

Track classification in hadronic tau decay and photon conversion tracks finding for H->tautau channel

Mohamad Kassem Ayoub, Luc Poggioli

Table of contents

- ATLAS detector
- Introduction on Higgs to tau tau decay channel
- Reconstruction of hadronic tau decay
- Photon conversion in the hadronic tau decay
- Tagging of photon conversion tracks
 - ➤ Available conversion tagging algorithms
 - ➤ Performance of each tagger on 8 TeV MC
 - > Performance on 13 TeV MC
- Summary

ATLAS detector

- Overall length = 42 m, diameter = 22 m, weight = 7000 tons
- Components were constructed in over 35 countries around the world

Inner detector

- r =1.15 m, length = 7 m
- 2T solenoidale magnetic field
- Pixel detector: 3 layers with high granularity
- SCT (semiconductor tracker): 4 layers of silicon microstrip detectors
- TRT (Transition radiation tracker): 36 layers with xenon gas between

Particle detection principle

$H \rightarrow \tau^+\tau^-$ channel (1)

- Coupling of the new discovered particle to fermions:
 - 1. Quarks:
 - bbar: No evidence
 - ttbar: Indirect evidence from gg fusion through top loop

- μμbar: Low statistic
- H→ττ has one of the largest branching ratios for low mass Higgs

Branching ratios at 125 GeV:						
	bb:	<i>57.7</i> %	ZZ:	2.6%		
Ι.	WW:	21.5%	γγ=	0.23 %		
	ττ:	6.3%				

$H \rightarrow \tau^+\tau^-$ channel (2)

Search strategy:

- ➤ Gluon (ggF) fusion is the dominant Higgs production mecanism
- ➤ Background can be reduced by requiring presence of additional forward jets or high pT tau-tau system:
 - Vector boson fusion with 2 additional jets
 - Boosted Higgs category (p_T^H >100GeV)

Decay modes

$H \rightarrow \tau^+\tau^-$ channel (3)

- Analysis channel at LAL: τ_{lep} τ_{had}
- Background:
 - ightharpoonup Z-> $\tau\tau$: irreducible background (estimated using embedding technique)
 - Fakes: QCD, W+jet, Z+jet (Fake factor method)
 - > Others: Z->II, WW, ZZ, top ...
- Analysis method: Boosted decision tree (cut based analysis has been also done)
- Mass calculation method: "MMC" (missing mass calculator)
- Final significance results: 4.1σ (observed), 3.2σ (expected)

Hadronic tau decay

- Tau is the only massive lepton to decay hadronically
- 65 % of tau decay is hadronic
 - > 1-prong (50%): 1 charged pions in the final state
 - > 3-prong (15%): 3 charged pions in the final state
 - > In ~41% of cases, at least 1 neutral pion

- Reconstruction of hadronic tau is a very important issue
 - > Improve identification of hadronic tau against huge QCD background

 \triangleright Improve the reconstruction of $\tau\tau$ mass invariant

Tau signature

Reconstruction

- Reconstruct charged pion from tracker
- Reconstruct neutral pion from ECAL

Calculate total energy to subtract from ECAL2.

Tau substructure in TauCP group

Current reconstruction efficiency

Conversion tagging analysis

Photon conversion in hadronic tau decay

- We have photons from π^0 decay
- Interactions photon-detector material → e⁺- e⁻ pairs production (photon conversion)
- Additional charged tracks are reconstructed as pions from tau decay

1-prong decay with photon conversion

In run 1: 1prong + 1
electron
=> 2 prong => rejected

• Need photon conversion tagging to avoid misidentification $e-\pi$

Conversion tagging

Conversion taggers in ATLAS software (Athena)

Conversion taggers in ATLAS software

- Test actualy 2 conversion taggers in Athena
 - Single track conversion tagger S.T.T.

(Initiated by "Dimitris varouchas")

- Tag conversions track by track
- Use 3 variables in the inner detector:
 Conversion radius Rconv, nBLayer Hits, TRTHighThresholdRatio
- Combine these variables in a 2 dimension plot and use a simple cut to select conversions

- Tag conversion vertex (double track)
- Enumerate each pair of opposite charged tracks pairs
- Fit a conversion vertex for each pair using tuned parameters

Performance definitions

- The 2 algorithms produce the same type of output (flag per each track)
- Same output => straightforward comparison between 2 taggers
- To examine the performance of each tagger, we define:
 - Efficiency of tagging a conversion track:

$$\mathsf{Eff} = \frac{\mathit{Tracks\ matched\ to\ true\ conversion\ flagged\ by\ the\ tagger}}{\mathit{Total\ tracks\ matched\ to\ true\ conversion}}$$

Mis-identification rate:

$$Fake = \frac{Tracks\ matched\ to\ true\ pion\ (pileup\ or\ UE)flagged\ by\ the\ tagger}{Total\ tracks\ matched\ to\ true\ pions\ (pileup\ or\ UE)}$$

 \triangleright Exclude tracks with $|\eta| > 2$ (TRT acceptance)

General performance

H(125GeV) -> ττ , 8TeV (mc)

	S.T.T.	D.T.T.
Efficiency (1&3 prong) (%)	65 ± 0.8	68 ± 0.8
Efficiency (1 prong) (%)	67 ± 0.85	71.5 ± 0.85
Efficiency (3 prong) (%)	50 ± 2.4	44.5 ± 2.4

The 2 taggers have almost same efficiency

Global fake rate	7.5 ± 0.1	0.5 ± 0.1
Fake rate (true pions) (%)	7 ± 0.1	0.36 ± 0.1
Fake rate (pileup) (%)	4 ± 0.5	0.6 ± 0.5
Fake rate (UE) (%)	13 ± 0.6	2.4 ± 0.6

• Fake rate is clearly higher for S.T.T.

