From Gribov copies to the mass of gluon

Andréas Tresmontant

Astroparticules et Cosmologie (APC) Laboratoire de Physique Théorique de la Matière Condensée (LPTMC)

December, 2014

Strong interaction and color degrees of freedom

- Hadrons (proton,...) made of quarks (∼ electrons)
- Intermediate bosons: Gluons (∼ photons)
- Gluons and quarks carry color charge (∼ electric charge)
- Quantum chromodynamic (QCD) describes their interactions

Confinement

No colored states seen in nature \Rightarrow Physical states are colorless bound states.

- ullet Confinement is a large scale property o Infra-red (IR) regime
- Dynamic of Gluons is believed to be responsible of the confinement

Study simpler case of pure Gluon-dynamic = Yang-Mills (YM) theories

Yang-Mills (YM) theories and non-abelian gauge symmetry

YM Lagrangian:
$$\mathcal{L}_{YM}\left[A_{\mu}(x),g\right],$$

$$A_{\mu}(x) \text{ Gluon (matrix) field,} \quad g \text{ coupling constant}$$

Describes massless self interacting Gluons.

• Presents Gauge symmetry:

$$\begin{array}{ccc} A_{\mu}(x) \rightarrow A^{U}_{\mu}(x) & = & U(x)A_{\mu}(x)U^{\dagger}(x) + \frac{i}{g}U(x)\partial_{\mu}U^{\dagger}(x) \\ & U(x) & , & \text{a local element of } SU(N_{c}) \end{array}$$

 \bullet Physical observables are gauge-invariant: $\mathcal{O}_{phys}\left[A_{\mu}\right]=\mathcal{O}_{phys}\left[A_{\mu}^{U}\right]$

Gauge fixing

- Need to fix the gauge in order to quantize the theory:
 - $\mbox{\bf @ gauge orbit }\left\{A_{\mu}^{U}\right\}_{U}\!\!:$ Set of field configurations linked by a gauge transformation
 - choose a gauge : select one representative per gauge orbit with additional constrain

e.g.
$$\partial_{\mu}A^{U}_{\mu}=0$$

3 gauge-fixing procedure Include this condition in the initial Lagrangian: $\mathcal{L}_{YM} \to \mathcal{L}_{YM} + \mathcal{L}_{GF}$ (Faddeev-Popov (FP) procedure)

Perturbation theory and confinement

Compute quantities in order to probe the IR physic and features of confinement.

Building blocks are Green functions (correlation functions) e.g. propagator: $\left\langle A_{\mu}^a(x)A_{\nu}^b(y)\right\rangle$

Standard analytic technique is perturbation theory: expansion in power of the coupling constant g, Feynman diagrams machinery,...

Non-abelian gauge symmetry and perturbation theory

Non-abelian gauge symmetry implies that:

- coupling constant vanishes at high energy, asymptotic freedom
- 2 coupling constant diverges at finite energy, Landau pole in the IR

Confinement

It is believed that confinement is a non-perturbative feature of YM theories.

Need non-perturbative techniques, e.g. lattice simulations.

(gauge-fixed) Lattice simulations

$$\left\langle A_{\mu}^{a} A_{\nu}^{b} \right\rangle(p) = G(p) \left(\delta_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^{2}}\right) \delta^{ab}$$

Lattice simulations in the Landau gauge: $\partial_{\mu}A_{\mu}=0$ were performed

FIGURE: Gluon propagator. Bleu: lattice simulations

Propagator is not divergent at zero momenta → massive gluon

Gribov copies

- gauge orbit $\left\{A_{\mu}^{U}\right\}_{U}$: Set of field configurations linked by a gauge transformation
- choose a gauge : select one representative per gauge orbit with additional constrain

e.g.
$$\partial_{\mu}A^{U}_{\mu}=0$$

Gribov copies

• But : Infinitely many U that satisfy $\partial_{\mu}A^{U}_{\mu}=0$ \to Gribov copies

Gribov copies not taken into account in analytical gauge-fixing procedure!

- Assumed to be irrelevant in the UV
- Influence for the IR physics?

How consistently take into account Gribov copies?

