Search for H→bb in the associated production in ATLAS

Carlo Pandini LPNHE Paris

The Higgs Boson

Standard Model QFT \Rightarrow Gauge Theory \Rightarrow renormalizability + high energy behaviour $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$

Mass Problems: including brute-force masses for fermions and bosons

- ▶ gauge bosons mass terms violate gauge invariance $\Rightarrow \mu^2 B_\mu B^\mu$
- ▶ fermions mass terms break chiral invariance $SU(2)_L \Rightarrow m(\bar{\Phi}_L \Phi_R + \bar{\Phi}_R \Phi_L)$

Scalar Field:
$$\Phi = \begin{pmatrix} \phi^+ \\ \phi_1 + i\phi_2 \end{pmatrix}$$

Scalar Lagrangian term:

$$L_{\Phi} = (D^{\mu}\Phi)^{\dagger}D_{\mu}\Phi - V(\Phi) = (D^{\mu}\Phi)^{\dagger}D_{\mu}\Phi - \mu^{2}\Phi^{\dagger}\Phi - \lambda(\Phi^{\dagger}\Phi)^{2}$$

Vacuum Expectation Value: $v = \langle 0 | \Phi | 0 \rangle$

Multiple choices of vev possible \Rightarrow SSB \Rightarrow Expansion of Φ around the vev

$$\begin{split} \Phi &= \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + \sigma \end{pmatrix} \qquad D_{\mu} \Phi = \left(\partial_{\mu} + ig \frac{\tau^{i}}{2} W_{\mu}^{i} + \frac{ig'}{2} B_{\mu} \right) \Phi \\ L_{\Phi} &+ L_{gauge} = \left(\frac{1}{2} (\partial_{\mu} \sigma) (\partial^{\mu} \sigma) + \mu^{2} \sigma^{2} - \lambda v \sigma^{3} - \frac{\lambda}{4} \sigma^{4} + \right. \\ &+ \left. \left(\frac{gv}{2} \right)^{2} W_{\mu}^{+} W_{-}^{\mu} + \frac{1}{2} \left(\frac{g^{2} + g'^{2}}{4} \right) v^{2} Z_{\mu} Z^{\mu} + \right. \\ &+ \left. \frac{1}{2} g^{2} v W_{\mu}^{+} W_{-}^{\mu} \sigma + \frac{g^{2} v}{2} \frac{1}{2 \cos(\theta_{W})^{2}} + Z_{\mu} Z^{\mu} \sigma + \right. \\ &+ \left. \frac{g^{2}}{4} W_{\mu}^{+} W_{-}^{\mu} \sigma^{2} + \frac{g^{2}}{4} \frac{1}{2 \cos(\theta_{W})} Z_{\mu} Z^{\mu} \sigma^{2} \right) \end{split}$$

Higgs bosonic channels in ATLAS

Higgs bosonic channels in ATLAS

H→WW→lvlv

BR(H→WW)=22% XS=240fb @ 8TeV → 6.1σ

> $H \rightarrow ZZ \rightarrow 4$ BR(H → ZZ)=2.3% XS=2.9fb @ 8TeV ~70 evts → 8.1σ

arXiv:1408.5191, Submitted to PRD

Higgs fermionic channels in ATLAS

NOTE: It's not the branching ratio that limits these searches, but the the complex objects in the final state (→low mH resolution) and the competing background processes

H→bb : motivations

- -> BR(H→bb) = 0.57 @ mH = 125 GeV highest for the SM channels
- -> provides direct evidence of coupling to (down-type) quarks
- -> sensitive to high pT Higgs production (boosted Higgs)
- -> good sensitivity to new physics at LHC
- NOTE: very large BR → can provide good statistics for rare processes SM / SUSY / exotics (i.e. HH production, ...)

(V)H→bb : motivations

However ... the experimental signature of the $H \rightarrow bb$ process is NOT clean —> completely overwhelmed by QCD background

Z boson decay \rightarrow 2 leptons

Z boson decay \rightarrow 2 neutrinos

W boson decay \rightarrow 1 leptons + 1 neutrino

Z boson decay \rightarrow 2 leptons

- Z boson decay \rightarrow 2 neutrinos
- W boson decay \rightarrow 1 leptons + 1 neutrino

Higgs-stralhung

- the Higgs is "radiated" from the Z boson
- kHZZ coupling (proportional to mZ)

Higgs decay → bbar quark pair

Z boson decay →2 leptons

Z boson decay \rightarrow 2 neutrinos

W boson decay →1 leptons + 1 neutrino

Higgs-stralhung

- the Higgs is "radiated" from the Z boson
- kHZZ coupling (proportional to mZ)

Higgs decay \rightarrow bbar quark pair

- Z boson decay →2 leptons
- Z boson decay \rightarrow 2 neutrinos
- W boson decay →1 leptons + 1 neutrino

LO-only

picture

Higgs-stralhung

- the Higgs is "radiated" from the Z boson
- kHZZ coupling (proportional to mZ)

(V)H→bb : what are we (really) looking for ?

