo: $6 \times 10^3 \text{ km}^2 \text{ sr yr.}$

Telescope Array (7 x AGASA)

- \rightarrow Utah / USA,
- ightarrow 680 km 2 array,
- ightarrow 140 collaborators / 5 countries,
- \rightarrow collecting data since 2007,
- \rightarrow annual expo: $1.4 \times 10^3 \text{ km}^2 \text{ sr yr}.$

Karim Louedec (LPSC / Grenoble)

Telescope Array experiment / TA

Surface detector / SD

- \rightarrow 507 scintillator counters,
- \rightarrow 1.2 km spacing,
- \rightarrow 3 m^2 effective area / 2 layers,
- \rightarrow muon component: 15–20% of signal,
- \rightarrow SD expo: $3.7\times10^3~{\rm km^2\,sr\,yr}.$

- \rightarrow 3 fluorescence sites,
- \rightarrow 12 + 12 + 14 telescopes,
- \rightarrow HiRes technology,

$$\rightarrow$$
 hybrid expo: \simeq a few $10^2 \text{ km}^2 \text{ sr yr}.$

Telescope Array experiment / TA

Surface detector / SD

- ightarrow 507 scintillator counters,
- ightarrow 1.2 km spacing,
- \rightarrow 3 m^2 effective area / 2 layers,
- \rightarrow muon component: 15–20% of signal,
- \rightarrow SD expo: $3.7\times10^3~{\rm km^2\,sr\,yr}.$

- ightarrow 3 fluorescence sites,
- \rightarrow 12 + 12 + 14 telescopes,
- \rightarrow HiRes technology,
- \rightarrow hybrid expo: \simeq a few $10^2~{\rm km^2\,sr\,yr}.$

Telescope Array experiment / TA

Surface detector / SD

- ightarrow 507 scintillator counters,
- \rightarrow 1.2 km spacing,
- \rightarrow 3 m^2 effective area / 2 layers,
- \rightarrow muon component: 15–20% of signal,
- \rightarrow SD expo: $3.7 \times 10^3 \text{ km}^2 \text{ sr yr}.$

- \rightarrow 3 fluorescence sites,
- \rightarrow 12 + 12 + 14 telescopes,
- \rightarrow HiRes technology,

```
\rightarrow hybrid expo: \simeq a few 10^2~{\rm km^2\,sr\,yr}.
```


Surface detector / SD

- ightarrow 1600 Cherenkov water tanks,
- \rightarrow 1.5 km spacing,
- ightarrow 12 tons of water / 3 PMTs,
- \rightarrow muon component: 30–80% of signal,
- \rightarrow SD expo: $4.0 \times 10^4 \text{ km}^2 \text{ sr yr}.$

- ightarrow 4 fluorescence sites,
- \rightarrow 4 x 6 telescopes / 30 $^{\circ}$ x 180 $^{\circ},$
- ightarrow 440 PMTs per telescope camera,
- \rightarrow hybrid expo: $\leq 2.0 \times 10^3 \text{ km}^2 \text{ sr yr}.$

Surface detector / SD

- ightarrow 1600 Cherenkov water tanks,
- \rightarrow 1.5 km spacing,
- ightarrow 12 tons of water / 3 PMTs,
- \rightarrow muon component: 30–80% of signal,
- \rightarrow SD expo: $4.0 \times 10^4 \text{ km}^2 \text{ sr yr}.$

- ightarrow 4 fluorescence sites,
- \rightarrow 4 x 6 telescopes / 30 $^{\circ}$ x 180 $^{\circ},$
- ightarrow 440 PMTs per telescope camera,
- \rightarrow hybrid expo: $\leq 2.0 \times 10^3 \text{ km}^2 \text{ sr yr}.$

Surface detector / SD

- ightarrow 1600 Cherenkov water tanks,
- \rightarrow 1.5 km spacing,
- ightarrow 12 tons of water / 3 PMTs,
- \rightarrow muon component: 30–80% of signal,
- \rightarrow SD expo: $4.0 \times 10^4 \text{ km}^2 \text{ sr yr}.$

- ightarrow 4 fluorescence sites,
- \rightarrow 4 x 6 telescopes / 30 $^{\circ}$ x 180 $^{\circ},$
- ightarrow 440 PMTs per telescope camera,
- \rightarrow hybrid expo: $\leq 2.0 \times 10^3 \text{ km}^2 \text{ sr yr}.$

Similar design... and same problems sometimes !

