
Go-HEP

Sébastien Binet

LAL/IN2P3

2014-10-15

S. Binet (LAL) go-hep 2014-10-15 1 / 19



Introduction

Moore’s law ceased to provide the traditional single-threaded
performance increases

I clock-frequency wall of 2003
I still deliver increases in transistor density

multicore systems become the norm
need to “go parallel” to get scalability

S. Binet (LAL) go-hep 2014-10-15 2 / 19



In a C++ world. . .

parallel programming in C++ is doable:
I C/C++ “locking + threads” (pthreads, WinThreads)

F excellent performance
F good generality
F relatively low productivity

I multi-threaded applications. . .
F hard to get right
F hard to keep right
F hard to keep efficient and optimized across releases

I multi-process applications. . .
F leverage fork+COW on GNU/Linux
F event-level based parallelism

Parallel programming in C++ is doable,
but no panacea

S. Binet (LAL) go-hep 2014-10-15 3 / 19



In a C++ world. . .

in C++03, we have libraries to help with parallel programming
I boost::lambda
I boost::MPL
I boost::thread
I Threading Building Blocks (TBB)
I Concurrent Collections (CnC)
I OpenMP
I . . .

S. Binet (LAL) go-hep 2014-10-15 4 / 19



In a C++11 world. . .

in C++11, we get:
I λ functions (and a new syntax to define them)
I std::thread,
I std::future,
I std::promise

Helps taming the beast
... at the price of sprinkling templates everywhere...

... and complicating further a not so simple language...

S. Binet (LAL) go-hep 2014-10-15 5 / 19



In a C++11 world. . .

yay! for C++11, but old problems are still there. . .

build scalability
I templates
I headers system
I still no module system (WG21 - N2073)

F maybe in the next Technical Report ?

code distribution
I no CPAN like readily available infrastructure (and cross-platform) for
C++

I remember ROOT/BOOT ? (CHEP-06)

S. Binet (LAL) go-hep 2014-10-15 6 / 19



Time for a new language ?

“Successful new languages build on existing languages
and where possible, support legacy software. C++ grew our
of C. java grew out of C++. To the programmer, they are all
one continuous family of C languages.” (T. Mattson)

notable exception (which confirms the rule): python

Can we have a language:

as easy as python,
as fast (or nearly as fast) as C/C++/FORTRAN,
with none of the deficiencies of C++,
and is multicore/manycore friendly ?

S. Binet (LAL) go-hep 2014-10-15 7 / 19



Why not Go ?
golang.org

S. Binet (LAL) go-hep 2014-10-15 8 / 19

http://golang.org


Elements of go

obligatory hello world example. . .

package main
import "fmt"
func main() {

fmt.Println("Hello JI-2014")
}

S. Binet (LAL) go-hep 2014-10-15 9 / 19



Elements of go - II

founding fathers:
I Russ Cox, Robert Griesemer, Ian Lance Taylor
I Rob Pike, Ken Thompson

concurrent, compiled
garbage collected
an open-source general programming language
best of both ‘worlds’:

I feel of a dynamic language
F limited verbosity thanks to type inference system, map, slices

I safety of a static type system
I compiled down to machine language (so it is fast)

F goal is within 10% of C

object-oriented (but w/o classes), builtin reflection
first-class functions with closures
duck-typing à la python (but better) thanks to its interfaces

S. Binet (LAL) go-hep 2014-10-15 10 / 19



Go concurrent

goroutines

a function executing concurrently as other goroutines in the same
address space
starting a goroutine is done with the go keyword

I go myfct(arg1, arg2)

growable stack
I lightweight threads
I starts with a few kB, grows (and shrinks) as needed

F now, also available in GCC 4.6 (thanks to the GCC-Go front-end)
I no stack overflow

S. Binet (LAL) go-hep 2014-10-15 11 / 19



Go concurrent - II

channels

provide (type safe) communication and synchronization

// create a channel of mytype
my_chan := make(chan mytype)
my_chan <- some_data // sending data
some_data = <- my_chan // receiving data

send and receive are atomic

"Do not communicate by sharing memory; instead,
share memory by communicating"

