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☑ The very rare decay B
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Theory: back to the basics

☑ SM flavor violation:  Within the SM, all of (quark) flavor violation is ruled by

LqY = QLY u H
cuR + QLY d H d R

Physical parameters:

The Y's eigenvalues

No apparent reason why it should hold for physics beyond the SM, whatever its scale

☑ The only entry in the Y's that is O(1) (in units of the SM Higgs vev 
and assuming one single vev) is (Y

u
)

33

The relative “rotation” between the Y's

The other eigenvalues are ≪ 1

The relative rotation (aka CKM) is close to the identity

two renormal. “Yukawa” 
interactions with one 

scalar doublet
●

●

SM quark flavor 
patterns:

●

●

●

The SM pattern of breaking of the “flavor” symmetry is highly peculiar 
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As arguments in support of new physics right at the Fermi scale lose momentum,

we should refine our strategies towards probing higher and higher scales.

In recent HEP history, several direct discoveries have been anticipated by indirect effects in loops

(this “double” discovery is one of the most “spectacular” aspects of HEP progress)

Recall: indirect observables are able to probe scales much higher than direct searches.

So, the more the high-p
T
 picture at LHC is SM-like, 

the higher the relative weight of indirect observables in defining future strategies

☑

☑
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A lesson from history
I became aware of this thanks 

to talks of A. Soni and T. Browder

In the early 60s, CP was a sacred symmetry.

In 1962 a dedicated search of CP violation in Kaon decays was carried out in Dubna, 
collecting about 600 Kaon decays to charged particles.

Not a single K
L
 → ππ candidate was found. It would have meant CP violation.

The lab administration decided to put an end to the search.

In 1964, CP violation in Kaon decays was discovered (at the level of 1/350 events) 
by the famous Brookhaven experiment of Cronin, Fitch and collaborators.

In 1967, Sakharov recognized CP violation as one of the building blocks 
of the matter-antimatter asymmetry of the universe.
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On fundamental questions, we should never give up.
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CP violation
in the K0 – K0 system



  

A SM test of CP violation

☑ CP violation is today measured in several observables. Especially well-known are:
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Intuitive picture of this correlation

ϵK ∼ Im

☑ Example of such correlations: ϵ
K
 vs. sin2β

ϵK ≃ C ⋅ B̂K ⋅ sin 2β Direct proportionality

A SM test of CP violation

≃ Im (V td
* V ts )

2

CKM matrix = 

( * * ∣V ub∣e
−i γ

* * *
∣V td∣e

−iβ V ts * )
≃ Im (e+2 iβ)

D. Guadagnoli, HDR seminar
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eigenstates

K
S
  → 2π  (and occasionally to 3π)

K
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From Cronin & Fitch's 
experiment, we learned that
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The κϵ correction

The ϵ
K
 magnitude obeys the following theoretical formula☑

∣ϵK∣ ≡ sin ϕϵ (Im 〈K 0∣H W∣K̄ 0 〉
ΔmK

+ ξ)
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The κϵ correction

The main obscure point is clearly the estimate of the ξ correction☑

ξ = −1
2

ImΓ12

ReΓ12

= −
ImΓ12

ΔΓK
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It turns out that
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A closer look at the OPE for ϵ
K

We saw that☑

Buras, DG, Isidori
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∣ϵK∣ ≡ sin ϕϵ (Im M 12

ΔmK

−
ImΓ12

ΔΓK )

We identified long-distance corr's with ξ
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Calculation of  Im M
12

non-local  

Main observation☑

Within ChPT, Im M
12

non-local  is dominated by one single operator.
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Main observation☑

Within ChPT, Im M
12

non-local  is dominated by one single operator.

Therefore we can determine the (complex) coupling G
8
 of this “octet” operator 

entirely from data:
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Fermi-coupling strength
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the magnitude can be measured from the K0 → (ππ)
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The very rare decay
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s
 → µµ 



  

The B
s
 → µµ decay within the SM: structure

☑ BR[B
s
 → µµ] has the following structure

BR [Bs →μ+μ–] ≃ 1
Γs

× ( G F
2 αe.m.