Karim Louedec (LPSC / Grenoble)

Similar design... and same problems sometimes !

Karim Louedec (LPSC / Grenoble) UHECR - recent results and challenges

A plenty of questions...

3 observables

arrival direction distribution / primary composition / energy spectrum

- What is the source of ultra-high energy cosmic rays
 - \rightarrow what is the fundamental process for ultimate energies ?
 - \rightarrow how do they get their energy ?

What are ultra-high energy cosmic rays

- \rightarrow which composition for primary cosmic rays ?
- \rightarrow is there a change for hadronic interactions in the extensive air showers ?

Is it possible to identify the source(s) of ultra-high energy cosmic rays ?

charged astronomy: could they be used as astrophysical messengers ?

Outline

Introduction and ultra-high energy cosmic ray observatories

- Introduction
- Current ultra-high energy cosmic ray observatories

The Pierre Auger Observatory

- An hybrid detector for ultra-high energy cosmic rays
- Energy systematics in fluorescence measurements
- Interdisciplinary sciences at the Pierre Auger Observatory

Main results and current status for ultra-high energy cosmic rays

- Mass composition and evolution with the energy
- Energy spectrum and astrophysics constrains
- Anisotropy and correlations with nearby extragalactic matter

Conclusion – Experimental challenges for the next years

1600 water tanks: the Surface Detector / SD

- particle detector array at ground
- emission of Cherenkov light in the water
- 100% duty cycle
- only last stage of shower development observed
- energy scale, hadronic model dependent
- \implies lateral shower profile

24 telescopes: the Fluorescence Detector / FD

- views atmosphere above array
- fluorescence light emitted by excited N₂
- 13% duty cycle (nights without moon)
- full observation of longitudinal shower development
- (almost) hadronic model independent
- \implies longitudinal shower profile

The Surface Detector \longrightarrow Lateral profile

The Fluorescence Detector \longrightarrow Longitudinal profile

Longitudinal profile and mass composition

Karim Louedec (LPSC / Grenoble)

The Fluorescence Detector \longrightarrow Longitudinal profile

Longitudinal profile and mass composition

Karim Louedec (LPSC / Grenoble)

Auger hybrid detector – observables

Karim Louedec (LPSC / Grenoble)

UHECR - recent results and challenges

Auger hybrid detector – SD energy calibration by FD

$$E = A \left(S_{38^{\circ}} \right)^{E}$$

 \rightarrow SD energy estimator calibrated using hybrid events (no Monte Carlo simulations),

 \rightarrow rescaling: 1.24 (avg.)× $E_{\rm SD}^{\rm MC}$,

 \rightarrow systematic uncertainties for the method: 7% @ 10^{19} eV and 15% @ 10^{20} eV

Karim Louedec (LPSC / Grenoble)

UHECR - recent results and challenges

Advantage of the energy calibration by FD

 \rightarrow more signal than expected is recorded in the Cherenkov tanks,

- \rightarrow however, muon fraction is well bracketed by hadronic interaction models,
- ightarrow same analysis at Telescope Array would be interesting for cross-checks.

fluorescence technique seems to be essential in UHECR observatories

B. Kégl, for the Pierre Auger Coll., 33rd ICRC, Rio de Janeiro (2013)

Energy systematics in fluorescence measurements

crucial when comparing energy spectra or constraining UHECR sources

Karim Louedec (LPSC / Grenoble) UHECR – recent results and challenges

The fluorescence spectrum – up to recently, the largest uncertainty

AIRFLY: $Y_{air} = 5.67 \pm 0.07 \text{ (stat.)} \pm 0.21 \text{ (syst.)}$ photons₃₃₇ / MeV \rightarrow uncertainty of 4% previously in Auger: $Y_{air} = 5.05$ photons₃₃₇ / MeV \rightarrow energy scale went down by 8% *M. Ave et al [AIRFLY], Astropart. Phys.* **28** (2007) 41–57 Karim Louedec (LPSC / Grenoble) UHECR – recent results and challenges Séminaire CPPM 19/49

