Tagging jets with double B-hadron using multiple secondary vertices

Royer Edson Ticse Torres

CPPM ATLAS Group

Journées Jeunes Chercheurs 2014 December 10, 2014

Higgs search & LHC

Higgs searches

- Observed in: H \rightarrow yy , H \rightarrow ZZ \rightarrow 4I, H \rightarrow WW \rightarrow IvIv, H \rightarrow TT consistent with SM Higgs

- Precise measurement of mass, spin / CP, couplings is very important to investigate for possible deviations from the SM.

LHC Run2 (2015)

- Increase center of mass energy to 13TeV, high luminosity $\sim 10^{34}$ cm⁻²s⁻¹ and 25 ns bunch spacing

The ttH channel is the only way to directly constrain the top Yukawa coupling at the LHC

10

Cross section ratios: 13 TeV / 8 TeV

Minimum bias

t (s-channel) t (t-channel)

A(0.5 TeV, ggF+bbA)

stop pair (0.7 TeV)

H (ggF)

H (VBF)

WH

tt

tt7

ttH

W(ln)

Z(ll)

77

1.2

1.6

1.7

2.0

2.2

2.5

23

24

2.9

3.3

3.6

3.9

4 0

100

ATLAS detector

One of the most complex scientific instruments ever built !

IBL

Tracking and vertexing performance are expected to be greatly improved

> -very significant improvements in b-tagging performance with **IBL**:

b tagger	Without IBL	With IBL	Ratio
IP3D	83 ± 1.5	147 ± 3.4	1.8
IP3D+SV1	339 ± 12	655 ± 32	1.9

IBL

ttH motivation

- Top quark is the most stronglycoupled SM particle(Y_t ≈ 1)
- Indirect constrain on the top-Higgs

Yukawa coupling Y_t

-Current measurements of Higgs boson productions via gluon fusion are consistent with SM within experimental uncertainties.

Direct measurement of Y_t in ttH

production

- A measurement of the rate of ttH production provides a direct test of the coupling.

- Observation of a significant deviation in the ttH production rate would be an indirect indication of unknown phenomena. e.g. several new physics scenarios predict the existence of heavy top-quark partners, that would decay into a top quark and a Higgs boson

$$\mathbf{Y}_{t} = \sqrt{2} \ \mathrm{m}_{t}/\mathrm{v}$$

$$g_{tH} = m_t / v$$

where
$$v = (\sqrt{2}G_F)^{-1/2} \approx 246 \text{GeV}$$

ttH production and decay

- 4 **Production**
 - σ (ttH) increase with the center of mass energy
 - ≈2600 events in 20.3 fb-1 at 8TeV

Main background .

- tt+X

					00000			
√s (TeV)		7	8	14	g			
ttH(m _H =125GeV)(fb)		86	130	611	L			
tt (pb)		177	253	950				
Dominant background for ttH(bb) 2000 times larger than signal								
Deacy mode	В		-					
H→bb	0.58	-	—► Do	minant mo	ode but large background			
Н→үү	2.3 x	10-3	→ tiny	y but has c	elean resonant signature			
H→WW,ZZ,tt	0.3	-	→ mu	lti-lepton	final states			

on+jets channel

ttH results Run 1

• Observed and expected 95% CL upper limits on the ttH production cross section times BR(H \rightarrow bb) and BR(H $\rightarrow \gamma\gamma$)

no significant excess of events above the background expectation is found in Run1

ttH(bb) main background

- Irreducible background:
 tt+bb, give the same final state signature as the signal
- Reducible background:
 tt+cc and tt+light jets

b-tagging plays crucially important role!.

Physics objects used in analysis

Jet: narrow cone of hadrons and other particles produced by the hadronization of a quark or gluon.

b-tagging: Identify a jet as originated from a b-quark

- One of the most powerful probe in energy frontier.

Higgs physics, SUSY, top physics, etc.

 Other backgrounds are: ttZ(Zbb)
 W/Z +jets
 Dibosons
 Singletop

Jets are reconstructed from clusters built from energy deposits in the calorimeters, using the anti-kt algorithm with a radius parameter R = 0.4.

Tagging jets with double B-hadron

Motivation: ttH(bb)

tt+bb, hard to control, large theory uncertainties. e.g.