High fake rate

Worked on reducing fake rate (most critical)

	S.T.T.	S.T.T. (Rconv > 40mm)
Efficiency (1 & 3 prong) (%)	65	51
Efficiency (1prong) (%)	67	53
Efficiency (3 prong) (%)	50	40
Globale fake rate(%)	7.5	2
Fake rate (pions) (%)	7	2
Fake rate (PU) (%)	4	0.17
Fake rate (UE) (%)	13	2.3

Reduce fake by factor 2 using |Rconv| and factor 4 using Rconv (with ~10% loss on efficiency)

Can we gain from p_T ?

 \triangleright Almost all conversion tracks has $p_T < 20 \text{ GeV}$

	S.T.T.			D.T.T.	
	Without p _T cut	With p _T cut	With Cut on p _T and Rconv	Without p _T cut	With p _T cut
Efficiency (1&3 prong) (%)	65	62	49	68	66
Efficiency (1 prong) (%)	67	64	50	71.5	69
Efficiency (1 prong) (%)	50	48	38	44.5	43
Global fake rate	7.5	4.7	1	0.5	0.4
Fake rate (true pions) (%)	7	4.2	1	0.36	0.3
Fake rate (pileup) (%)	4	4	0.17	0.6	0.6
Fake rate (UE) (%)	13	12	2.4	44.5	2.4

- p_T cut does not affect mush the performance the D.T.T.
- For S.T.T.: Very small effect on efficiency but reduce ~40% of fake
- Combining p_T and Rconv: (eff=65, fake=7.5) \longrightarrow (eff=49, fake=1)

Results for new ATLAS release (rel19)

- Since octobre 2014
- New framework and new analysis format (xAOD)

Procedure in the new release

Conversion taggers migrated to the new release

Migrate the physics performance test code to run on the new format

- The code has to produce the same results:
 - Conversion tagging efficiency
 - > Fake rate

Performance results for S.T.T.

 Default conversion tagger => run on standard DC14 samples (25Kevents)

mc14_8TeV.147808.PowhegPythia8_AU2CT10_Ztautau.merge.e2372_s1933_s1911_r5591_r5625

Single track tage	ger – release 19	Single track tagger – release 17		
Conversion efficiency (%)	66 ± 1.4	Conversion efficiency (%)	65 ± 0.8	
Fake rate (pions) (%)	5 ± 0.2	Fake rate (pions (%)	7 ± 0.1	
Fake rate (UE) (%)	4 ± 0.8	Fake rate (UE) (%)	13 ± 0.6	
Fake rate (PU) (%)	0%(No pileup in the sample)	Fake rate (PU) (%)	4 ± 0.5	

> Efficiency results are comparable between release 19 (Z->tautau) and release 17 (H->tautau)

Why lower fake rate?

- Plot the variables for the S.T.T. to understand this origin of this difference between the 2 release
 - \triangleright Rconv and p_T show same distributions
 - > TRT of tracks show a slight decrease in release 19

Lower TRT => less tracks tagged as conversion => lower fake rate

Results for D.T.T. in rel 19

D.T.T. In release 19				
Conversion efficiency (%)	65 ± 5			
Fake rate (%)	5 ± 1			

D.T.T. In release 17				
Conversion efficiency (%)	68 ±0.8			
Fake rate (%)	0.36 ±0.1			

- Efficiency is comparable between the 2 release
- the fake is mush higher in release 19
- On going work to understand this behaviour

Results on 13 TeV dataset

Performance for 13 TeV

Start from 13TeV RDO input files to produce the xAOD

mc14_13TeV.147408.PowhegPythia8_AZNLO_Ztautau.recon.RDO.e3059_s1982_s2008_r5787

- Activate the S.T.T. in the reconstruction software
- Run the performance test code on these xAOD

S.T.T. performance (13 TeV)			
Conversion efficiency (%)	81 ± 4.5		
Fake rate (%)	39 ± 2		

Both efficiency and fake rate are very mush higher than for 8TeV case

Why different performance?