The new energy scale @ Auger: +15.6%

Changes in FD energies at 10 ¹⁸ eV	
Absolute fluorescence yield (sec. 2)	-8.2%
New optical efficiency	4.3%
Calibr. database update	3.5%
Sub total (FD calibration - sec. 4)	7.8%
Likelihood fit of the profile	2.2%
Folding with the point spread function	9.4%
Sub total (FD profile reconstruc sec. 5)	11.6%
New invisible energy (sec. 6)	4.4%
Total	15.6%

- \rightarrow new fluorescence yield measured by the AIRFLY collaboration,
- \rightarrow telescope optical properties studied using a point source with an octocoptere,
- \rightarrow new invisible energy correction based on data themselves.
- V. Verzi, for the Pierre Auger Coll., 33rd ICRC, Rio de Janeiro (2013)

Energy systematics in fluorescence measurements

crucial when comparing energy spectra or constraining UHECR sources

An extensive atmospheric monitoring

Atmospheric state variables

- \rightarrow 5 ground-based weather stations,

Aerosol and cloud monitoring

- \rightarrow 4 'elastic' lidars.
- \rightarrow 2 central lasers (CLF/XLF),
- \rightarrow 2 optical telescopes (HAM/FRAM),
- \rightarrow 2 aerosol phase functions (APF),
- \rightarrow ... and since 2013, a Raman lidar.

K. Louedec, for the Pierre Auger Coll., 32nd ICRC, Beijing (2011)

Atmospheric state variables – ground-based weather stations

30

emperature [°C]

- temperature, pressure, humidity, ۲ wind speed
- data acquisition every 5 minutes, ۲
- check of lateral homogeneity. ۰

Jan 2005 Jan 2006 Jan 2007 Jan 2008 Jan 200 875 870 pressure [hPa] 865 855 850 84 Jan 2005 Jan 2006 Jan 200 Jan 2008 Jan 2 rapor pressure [hPa] 10 Jan 2005 Jan 2008 The Pierre Auger Collaboration, Astropart. Phys. 33 (2010) 108-129

Karim Louedec (LPSC / Grenoble) UHECR - recent results and challenges

Atmospheric state variables – radio soundings

- temperature, pressure and humidity vertical profiles,
- around 350 balloon launches since August 2002,
- monthy models computed for molecular part.

The Pierre Auger Collaboration, Astropart. Phys. 33 (2010) 108–129

Karim Louedec (LPSC / Grenoble) UHECR – recent results and challenges

Aerosol component – Central Laser Facility

- laser wavelength fixed @ 355 nm (fluorescence band),
- uses the aerosol-free nights as references,
- aerosol optical depth profiles averaged hourly (200 shots).

Aerosol optical depth $\tau_a(h, \lambda_0)$ – Aerosol attenuation

$$\tau_a(h, \lambda_0) = -\frac{\sin \alpha(h)}{1 + \sin \alpha(h)} \log \left(\frac{N_{\text{obs}}[\alpha(h)]}{N_{\text{aerosol-free}}[\alpha(h)]}\right)$$

The Pierre Auger Collaboration, JINST 8 (2013) P04009

Karim Louedec (LPSC / Grenoble) UHECR – recent results and challenges

Aerosol optical depth measurements @ Auger

Let's divide the sample in three populations

- the clear nights \rightarrow the lowest aerosol concentrations: $\tau_a \leq 0.01$
- the hazy nights \rightarrow the highest aerosol concentrations: $\tau_a \ge 0.10$
- the rest of the nights.

clear nights are more frequent during the Austral winter

Distribution of trajectories: $0.10 \le \tau_a(3.5 \text{ km}) \le 0.30$

Aerosol trajectories for clear/hazy nights @ Auger

Clear nights

Distribution of trajectories: $0.00 \le \tau_a(3.5 \text{ km}) \le 0.01$

Hazy nights

clear nights associated to air masses having traveled mainly above Pacific Ocean

The Pierre Auger Collaboration, Atmos. Res., accepted (2014)

Karim Louedec (LPSC / Grenoble) UHECR – recent results and challenges

Aerosol origins for clear/hazy nights @ Auger

Clear nights

Air mass path directions: $0.00 \leq \tau_a(3.5 \text{ km}) \leq 0.01$

Hazy nights

Air mass path directions: $0.10 \le \tau_a(3.5 \text{ km}) \le 0.30$

500m AGL — 1000m AGL — 3000m AGL

Interdisciplinary sciences at the Pierre Auger Observatory

- Editorial: Introductory remarks by Alan Watson → by A. Watson
- The Pierre Auger Observatory and interdisciplinary science \rightarrow by L. Wiencke
- Atmospheric aerosols at the Pierre Auger Observatory and environmental implications
 - \rightarrow by K. Louedec and R. Losno
- Description of atmospheric conditions at the Pierre Auger Observatory using meteorological measurements and models
 - \rightarrow by B. Keilhauer and M. Will