2

16π3 sW
4 )⋅∣V tb

* V ts∣
2
⋅ f Bs

2 mBs
⋅mμ

2⋅Y 2(mt
2/M W

2 )

See: Buchalla, Buras '93;  Misiak, Urban '99

Main diagram:
Z-penguin
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Bs

  is among the simplest quantities 
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The main sources of error within the BR formula are:

  BR[B
s
 → µµ] error:  parametric

BR [Bs→μ+μ–] ≃ 1
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 Thus, one can write the following phenomenological expression for the BR 

BR [Bs→μ+μ–] = 3.23⋅10−9⋅( τ Bs

1.466 ps )⋅(Re (V tb
* V ts)

4.05⋅10−2 )
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227 MeV )
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⋅( M t

173.2 GeV )
3.07

☑

top “pole” mass here
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  A qualification about the f
Bs

 error

Input

Contribution to 
BR relative error

τB s
=

1.466(31)ps
Re(V tb

* V ts)=
4.05(8)⋅10−2

f B s
=

227(8)MeV
M t=

173.2(0.9)GeV

2% 4% 7 % 1.6 %

pdgLive CKMfitter
or UTfit

LQCD average
(central value 

from C. Davies)

Tevatron average 
on 5.8/fb: 1107.5255

Actually, there are different schools of thought as to whether the above f
Bs

 error is “the right choice”☑

The FLAG (Flavor Lattice Averaging Group) collab. quotes as reference error the weighted average among 
the most recent (= unquenched) lattice calculations:  4.5 MeV

•

 This average is however dominated by one determination (HPQCD collab.), that has about half the error 
of the other ones.

We adopted the more conservative approach of estimating the error from the spread of the central values.•

In BR[B
s
 → µµ], this choice makes the f

Bs
 error subleading with respect to the CKM error.

This issue is still debatable to some extent

(or at least it would be so in case of a SM vs. exp discrepancy)
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De Bruyn et al., PRL 12 & PRD 12
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This is what theory calculates:
BR[B

s
(t = 0) → µµ]

This is what exp measures

How are BR
th
 and BR

exp
 connected☑

BR th

1− y s

= BRexp

with y s = ΔΓ s /(2Γs) ≃ 0.088

Recall: BR th ∝ 1
Γ s

Then one finds: 1
Γs

× 1
1−ΔΓ s /(2Γs)

= 1
Γ s

Γs

Γlong

Namely the 1/(1–y
s
) factor just “renormalizes” BR

th
 to the width 

of the long-lived B
s
 eigenstate

See:

• LHCb 1212.4140

• latest HFAG average:          
                    1207.1158

Intuitive picture of this correction☑



  

  BR[B
s
 → µµ] systematics 2: soft radiation

Measured BR = BR(B s→μμ) + BR(Bs→μμ+n γ)∣n≠0

Buras, Girrbach,  DG, Isidori,EPJC 13

D. Guadagnoli, HDR seminar

an arbitrary number of 
soft, undetected photons



  

  BR[B
s
 → µµ] systematics 2: soft radiation

Measured BR = BR(B s→μμ) + BR(Bs→μμ+n γ)∣n≠0

This is the dominant sub-leading e.m. correction. Why should this correction be significant?

Buras, Girrbach,  DG, Isidori,EPJC 13

D. Guadagnoli, HDR seminar

an arbitrary number of 
soft, undetected photons



  

  BR[B
s
 → µµ] systematics 2: soft radiation

Measured BR = BR(B s→μμ) + BR(Bs→μμ+n γ)∣n≠0

Main physics argument

This is the dominant sub-leading e.m. correction. Why should this correction be significant?

Buras, Girrbach,  DG, Isidori,EPJC 13

D. Guadagnoli, HDR seminar

an arbitrary number of 
soft, undetected photons

BR(B s→μμ[+n γ])∣∑ E γ i≤E cut
= ( Ecut

mBs
/ 2 )

α e.m.

π #
⋅BR(Bs→μμ)th
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 the minimum energy that one or more  have to have to be detected.
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The discussed radiation is from final-state bremsstrahlung.☑
What about emission of photons from the initial-state quarks?

This contribution is not helicity-suppressed, so it may be important. In B → µ () it is.
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The discussed radiation is from final-state bremsstrahlung.☑
What about emission of photons from the initial-state quarks?