S. Binet (LAL) go-hep 2014-10-15 12 / 19



Non-elements of Go

no dynamic libraries (frown upon)
no dynamic loading (yet)

I but can either rely on separate processes
F IPC is made easy via the netchan package

I or rebuild executables on the fly
F compilation of Go code is fast
F even faster than FORTRAN and/or C

no templates/generics
I still open issue
I looking for the proper Go -friendly design

no operator overloading

S. Binet (LAL) go-hep 2014-10-15 13 / 19



Go from anywhere to everywhere

code compilation and distribution are (de facto) standardized
put your code on some repository

I bitbucket, launchpad, googlecode, github, . . .
check out, compile and install in one go with go-get:

I go get github.com/go-hep/fwk
I no root access required
I automatically (and recursively) handle dependencies

S. Binet (LAL) go-hep 2014-10-15 14 / 19



Go and C/C++

Interfacing with C:

done with the CGo foreign function interface
#include the header file to the C library to be wrapped
access the C types and functions under the artificial “C” package

package myclib
// #include <stdio.h>
// #include <stdlib.h>
import "C"
import "unsafe"

func foo(s string) {
c_str := C.CString(s) // create a C string from a Go one
C.fputs(c_str, C.stdout)
C.free(unsafe.Pointer(c_str))

}

S. Binet (LAL) go-hep 2014-10-15 15 / 19



Go and C/C++

Interfacing with C++:

a bit more involved
uses SWIG

I you write the SWIG interface file for the library to be wrapped
I SWIG will generate the C stub functions
I which can then be called using the CGo machinery
I the Go files doing so are automatically generated as well

handles overloading, multiple inheritance
allows to provide a Go implementation for a C++ abstract class

Problem

SWIG doesn’t understand all of C++03
e.g. can’t parse TObject.h

S. Binet (LAL) go-hep 2014-10-15 16 / 19



Conclusions

Can Go address the (non-) multicore problems of yesterday ?

yes:
I productivity (dev cycle of a scripting language)
I build scalability (package system)
I deployment (go-get, simple scp, ease of cross-compilation)
I support for “legacy” C/C++/Fortran software (cgo+swig)

Can Go address the multicore issues of today/tomorrow ?

yes:
I easier to write concurrent code with the builtin abstractions

(goroutines, channels)
I easier to have efficient concurrent code (stack management)
I still have to actually write efficient concurrent code, though. . .

F work partitioning, load balancing, . . .

but: no such thing as a magic wand for multicores/manycores

S. Binet (LAL) go-hep 2014-10-15 17 / 19



References

General Go pointers
golang.org

talks.golang.org

blog.golang.org

tour.golang.org

dave.cheney.net/resources-for-new-go-programmers

gobyexample.net

godoc.org

golang nuts mailing list

Science-related Go pointers
gonum: BLAS/LAPACK,numerics,...packages

go-hep: HEP related packages

S. Binet (LAL) go-hep 2014-10-15 18 / 19

http://golang.org
http://talks.golang.org
http://blog.golang.org
http://tour.golang.org
http://dave.cheney.net/resources-for-new-go-programmers
http://gobyexample.net
http://godoc.org
http://groups.google.com/d/forum/golang-nuts
http://github.com/gonum
http://github.com/go-hep


Workshop

simple exercizes (create a command, handle arguments)
discover a bit of the surrounding tooling ecosystem:

I doc system,
I build system,
I CPAN/PyPI/...-like market-store;

discover a bit of the standard library (json, io, os, . . . )
touch upon interfaces and concurrency:

I channels
I goroutines

github.com/sbinet/ji-2014-go

S. Binet (LAL) go-hep 2014-10-15 19 / 19

https://github.com/sbinet/ji-2014-go

	Main Talk
	mysection


