

A tale of cosmic rays narrated in γ rays by Fermi

SKIPAC

on behalf of the Fermi-LAT collaboration

LPNHE - Paris April 14 2014

Outline

- γ rays as a cosmic-ray tracer
- Cosmic-ray acceleration in supernova remnants
- Cosmic rays in massive star-forming regions

- Large-scale propagation of cosmic rays in the Milky Way
- Cosmic rays in external galaxies
- Challenges and summary

Chasing cosmic rays

CR are charged + B fields \rightarrow do not track back to sources (< 10¹⁸ eV)

- acceleration
- propagation
- interactions with galactic ecosystems
- dark-matter signatures?

Y rays as a charged particle tracer

- neutral secondaries → complement direct observations
- γ rays \rightarrow neutral and easy to detect ($\neq \nu$)

The Fermi Gamma-ray Space Telescope

Large Area Telescope (LAT)

20% of the sky at any instant 20 MeV to >300 GeV

Gamma-ray burst monitor (GBM)

entire unocculted sky transients from 8 keV to 40 MeV

launched in 2008 nearly circular orbit 565 km, 25.6° sky survey: 2008-2013 Galactic center biased survey: 2014 ... (+ target of opportunities, autonomous repointings) A tale of cosmic rays narrated in γ rays by *Fermi*

L.Tibaldo

5 of 36

The Large Area Telescope

Fermi tells us the story of cosmic rays

focus on CRs below the knee, $<10^{15}$ eV

- acceleration in supernova remnants
- link with massive-star forming regions/early propagation
- large-scale propagation
- external galaxies

Outline

- γ rays as a cosmic-ray tracer
- Cosmic-ray acceleration in supernova remnants
- Cosmic rays in massive star-forming regions

- Large-scale propagation of cosmic rays in the Milky Way
- Cosmic rays in external galaxies
- Challenges and summary

Supernova remnants as CR sources

- energetic and numerous enough
- non-linear diffusive shock acceleration
- SNRs accelerate
 - electrons
 - nuclei? up to the knee?

$$10^{-13} \,\mathrm{J}\,\mathrm{m}^{-3} \times 10^{62} \,\mathrm{m}^{3} \times \frac{1}{10^{8} \,\mathrm{yr}} \simeq 3 \times 10^{33} \,\mathrm{W}$$

$$\frac{1}{50} \frac{\mathrm{SNR}}{\mathrm{yr}} \times 0.1 \times 10^{44} \,\mathrm{J} \simeq 5 \times 10^{33} \,\mathrm{W}$$

A tale of cosmic rays narrated in γ rays by Fermi

Supernova remnants in the γ -ray sky

Supernova remnants in the γ -ray sky

Accelerated nuclei!

A tale of cosmic rays narrated in γ rays by Fermi

12 of 36

???

The ages of supernova remnants

A tale of cosmic rays narrated in γ rays by Fermi

The ages of supernova remnants

A tale of cosmic rays narrated in γ rays by Fermi

The ages of supernova remnants

The first LAT SNR Catalog

- systematic/uniform characterization of radio SNRs
- SNRs as a population of CR sources

Outline

- γ rays as a cosmic-ray tracer
- Cosmic-ray acceleration in supernova remnants
- Cosmic rays in massive star-forming regions

- Large-scale propagation of cosmic rays in the Milky Way
- Cosmic rays in external galaxies
- Challenges and summary

A link with massive-star forming regions?

- isotopic abundances of WR stars (²²Ne, > Fe)
- ~80% of supernovae in massive-star clusters
- superbubbles?
- impact of massive-star environment on young CRs?