Look again on TRT variable and compare between 8 TeV and 13 TeV

TRT is mush higher in 13 TeV case => higher efficiency and fake rate

Performance improvement (13 TeV)

- Use the cuts on pt and Rconv as shown before to reduce the high fake rate
 - > Rconv > 40 mm
 - ➤ pT < 20 GeV</p>

S.T.T. performance (13 TeV)					
Without cuts With cuts					
Conversion efficiency (%)	81 ± 4.5	60 ± 4.5			
Fake rate (%) 39 ± 2 5 ± 2					

S.T.T. Performance (8 TeV)
65 ± 5
5 ± 1

- Very good reduction of fake rate with loss on the efficiency
 - Comparable to 8 TeV performances

conclusion

- Have to finalize the choice of conversion tagger to be used in the tau substructure code
- Stay involved in conversion studies inside TauCP group
 - > Test and optimize the physics performance of taggers for 13 TeV xAOD files
- From now on:
 - Strong involvement in the signal extraction in the H->ττ in lep-had decay mode for run 2
 - ➤ New detector, new LHC conditions, new software, new analysis framework
 - > Extra potential studies
 - \triangleright Optimization of $\tau\tau$ invariant mass

Backup

Double track tagger

Photon Conversion Finder

https://svnweb.cern.ch/trac/atlasoff/browser/Reconstruction/tauRec/branches/tauRec-04-03-12 branch/src/PhotonConversionVertex

> From tracks of a reconstructed tau, enumerate every combination of opposite charged track

P2

Conversion vertices

pairs

- > fit a conversion vertex for each pair using some parameters:
 - Invariant mass of the reconstructed vertex
 - Conversion radius
 - Track pair $\Delta \eta$, Track pair $\Delta \Phi$, Track pair ΔR
- ➤ These parameters are tuned for conversion finding vertices using truth informations
- Tau Conversion Finder

https://svnweb.cern.ch/trac/atlasoff/browser/Reconstruction/tauRec/branches/tauRec-04-03-12-branch/src/TauConversionFinder

- > compares fitted VxCandidate tracks with tau tracks
- > if a track is found which belongs to both subsets
 - track is tagged as conversion track

Outline

In second year PhD in ATLAS group at LAL

- Member of Higgs → ττ group at LAL
- Qualification task just finished
 - > Involved in the tau lepton Combined Performance group
 - ➤ Participate to the improvement of hadronic tau decay reconstruction (photon conversion tracks finding)

Single track tagger(2)

Combine these variable to extract a simple cut discriminating between matched and unmatched tracks

- > Apply a triangle cut discrminating between matched and unmatched tracks
- Initial goal: correct 2 prong bin to 1 prong (about 50% of recovery from 2p to 1 p in true 1 prong bin)
- Now: it is a single track conversion tagger
- It has been implemented and validated in Athena

Single track tagger(1)

 Use 3 variables from the inner detector: nBlayer Hits, Rconv and TRT High threshold ratio

Matched to charged pion track

Not matched to Charged pion track (conversion candidate)

FIG. 4. Schematic illustration of the distance R_{conv} from the beam line to the point where the conversion occurred. Here, d_0 is the impact parameter.

Physical Review D 77, 092001 (2008)

$$R_{conv}^{approx.} = \sqrt{\frac{d_0 \cdot p_T}{0,15B}}$$

Magnetic field in tracker

Framework in release 17 (2014)

- The 2 algorithms produce the same type of output
 - > Flag per each track deciding if it is conversion or not
- The algorithms run on ESD input files
- Implementation:
 - > The conversion information is dumped to the finale D3PD
 - > Produce 2 D3PD's: activate each time one of the conversion taggers
 - > Just change a flag when producing the D3PD to choose one of the 2 taggers
- Examine the performance of each tagger
 - New tool is developed to do truth track matching
 - > It give the true origin of each track: charged pion, conversion, pileup or UE

Procedure in release 19

- Conversion taggers are migrated to new Athena software in release 19
- Performances tested again in the new release
- Test strategy:

=> produce conversion efficiency and mis-identification rate

Test performance code migration

- Physics performance test code has been migrated to run on xAOD files
- The code produce the same performance quantities as release17:
 - Conversion tagging efficiency
 - > Fake rate
- Truth track matching is used also to provide the true origin of each track
- A conversion vector for each tau in the xAOD tau variables
 - > Contain tau tracks tagged as conversion by the tagger in Athena
 - > Use this vector to get the conversion descision for each tau track

CPU time performance (1)

Time performance study done for the taggers

1 k Events	Total running time (min)	Tau Core Builder Time (s)	Average by event (s)	How many calls to the tool
D.T.T.	80.8	1830	1.83 ± 3.56	553655
S.T.T.	55.4	417	0.41 ± 0.26	13753

- D.T.T. Show higher CPU time (~ factor 4)
 - > Because the algorithm take all combination of opposite charge tracks

CPU time performance (2)

- D.T.T. Run over all tau jet without any selection
- Adding tau selection criteria show a good reduction of cpu time
 - ➤ Only ~1% loss on conversion tagging efficiency

1 K events	Total running time (s)	Tau Core Builder Time (s)	Average time by event (s)	How mush time call the tool
D.T.T.	80.8	1830	1.83 ± 3.56	5536655
D.T.T. (With tau selection)	61.3	672	0.67 ± 0.5	107600
D.T.T. (with tau selec. & maxDR=0.4)	59.6	562	0.56 ± 0.42	66497