

Georges Aad (CPPM) JJC2014 - 2014-12-09

> Disclaimer This is a totally biased introduction to the SM I will concentrate on things I know and/or I work ON

ZE GAME

THE BAD REPUTATION

- I will talk for 40 minutes
- Then we will have 5 minutes of questionsFrom both sides !!
 - Priority for people in front of their laptops

ZE USUAL

THE SM (REMINDER)

• Gauge invariance under $SU(3)_{C} \times SU(2)_{L} \times SU(1)_{Y}$

$$\mathcal{L}_{D} = \Psi D \Psi$$

$$\mathcal{L}_{\mathcal{M}} = \frac{1}{2 g} F_{\mu\nu} F^{\mu\nu}$$

Covariant derivative including interaction terms

- The group representation determines the interaction form:
 - Leptons: SU(3) singlets \rightarrow do not interact strongly
 - Quarks: SU(3) triplets \rightarrow interact with gluons

• Parity violation \rightarrow Separation of left and right SU(2) representations:

- Left fermions: SU(2) doublets \rightarrow interact weakly
- Right fermions: SU(2) singlets \rightarrow do not interact with the W boson
- No mass terms for fermions

WHY THE HIGGS

ZE PAST

THE VERY NEAR PAST

Yesterday night ... I'm tired ... And still only have the historical context ...

> So I decide to steal it from C. Ochando (JJC 2012) Thanks Christophe

1961: electroweak unification SU(2)xU(1) (Glashow)

> 1964: Quark Model (u, d, s) (Gell-Mann, Zweig)

1967: « A model of leptons » (Weinberg, Salam)

1972: 3 generations of quarks ! (Kobayashi, Maskawa)

1974: Charm Quark (J/ψ: Richter, Ting) 1973: Discovery of Neutral Current (Gargamelle, CERN)

1975: The Standard Model, a quantum field theory based on the local gauge invariance SU(3)_CxSU(2)_LxU(1)_Y was in place

A few remaining things at that time:

- Observed the vector bosons
- Reveal the third family
- + origin of family, grand unification, etc...

1962: Neutrino µ (Lederman, Schwartz, Steinberger)

1964: BEH mechanism

1970: GIM mechanism (need a fourth quark!)

> 1973: Asymptotic Freedom (Politzer, Gross, Wilczek)

> > 1975: Tau Lepton (Perl)

1961: electroweak unification SU(2)xU(1) (Glashow)

> 1964: Quark Model (u, d, s) (Gell-Mann, Zweig)

1967: « A model of leptons » (Weinberg, Salam)

1972: 3 generations of quarks ! (Kobayashi, Maskawa)

1974: Charm Quark (J/ψ: Richter, Ting)

1977: Quark Bottom (Y) 1973: Discovery of Neutral Current (Gargamelle, CERN)

1983 Découverte des Bosons Z & W – UA1 UA2 CERN SppS (ppbar, sqrt(s)=540 GeV)

ECFA meeting in Lausanne – 1984: Fondations pour le Large Hadron Collider

LHC Workshop in Aachen – 1989: Fondations pour les expériences LHC

... LEP, SLC, Tevatron, HERA, b-factory

1962: Neutrino µ (Lederman, Schwartz, Steinberger)

1964: BEH mechanism

1970: GIM mechanism

1973: Asymptotic Freedom (Politzer, Gross, Wilczek)

> 1975: Tau Lepton (Perl)

> > Tunnel du SSC en chantier: 1987-1993 (87 km, 40 TeV)

ZE INSTRUMENTS ONLY THE CURRENT ONES

THE LHC

PP collisions at 14 TeV (design energy)

THE LHC

Very successful run at 7 (8) TeV in 2011 (2012)

Restart in 2015 at 13(ich) TeV

Non-specialized detectors: broad range of physics Same concept, different technologies

THE DIRTY BOOM

Protons not elementary particles Mostly gluon-gluon collisions

IT IS ACTUALLY DIRTIER

THE DETECTION

THE HARDER DETECTION

We do not detect quarks/gluons We detect jets

THE HARDER DETECTION

We do not detect quarks/gluons We detect jets

We can identify b-jets B-hadrons fly before decaying

THE HARDER DETECTION

We do not detect quarks/gluons We detect jets

We can identify b-jets B-hadrons fly before decaying

taus decay to hadrons and form jets Usually narrower jets with less tracks

TRIGGER

Simon's talk

Vary fast treatment to identify potentially interesting events Uses hardware then software stages Reduce the trigger rate to O(1KHz)

Mostly events with leptons/photons Or objects at very high energy

Yesterday night I started to believe in Neural Networks

I want to share my experience with you

The raw data

The raw data → Trained Neural Network

The raw data in the Trained Neural Network in The NN output

The raw data in the Trained Neural Network in The NN output

No not him THE BOSON

ZE HIGGS

THE HIGGS DISCOVERY

July 2012 at ICHEP

0σ 1σ

2σ

3σ

4σ

5σ

6σ

THE NOBEL PRIZE

Some experimentalists were not happy!!