- "standard" procedure (pint point a copy):
 - analytic: Gribov-Zwanziger proposal \rightarrow not enough!
 - \bullet Lattice simulations: use numerical algorithms \to non tractable analytically

- Serreau-Tissier proposal:
 - take into account all the Gribov copies
 - averaging over them in defining vaccum expectation values
 - lift their degeneracy in the averaging procedure

Lifting the Gribov ambiguity

ightarrow new gauge fixing Lagrangian \mathcal{L}_{GF}' different from the one obtained through the FP procedure.

NEW PROPERTIES OF THE SUCH AS GAUGE FIXED YM THEORIES

 $\textbf{ Massive Gluons: } \mathcal{L}_{m^2} \in \mathcal{L}_{GF}^{'} \rightarrow \textbf{Gluons mass appears as a consequence of Gribov copies}$

Presents good theoretical properties

- Computations of physical observables are those of standard YM
- ullet Infra-red safe trajectories (no Landau pole) o IR physics accessible through perturbation theory
- Renormalizable
- Theory remains assymptotically free

First results 1

Computed all the propagators and renormalization group (RG) trajectories of the parameter at one-loop order.

- check of the proof of renormalizability
- very good agreement with lattice simulation in the Landau gauge

FIGURE: Gluon propagator. Red: perturbative calculations Bleu: lattice simulations

IR-safe RG trajectories in different gauge

FIGURE: RG flow of the coupling constant in different gauges indexed by ξ

First results 2

Generation of a mass gap.

Massive gluon

FIGURE: Gluon propagator

Massive ghosts

FIGURE: Ghost propagator

Outlook

CONCLUSION

- Gauges where gluon are massive
- IR Yang-Mills physics can be probed perturbatively!

UP TO NOW

- Prove the Renormalizability, asymptotic freedom is conserved, gluon mass vanishes in the UV
- 2 Computations of the propagators
- 3 Study of the infra-red safe trajectories

FUTURE

- Computations of physical observables
- 2 Link between Gribov copies and confinement?
- Non-zero temperature, confining-deconfining phase transition (already done)

Boum 1

average over Gribov copies

$$\langle \mathcal{O}[A] \rangle = \frac{\int \mathcal{D} \eta \mathcal{P}[\eta] \sum_{i} \mathcal{O}[A^{U_{i}}] s(i) e^{-\beta_{0} \mathcal{H}[A, \eta, U_{i}]}}{\int \mathcal{D} \eta \mathcal{P}[\eta] \sum_{i} s(i) e^{-\beta_{0} \mathcal{H}[A, \eta, U_{i}]}},$$

average over YM weight

$$\overline{\langle \mathcal{O}[A] \rangle} = \frac{\int \mathcal{D}A \, \langle \mathcal{O}[A] \rangle \, e^{-S_{\rm YM}[A]}}{\int \mathcal{D}A \, e^{-S_{\rm YM}[A]}}.$$

Boum 2

$$\mathcal{L} = \frac{1}{4} \left(F_{\mu\nu}^a \right)^2 + \partial_{\mu} \bar{c}^a D_{\mu} c^a + \beta_0 \left(\frac{1}{2} (A_{\mu}^a)^2 + \xi_0 \bar{c}^a c^a \right) + i h^a \partial_{\mu} A_{\mu}^a$$

$$+ \xi_0 \left[\frac{(h^a)^2}{2} - \frac{g_0}{2} f^{abc} i h^a \bar{c}^b c^c - \frac{g_0^2}{4} \left(f^{abc} \bar{c}^b c^c \right)^2 \right]$$

$$+ \underbrace{\frac{1}{g_0^2} \sum_{k=2}^n \int_{\underline{\theta}_k} \operatorname{tr} \left\{ D_{\mu} \mathcal{V}_k^{\dagger} D_{\mu} \mathcal{V}_k + \frac{\xi_0}{2} g^{MN} \partial_N \mathcal{V}_k^{\dagger} \partial_M \mathcal{V}_k \right\}}_{\mathcal{L}_{SUSY}}.$$

with

$$\mathcal{V}(x,\theta,\bar{\theta}) = \exp\left\{ig_0\left(\bar{\theta}c + \bar{c}\theta + \bar{\theta}\theta\hat{h}\right)\right\}U,$$