Interdisciplinary sciences at the Pierre Auger Observatory

- A beginning investigation into the possible role of cosmic rays in the initiation of lightning discharges at the Pierre Auger Observatory
 → by W. C. Brown, J. R. Dywer, A. Huangs, P. R. Krehbiel et al.
- Observation of ELVES at the Pierre Auger Observatory → by R. Mussa and G. Ciaccio
- Ground-truthing a satellite-based night-time cloud identification technique at the Pierre Auger Observatory
 - \rightarrow by J. Chirinos
- Atmospheric monitoring with LiDARs at the Pierre Auger Observatory
 → by V. Rizi, A. Tonachini, M. Iarlori and G. Visconti

Interdisciplinarity in astroparticle experiments

Concept

- optimise the monitoring of the environment (atmosphere, Earth, oceans)
 - \rightarrow improve the accuracy of measurements in astroparticle physics,
 - \rightarrow a wide variety for locations of facilities,
 - ightarrow papers in Astroparticle physics
- design an interdisciplinary platform
 - \rightarrow host scientists from other fields, with their expertise,
 - \rightarrow access to facilities unique in the world,
 - \rightarrow papers in Earth sciences

Promote the exchange between the two communities to better **understand** the current measurements and better **design** the next detectors

AtmoHEAD'14 workshop

Candra Committee Candra Aramo (NTN-NA, Indig), Candra Biovati (MPI-BGC, Germany) Ryan Chavez (LCIPM, CNRS/IN2P5, France), Michael Daniel (Linix, Liyensol, CIR) Michael Daniel (Linix, Liyensol, CIR) Michael Daniel (Linix, Spain), Karim Daudect (LISA), CNRS/IN2P3, Prance), Ragnel and Lio Reijes (LINK, Germany), Audele Forescami (NTN-T6), (Edg)

Local organising Committee: Michele Doro Giovanni Busetto Mose' Mariotti

Palazzo Bo, Padova. 19-21 May 2014

International workshop about atmospheric monitoring in astroparticle experiments

 \rightarrow opened to all experiments in astroparticle physics,

 \rightarrow organised *mainly* for the next generation of Cherenkov telescope arrays,

 \rightarrow registrations still opened.

Karim Louedec (LPSC / Grenoble)

Outline

Introduction and ultra-high energy cosmic ray observatories

- Introduction
- Current ultra-high energy cosmic ray observatories

The Pierre Auger Observatory

- An hybrid detector for ultra-high energy cosmic rays
- Energy systematics in fluorescence measurements
- Interdisciplinary sciences at the Pierre Auger Observatory

Main results and current status for ultra-high energy cosmic rays

- Mass composition and evolution with the energy
- Energy spectrum and astrophysics constrains
- Anisotropy and correlations with nearby extragalactic matter

Conclusion – Experimental challenges for the next years

 \rightarrow longitudinal development: $X_{\rm max} \propto \log A$

X_{max} measurement strategies

- Pierre Auger Observatory
 - \rightarrow apply fiducial cuts
 - ightarrow compare unbiased data to simus
- Telescope Array
 - \rightarrow apply same cuts in data/simus
 - \rightarrow compare biased data to biased simus

 \rightarrow longitudinal development: $X_{\rm max} \propto \log A$

X_{\max} measurement strategies

- Pierre Auger Observatory
 - \rightarrow apply fiducial cuts
 - \rightarrow compare unbiased data to simus
- Telescope Array
 - \rightarrow apply same cuts in data/simus
 - \rightarrow compare biased data to biased simus

 \rightarrow longitudinal development: $X_{\rm max} \propto \log A$

X_{max} measurement strategies

- Pierre Auger Observatory
 - \rightarrow apply fiducial cuts
 - ightarrow compare unbiased data to simus
- Telescope Array
 - \rightarrow apply same cuts in data/simus
 - \rightarrow compare biased data to biased simus