Ackermann+ 2011 Science 334 1103

A tale of cosmic rays narrated in γ rays by Fermi

A cocoon of young cosmic rays

- requires freshlyaccelerated CRs
 - hadronic \rightarrow too soft
 - $\frac{\mathrm{d}N}{\mathrm{d}E} \times (1.5 2) \left(\frac{E}{10 \text{ GeV}}\right)^{0.3}$
 - leptonic → too soft and faint

$$\frac{\mathrm{d}N}{\mathrm{d}E} \times 60 \left(\frac{E}{10\,\mathrm{GeV}}\right)^{0.5}$$

Ackermann+ 2011 Science 334 1103

Origin and propagation

- Gamma Cygni supernova remnant?
- stellar-wind superbubble?
- active airlock?

Ackermann+ 2011 Science 334 1103

A tale of cosmic rays narrated in γ rays by Fermi

21 of 36

Outline

- Y rays as a cosmic-ray tracer
- Cosmic-ray acceleration in supernova remnants
- Cosmic rays in massive star-forming regions

- Large-scale propagation of cosmic rays in the Milky Way
- Cosmic rays in external galaxies
- Challenges and summary

A trip through the Galaxy

• diffusion on magnetic fields

- $\delta = 1/3, 1/2, 0.7?$
- breaks in D and/or CR spectra?
- size of the propagation halo?
- convection? reacceleration?

Local CRs from Earth limb emission

- γ rays 15 GeV I TeV → protons ~90 GeV 6 TeV
- simple power law or broken power law à la PAMELA fit the γray data equally well
- simple power law 3σ harder than Pamela below break

Galactic interstellar emission

60% of these γ rays are produced by CR interactions in the Milky Way!

L.Tibaldo

A tale of cosmic rays narrated in γ rays by Fermi

The Rosetta stone of interstellar γ rays

A tale of cosmic rays narrated in γ rays by Fermi

26 of 36

The modeling of large-scale propagation

Ackermann+ 2012 ApJ 750 3

- large-scale structures reproduced at ~15%
- degeneracies between sources and propagation
- unmodeled features

The Fermi bubbles

- past activity in/around the Galactic center?
- hard spectrum, softening > 100 GeV
- substructures? jet?
- nuclei or leptons? relationship with WMAP/ Planck haze?

Su+ 2010 ApJ 724 1044 Su+ 2012 ApJ 753 61 Ackermann+ 2014 in preparation

The gradient problem

CR densities larger than expected in outer Galaxy

- large propagation halo
- more sources
- missing gas
- varying diffusion coefficient (e.g. Evoli+ 2012)

A tale of cosmic rays narrated in γ rays by Fermi

Outline

- γ rays as a cosmic-ray tracer
- Cosmic-ray acceleration in supernova remnants
- Cosmic rays in massive star-forming regions

- Large-scale propagation of cosmic rays in the Milky Way
- Cosmic rays in external galaxies
 - Challenges and summary

Probing cosmic rays in external galaxies

- EGRET: CRs < 10¹⁵ eV are Galactic in origin
- Fermi images CR propagation in nearby galaxies

Large Magellanic Cloud: Y-ray emissivity map (Abdo+ 2010 A&A 512 A7 Murphy+ 2012 ApJ 750 126)

The star formation rate- γ correlation

Ackermann+ 2012 ApJ 755 164

- quasi-linear scaling γ
 luminosity with radio/IR
- large fraction of energy in CRs escapes
- starbust galaxies: Eindependent CR cooling? interactions overcoming diffusion?

Outline

- γ rays as a cosmic-ray tracer
- Cosmic-ray acceleration in supernova remnants
- Cosmic rays in massive star-forming regions

- Large-scale propagation of cosmic rays in the Milky Way
- Cosmic rays in external galaxies
- Challenges and summary

Uncertainties in target distributions

example: CO \rightarrow H₂

- neutral
- ionized
- interstellar radiation field

Nuclear production models

- data and theory from particle physics
- for nuclear interactions
 - limited measurements (bullet energies, bullet/target species, angular distribution)

- bridged by theoretical framework(s)
- 5-30% uncertainties at $T_P < 10 \text{ GeV}$

Summary

supernova remnants

• massive-star forming regions

• galaxies

LT+ 2013 ICRC, arXiv:1311.2896