This contribution is not helicity-suppressed, so it may be important. In B → µ () it is.

Note that:

the structure-dep. contribution 
must go to zero in the soft limit, 
because the initial state is neutral

in fact, it goes to zero 
as E

3
  
(Low's theorem),

i.e. fastly enough to be negligible 
in the (narrow) signal region

●

●

soft final-state bremsstrahlung
[Buras, Girrbach, DG, Isidori, EPJC 12]

“structure-dependent” emission
[Aditya, Healey, Petrov, PRD 13]

signal window: LHCb

signal window: CMS

adapted from: Bobeth et al., PRL 14
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 → µµ] error:  recap of systematics

Effect of B
s
 – B

s
 oscillations: BRexp = BRth

1
1−ΔΓs /2Γ s

= BRth × 1.09
De Bruyn et al., PRL 12 & PRD 12

•
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Implied systematic error comparable to f
Bs

 error

Albeit impact arguably small (~ O(1%)) 
in appropriate scheme
[see Buras, Girrbach, DG, Isidori, EPJC 13]

Final answer:  full calculation

•

•
NLO EW: Bobeth et al., 1311.1348, PRD14

Initial-state
effect

EW final-state
effect

EW short-dist.
effect

SM pred.: Bobeth et al., 1311.0903, PRL14

See also NNLO QCD: Hermann et al., 1311.1347, JHEP13
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Implied systematic error comparable to f
Bs

 error

Albeit impact arguably small (~ O(1%)) 
in appropriate scheme
[see Buras, Girrbach, DG, Isidori, EPJC 13]

Final answer:  full calculation

•

•
NLO EW: Bobeth et al., 1311.1348, PRD14

All in all, theory (SM) ready to match expected experimental accuracy

Initial-state
effect

EW final-state
effect

EW short-dist.
effect

SM pred.: Bobeth et al., 1311.0903, PRL14

See also NNLO QCD: Hermann et al., 1311.1347, JHEP13
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beyond the SM



  

  BR[B
s
 → µµ]:  a multi-faceted new-physics probe

From an effective-theory point of view, 6 operators 
built out of SM fields, can contribute to this decay

O A ≡ ( b̄γL
α s ) ( μ̄ γα γ5μ ) O ' A ≡ ( b̄γR

α s ) (μ̄ γαγ5μ )

O ' S ≡ (b̄ PR s ) (μ̄μ )OS ≡ ( b̄ PL s ) (μ̄μ )

O ' P ≡ ( b̄ PR s ) (μ̄ γ5μ )O P ≡ ( b̄ PL s ) (μ̄ γ5μ )

SM operator

(One may write also two tensor operators,
 but their matrix elements vanish for this process.)

━
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 → µµ as a probe of scalar-fermion (i.e. Yukawa) interactions

Main observation: 
the B
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 → µµ amplitude remains a well-defined object 

in the gaugeless limit

It is therefore a Yukawa-dominated process

probe of scalar operators: O
S,P

  and primed

➋ B
s
 → µµ as a probe of anomalous Z-quark couplings

Main observation: 
the Z-penguin represents 80% of the total B

s
 → µµ amplitude 

•

•

Sensitive to shifts in Z-quark couplings•
probe of vector operators: O

A
  and primed

•

D. Guadagnoli, HDR seminar







  

  BR[B
s
 → µµ] as an EW precision test

☑ B
s
 → µµ is more than ‘just’ a probe of new scalars mediating FCNCs

Consider the Z-d
i
-d

j
 coupling:

Z

d j

d i

DG, Isidori, PLB 13

D. Guadagnoli, HDR seminar



  

  BR[B
s
 → µµ] as an EW precision test

☑ B
s
 → µµ is more than ‘just’ a probe of new scalars mediating FCNCs

Consider the Z-d
i
-d

j
 coupling:

Z

d j

d i

Flavor-diag: i = j (= 3)

Affects LEP-measured 
Z → b b observables:  R

b
,  A

b
,  Ab

FB

Z

b

b



DG, Isidori, PLB 13

D. Guadagnoli, HDR seminar



  

  BR[B
s
 → µµ] as an EW precision test

☑ B
s
 → µµ is more than ‘just’ a probe of new scalars mediating FCNCs

Consider the Z-d
i
-d

j
 coupling:

Z

d j

d i

Flavor-diag: i = j (= 3)

Affects LEP-measured 
Z → b b observables:  R

b
,  A

b
,  Ab

FB

Flavor-off-diag: i ≠ j

Affects Z-penguin-driven FCNCs,
in particular B

s
 → µµ

B
s

µ–

µ+

Z

b

b



DG, Isidori, PLB 13

D. Guadagnoli, HDR seminar



  

  BR[B
s
 → µµ] as an EW precision test

☑ B
s
 → µµ is more than ‘just’ a probe of new scalars mediating FCNCs

Consider the Z-d
i
-d

j
 coupling:

Z

d j

d i

Flavor-diag: i = j (= 3)

Affects LEP-measured 
Z → b b observables:  R

b
,  A

b
,  Ab

FB

Flavor-off-diag: i ≠ j

Affects Z-penguin-driven FCNCs,
in particular B

s
 → µµ

B
s

µ–

µ+

Z

b

b



DG, Isidori, PLB 13

D. Guadagnoli, HDR seminar

☑ Shifts in Zdd couplings can be implemented as
 contributions from effective operators 
(→ minimal model dep.)

The only operators relevant to the problem are 
of the form:

Operators  ∼ (d i γμ X ij d j ) (H † DμH )
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☑ Shifts in Zdd couplings can be implemented as
 contributions from effective operators 
(→ minimal model dep.)

The only operators relevant to the problem are 
of the form:

Operators  ∼ (d i γμ X ij d j ) (H † DμH )

flavor structure
∼

Once the EFT flavor structure (the X
ij
 couplings) is specified,  

flavor-viol. and flavor-cons. effects are correlated
☑
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☑ Shifts in Zdd couplings can be implemented as
 contributions from effective operators 
(→ minimal model dep.)

The only operators relevant to the problem are 
of the form:

Operators  ∼ (d i γμ X ij d j ) (H † DμH )

flavor structure
∼

Once the EFT flavor structure (the X
ij
 couplings) is specified,  

flavor-viol. and flavor-cons. effects are correlated

MFV

Partial 
Compositeness

●

●

☑

This can be done within general and motivated frameworks 
such as:

In either case, FV and FC couplings
 will be proportional to 

two universal shifts:
δg

L
  &  δg

Rv2  Z
µ



  

  BR[B
s
 → µµ] as an EWPT: results

☑ One can then compare the limits on δg
L , R

 obtained from Z-peak obs with those obtained from B
s
 → µµ

DG, Isidori, PLB 13

D. Guadagnoli, HDR seminar

MFV or Part. Comp., left-handed shift

fit to 
Zbb obs.

B
s
→µµ w/ 

present 2σ err.

B
s
→µµ w/ 

10% err.
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☑ One can then compare the limits on δg
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 obtained from Z-peak obs with those obtained from B
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 → µµ exp error

with ~ 10% 
B
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 → µµ error

∣δ g L∣
MFV or PC < 2.3×10−3 ∣δ gR∣

PC < 1.6×10−4

∣δ g L∣
MFV or PC < 4.6×10−4 ∣δ gR∣

PC < 3.3×10−5
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MFV or Part. Comp., left-handed shift

fit to 
Zbb obs.

B
s
→µµ w/ 

present 2σ err.

B
s
→µµ w/ 

10% err.

Part. Comp., right-handed shift

B
s
→µµ w/

present 2σ err.
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Hadronic matrix elements•

ϵ
K
 depends on |V

cb
|4 : knowledge of V
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 of utmost importance: Belle II•
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B
s
 → µµ  and related decays☑

Error will always be dominated by exp one.•

More B
s
 → µµ statistics: time-dependent measurement.•

•

Able to potentially probe even CP violation in B
s
 → µµ  [De Bruyn et al., PRL 12] 

Substantial progress can be expected in the years to come in all of the discussed topics.

Substantial progress on B
K
  (and even on K → ππ matrix elements!)

knowledge of the CKM angle γ (one of the least known CKM parameters)
crucial to ϵ

K 
:  LHCb and its upgrade

Focus on B
d
 → µµ and B

s
 → τ τ•

Calculations of long-dist. contributions to 
K
 attempted in lattice QCD.
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