 \rightarrow longitudinal development: $X_{\rm max} \propto \log A$

$X_{\rm max}$ measurement strategies

- Pierre Auger Observatory
 - \rightarrow apply fiducial cuts
 - \rightarrow compare unbiased data to simus
- Telescope Array
 - \rightarrow apply same cuts in data/simus
 - \rightarrow compare biased data to biased simus

 \rightarrow longitudinal development: $X_{\rm max} \propto \log A$

$X_{\rm max}$ measurement strategies

- Pierre Auger Observatory
 - ightarrow apply fiducial cuts
 - ightarrow compare unbiased data to simus
- Telescope Array
 - \rightarrow apply same cuts in data/simus
 - \rightarrow compare biased data to biased simus

$FD \rightarrow maximum$ of the shower longitudinal profile

Pierre Auger Observatory

Karim Louedec (LPSC / Grenoble)

UHECR - recent results and challenges

 \rightarrow only hybrid data (13% of the whole Auger data set),

\rightarrow transition from a mixed or light to a heavy composition at highest energies.

A. Letessier-Selvon, for the Pierre Auger Coll., 33rd ICRC, Rio de Janeiro (2013)

$\mbox{SD} \rightarrow \mbox{muon}$ production depth @ Auger

- \rightarrow selection of muon-rich stations only,
- ightarrow projection of signal time traces to axis,
- \rightarrow sum up stations, and fit with Gaisser-Hillas,
- \rightarrow estimation of the maximum altitude (i.e. depth) of muon production

D. Garcia-Gamez, for the Pierre Auger Coll., 33rd ICRC, Rio de Janeiro (2013)

Karim Louedec (LPSC / Grenoble) UHECR – recent results and challenges

SD / FD \rightarrow understanding of hadronic interactions @ Auger

 $\rightarrow \langle \ln {\rm A} \rangle$ can be derived from $X_{\rm max}$ and $X_{\rm max}^{\mu}$ measurements,

- \rightarrow test of the consistency of hadronic models for EM and muonic components.
- A. Letessier-Selvon, for the Pierre Auger Coll., 33rd ICRC, Rio de Janeiro (2013)

Energy spectrum – spectral features

 \rightarrow spectra combined with a total of 130 000 events,

- \rightarrow a cut-off is clearly observed at highest energies (AGASA was wrong).
- A. Letessier-Selvon, for the Pierre Auger Coll., 33rd ICRC, Rio de Janeiro (2013)

Energy spectrum – spectral features

 \rightarrow Auger 2011 to Auger 2013: the ankle moves from $10^{18.6}$ eV to $10^{18.7}$ eV,

- \rightarrow Auger and TA: spectra in agreement within stat. and syst. uncertainties,
- \rightarrow high energy fluxes drop at different energies.
- + keep in mind the different fluorescence yield values used in both experiments
- A. Schulz, for the Pierre Auger Coll., 33rd ICRC, Rio de Janeiro (2013)

Energy spectrum – possible astrophysics scenarios

Upper end of source energy spectrum ? Single local source without GZK ?

 \rightarrow mixed composition similar to galactic,

 $\rightarrow E_{\rm max} = Z \times 4 \times 10^{18} \, {\rm eV},$

 \rightarrow hard spectral index at sources ($\gamma = 1.6$),

\rightarrow superposition of upper energy limit and GZK suppression (Allard)

 \rightarrow single local source dominating, GZK unimportant (*Aloisio et al.*)

Karim Louedec (LPSC / Grenoble)

UHECR - recent results and challenges

Anisotropy – arrival directions of highest energy events

- \rightarrow search for anisotropy using nearby AGN (Veron-Cetty Veron catalog),
- \rightarrow AGNs trace the nearby extragalactic matter,
- \rightarrow scan over a three dimensional parameter space: $E \geq 57$ EeV, $z \leq 0.018, \, \psi \leq 3.1^\circ$

28 out of 84 correlate, $\mathsf{P}_{\mathrm{chance}}=1\%$

11 out of 25 correlate, $\mathsf{P}_{\mathrm{chance}}=2\%$

- ightarrow weaker (but still significant) AGN correlation than previously published,
- ightarrow excess around the Centaurus A vicinity.