 $g \rightarrow bb$ at small angle might be reconstructed as one bb-jet

- Gluon splitting to bb not perfectly modeled by different MC
- Need a way to control in data
 - bb-jet tagger

 double quasi-collinear g → bb (swithed off inPS->black line)
 contribution very relevant for region m_{bb} > 100GeV

https://indico.cern.ch/event/346303/contribution/1/material/slides/0.pdf

 Close-by double b-hadrons production is the main background for boosted analysis

b-tagging

Identification based on the b-jet features listed below:

light-jet
 jet originates from light quarks(u,
 d, s) and gluons.
 - absence of SV or fakes vertices with
 lower mass

- b-jet
 - B hadron decay lifetime: ст~490µm
 - has secondary vertex(SV) of B hadron decay
 - has high track multiplicity at SV
 - has higher SV mass coming from B hadron mass, $m_B \sim 5 GeV$
 - contain tracks which are displaced from primary vertex. Tracks with large impact parameter(IP)

• c-jet

- has very similar but weaker features compared to b-jet
- has SV of C-hadron decay lifetime: cτ~310μm
- has SV mass from C-hadron:

 $m_c \sim 2 GeV$

- Current b-tagging algorithms do not distinguish between b-jets and bb-jets.
- We use multi secondary vertex finder(MSV) to reconstruct multiple vertices within anti-kt R=0.4 jets, with pT>20GeV and |η|<2.5
- MSV algorithm is based on Kalman filtering method for vertex position estimation inside the jet.

MSV purity

Purity =

Purity of the tracks in the vertices

 Several studies have been done to understand vertexing performance and ambiguous cases(e.g. B/C separation, fakes vertices) in MSV.

Multi-vertexing in bb-jets

Fraction of bb-jets with:

1 reco vertex, exactly 2 reco vertices, at least 2 reco vertices

around 47% of the bb-jets with at least 2 reco vertices

 Eff = <u># bb-jets with nvtx≥2</u> # bb-jets

> 110≤pT<200 GeV 60≤pT<110 GeV 20<pT<60 GeV

efficiency increase with the pT

Multivariate Analysis

with Boosted Decision Trees

We use a boosted decision trees(BDT) to separate bb-jets from different flavours using multi-vertexing properties.

- The strategy to identify double b hadrons in jet is to exploit properties of multiple vertices inside the jet using a multivariate analysis.
- Boosted Decision Trees exploits the differences between jets containing two b hadrons and the single b jets
- Increase the discrimination power between jet with two b hadrons from single b jets, c jets and light jets.

- Signal: bb-jets
 Background: mixture of jet flavours(b, c, light and cc-jets)
- Optimized for b-jets rejection while keep light jets rejection at a good rate.
- Two versions:

MultiSVbb1 (12 variables)

- Use only vertex properties as input variables

MultiSVbb2 (14 variables)

- Include additional topological variables

Require at least 2 MSV vertices

Discriminating variables:

Input variables to train the BDT:

Total mass of vertices

total mass for bb-jets is greater than other flavours

Discriminating variables:

Input variables to train the BDT:

 ΔR between the vertex with maximum mass and jet axis

maximum mass vertex in b-jet and c-jets are close to the jet axis

BDT output

- Typically we chose a weight cut and calculate efficiency and rejection for the algorithm
- Performing cut (w_{cut}):
 - bb-jet efficiency $\epsilon_{\rm bb}$
 - b-jet mis-rate ϵ_b or rejection $R_b = 1/\epsilon_b$
 - $p_{\scriptscriptstyle T}$ and η dependence

Distribution of the BDT output

Performance

 Rejection vs bb-jet efficiency to MultiSVbb2

- Typically the working point in b-tagging is 70%, by the requirement of two b (ε_{bb}~ε_b×ε_b) we can use 35% bb-jet efficiency.
- Rejection at 35% of bb-jet efficiency:

	MV1	MultiSVbb1	MultiSVbb2
b-jets	3	18	23
c-jets	40	200	250
I-jets	10000	2400	3200
cc-jets	40	35	38

 ~7 times better b-jet rejection compare to MV1(default b-tagging algorithm)

Performance

bb-tagger performance with the globally fixed efficiency at 35%

The efficiency increase with pt, in high pt we have more good tracks consequently better secondary vertex reconstruction, and the b-rejection is the opposite, it fall downs as pt increase

- Studied multi-vertexing algorithm(MSV): vertexing performance and properties.
- I developed two versions of double b-hadron tagger(MultiSVbb1 and MultiSVbb2) using multi-vertexing properties.
 - Much better b/bb separation than the default algorithm(MV1)
 - Included in the Atlas software to run2
- Improvements in performance are expected with the IBL. We need calibrate the taggers with data

Plans:

- ttH(bb) analysis,
 - use the tagger to constrain ttbb.