Englert and Higgs got the Physics Nobel Prize in 2013

THE LUCKY NAME

And here it is in the PDG J = 0

In the following H^0 refers to the signal that has been discovered in the Higgs searches. Whereas the observed signal is labeled as a spin 0 particle and is called a Higgs Boson, the detailed properties of H^0 and its role in the context of electroweak symmetry breaking need to be further clarified. These issues are addressed by the measurements listed below.

Concerning mass limits and cross section limits that have been obtained in the searches for neutral and charged Higgs bosons, see the sections "Searches for Neutral Higgs Bosons" and "Searches for Charged Higgs Bosons (H^{\pm} and $H^{\pm\pm}$)", respectively.

Life is not always fair!

Thanks to my grand-grand parents

H⁰ MASS

 H^0

A combination of the results from ATLAS and CMS, where a recent unpublished result from CMS is used, yields an average value of 125.6 ± 0.3 GeV, see the review on "Status of Higgs Boson Physics."

THE HIGGS (125GEV) AT 8TEV LHC

The Higgs couples to the mass

THE HIGGS DETECTION CHANNELS

We used to mainly separate decay channels → Choose best production mode (background considerations) But need/start to separate also production modes

THE HIGGS CHANNELS

THE HIGGS CHANNELS

THE HARD CHANNELS Mohamad's talk $\rightarrow \tau \tau$ Events / bin 10_3 10⁴ ⊨ Background (µ=1.4) Background (µ=0) Mainly VBF H(125)→ττ (μ=1.4) production *H*(125)→ττ (μ=1) 10² , w, z , w, z , w, z Η→ττ 10 **ATLAS** Preliminary $L dt = 20.3 \text{ fb}^{-1}$ $\sqrt{s} = 8 \text{ TeV}$ -3 -2 -1 0 log(S / B)ATLAS : 4.1σ observed CMS : 3.2σ observed

CMS : 2.1σ observed

THE CHANNEL THAT I LOVE

Royer's talk

THE VERY HARD CHANNELS

ZE NOW

THE HIGGS PROPERTIES

It pretty much looks like a $J^P=0^+$

THE "WHAT WE CAN TEST NOW"

- Current data can't constrain all parameters simultaneously
- We have to chose what we test
 - Leave only few parameters free in the fit
- What we test:
 - Custodial symmetry (W vs Z)
 - Fermions(Yukawa) vs Bosons (EW)
 - Lepton vs quarks
 - Up-type vs down-type fermions
 - BSM in the loop
 - Decay to invisible new particles

THE IMPRESSIVE SM

THE IMPRESSIVE SM

Standard Model Production Cross Section Measurements Status: July 2014

It is not all about the Higgs Many many other measurements

THE FUNDAMENTALS (WILL GET BACK TO THIS)

Top mass: experimental precision reaching theory uncertainties

Mass of the W Boson

OTHER IMPORTANT MEASUREMENTS

Well this will be discussed in details in the BSM session But just to put things into perspective

LIMITS

LIMITS LIMITS

53

"Only a selection of the auxiliatie maps limits on new idates or phenomena is shown. All limits posted are observed minute for theoretical signal cross sector anomhanity

54

"Only a selection of the assiltable mass limits on new states or phenomena is shown. All limits outsed are observed mixes for theoretical signal once section encentarity

ZE FUTURE

THE LHC @13 TEV

THE HIGGS @LHC RUN II

- 1. Access to $H \rightarrow bb$ (largest BR)
- 2. Access to ttH (largest coupling)
- 3. Separate individual production channels
- 4. Combine with other SM measurements in the electroweak sector

5. ...

Also confirm pure $J^P=0^+$ State And better precision on the mass

ELECTROWEAK TESTS

W, top and Higgs masses (and other parameters) related in the SM (quantum corrections)

Fits done in the past to indirectly determine the top and Higgs mass

Now can be used to test the internal consistency of the SM

- Higgs mass precision not so important
- top mass precision OK
- W mass very important
 - ➢ Should go to < 10 MeV at LHC</p>

ZE CONCLUSION

THE CONCLUSION

Well, do I really need to?!?

THE SELF COUPLINGS