The Pierre Auger Collaboration, Astropart. Phys. 34 (2010) 314–326

Karim Louedec (LPSC / Grenoble) UHECR – recent results and challenges

Anisotropy – arrival directions of highest energy events

- \rightarrow search for anisotropy using nearby AGN (Veron-Cetty Veron catalog),
- \rightarrow AGNs trace the nearby extragalactic matter,
- \rightarrow scan over a three dimensional parameter space: $E \ge 57$ EeV, $z \le 0.018$, $\psi \le 3.1^{\circ}$

- ightarrow weaker (but still significant) AGN correlation than previously published,
- ightarrow excess around the Centaurus A vicinity.

The Pierre Auger Collaboration, Astropart. Phys. 34 (2010) 314–326

Karim Louedec (LPSC / Grenoble) UHECR – recent results and challenges

Anisotropy – proton astronomy at highest energies ?

- \rightarrow simplistic interpretation of correlation and composiiton,
- $\rightarrow f_p$: fraction of correlating protons / $(1 f_p)$: fraction of isotropised iron,
- ightarrow no intermediate nuclei are considered too small mean free paths,

consistency of Auger data estimating composition and anisotropy

All together – coherence of Auger observations

ankle region:

 \rightarrow propagation effect ? signature of a transition between two types of sources ?

cut-off region:

 \rightarrow source maximal acceleration ? propagation effect ? change in the hadronic interactions ?

A plenty of questions... (still)

What is the source of ultra-high energy cosmic rays

- \rightarrow what is the fundamental process for ultimate energies : :-(
- \rightarrow how do they get their energy: :-(
- ... but suppression in the energy spectrum and no photons/neutrinos at UHE !

2 What are ultra-high energy cosmic rays

- \rightarrow which composition for primary cosmic rays: :-)
- ightarrow is there a change for hadronic interactions in the extensive air showers: \circ

Is it possible to identify the source(s) of ultra-high energy cosmic rays ?

proton astronomy ?

Outline

Introduction and ultra-high energy cosmic ray observatories

- Introduction
- Current ultra-high energy cosmic ray observatories

The Pierre Auger Observatory

- An hybrid detector for ultra-high energy cosmic rays
- Energy systematics in fluorescence measurements
- Interdisciplinary sciences at the Pierre Auger Observatory

Main results and current status for ultra-high energy cosmic rays

- Mass composition and evolution with the energy
- Energy spectrum and astrophysics constrains
- Anisotropy and correlations with nearby extragalactic matter

Conclusion – Experimental challenges for the next years

The Pierre Auger Observatory – beyond 2015 (ground-based)

improve cosmic ray composition measurement seems to be the key

- composition at low energies 10^{17} to a few 10^{18} eV
 - \rightarrow search cutoff of proton spectrum,
 - \rightarrow investigate the signal deficit in Monte Carlo simulations,
 - \rightarrow improve sensitivity to photons from GZK effect,
 - \rightarrow fluorescence telescopes and surface detectors for lower energies
- composition at highest energies need a composition estimation event-by-event
 - ightarrow search for small proton fraction at higher energies proton astronomy ?,
 - ightarrow investigate the end of the spectrum and compatibility with iron primaries,
 - \rightarrow particle physics and proton–air cross section,
 - \rightarrow several possibilities: modified SD, scintillator array, etc...

search protons and study their anisotropy at highest energies

Conclusion - Experimental challenges for the next years

The JEM-EUSO telescope – a new era (on the ISS)

identify the first astrophysical source of ultra-high energy cosmic rays

Karim Louedec (LPSC / Grenoble) UHECR – recent results and challenges

The JEM-EUSO telescope – a new era (on the ISS)

provide a full and uniform coverage of the sky

Nominal performances expected @ 10^{20} eV

 \rightarrow energy resolution: $\Delta E/E \leq 30\%$,

 \rightarrow uncertainty of the maximum of the shower: $\Delta X_{\text{max}} \leq 120 \text{ g/cm}^2$,

 \rightarrow angular resolution better than 2.5°,

 \rightarrow integrated exposure reaching $10^6~{\rm km^2}$ sr yr, i.e. 1MLinsley,

at higher energies, the GZK horizon is reduced \rightarrow number of astrophysical sources reduced and angular separations increased

EUSO-BALLOON – a pathfinder (stratospheric balloon)

validate the concept of UHECR detection from space - here at 40 km above ground

ightarrow first flight planned for 2014 in Canada, with active support from french collaborators

 \rightarrow several flights should be planned to characterise completely the detector (using laser shots)

ightarrow ... and if they are lucky, record the first air shower from space !

Thanks for your attention !