(V)H→bb : what are we (really) looking for ?

Z boson candidate (reconstructed from 2 electrons)

(V)H→bb : main SM background processes

Backgrounds: every SM process that can mimic the VH→bb signature

- · 2 jets originate by bottom quarks
- (2 leptons) (0 / 1 lepton + missing energy)

All these processes enter in our phase space and cannot be neglected

- different topologies and kinematics
- resonant & non resonant bkgs

Multijet QCD background

- no MC prediction to rely on
- data driven estimate from CRs
- mostly relevant in the 1 lepton channel

very hard to model properly !

Three lepton channels:

... to find a very tiny signal !

2 regions of transverse momentum of the vector boson V		categories defined counting the numb of jets in the event	l per t	•	
2 regione of transverse		2 "iet-hine":	2 tag TT (SR)		
	VpT < 120GeV	3 jets	2 tag MM (SR)		
	VpT > 120GeV	2 jets	2 tag LL (SR)	(
Analysis Phase Space			1 tag (CR)		

4 "b-tagging" regions: defined by counting the number of jets originate by bottom quark (with different degrees of likelihood)

- 2 "b-jets" → Signal Region SR (we use this region to measure the signal)
- 1 "b-jet" → Control Region SR (used to constrain the bkgs prediction)

Why such a "splitted" phase space?

- different background contribution: the many regions select different kinds of events with different kinematics
- Signal Regions vs Control Regions: different sensitivity and background constraining power

Total: 40-50 analysis regions

(all of them enter in a simultaneous fit to extract the signal and constrain the backgrouns)

B-tagging: Bottom quark → B-jets

80% 70%

B-tagging = label the jet according to the flavour of the parton originating it (already covered in previous talk)

Strongly dependent on the b-tagging performances (we build our Higgs candidate from b-jets!)

MV1c algorithm = output a weight for each jet according to the likelihood of it being a b-jet (~ MVA-like) [3 working points]

first Jet MV1C(j₁)

50%

Different backgrounds and signal composition in each bin

Event Selection → suppress the backgrounds & slice the phase space

Variable	Multivariate analysis		
	common selection		
$p_{\rm T}^V$ (GeV)	0-120	> 120	
$\Delta R(\text{jet}_1, \text{jet}_2)$	$> 0.7 \ (p_{\rm T}^V < 200 \ { m GeV})$		
	0 lep	ton selection	
$p_{\mathrm{T}}^{\mathrm{miss}}$ (GeV)		> 30	
$\Delta \phi({m E}_{ m T}^{ m miss},{m p}_{ m T}^{ m miss})$		$< \pi/2$	
$\min[\Delta \phi(E_T^{miss}, jet)]$	NII	> 1.5	
$\Delta \phi(E_{T}^{miss}, dijet)$		> 2.8	
$\sum_{i=1}^{N_{\text{jet}}=2(3)} p_{\text{T}}^{\text{jet}_i}$ (GeV)		> 120 (150)	
		-	
	1 lepton selection		
$m_{\rm T}^W$ (GeV)	_		
H_T (GeV)	> 180	-	
$E_{\rm T}^{\rm miss}$ (GeV)	_	> 20	
	2 lepton selection		
$m_{\ell\ell}$ (GeV)	71-121		
$E_{\rm T}^{\rm miss}$ (GeV)	_		

Common selection (0,1,2 lepton channel)

pTV slicing (2 pTV regions) jet separation for non-boosted events

Event Selection → suppress the backgrounds & slice the phase space

Variable	Multivariate analysis		
	common selection		
$p_{\rm T}^V$ (GeV)	0-120	> 120	
$\Delta R(\text{jet}_1, \text{jet}_2)$	> 0.7 ($p_{\rm T}^V < 200 \text{ GeV}$)	
	0 lepton selection		
$p_{\mathrm{T}}^{\mathrm{miss}}$ (GeV)		> 30	
$\Delta \phi({m E}_{ m T}^{ m miss},{m p}_{ m T}^{ m miss})$		$< \pi/2$	
$\min[\Delta \phi(E_T^{miss}, jet)]$	NII	> 1.5	
$\Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{dijet})$		> 2.8	
$\sum_{i=1}^{N_{\text{jet}}=2(3)} p_{\text{T}}^{\text{jet}_i}$ (GeV)		> 120 (150)	
		_	
	1 lep	ton selection	
$m_{\rm T}^W$ (GeV)		-	
$H_{\rm T}$ (GeV)	> 180	-	
$E_{\rm T}^{\rm miss}$ (GeV)		> 20	
	2 lepton selection		
$m_{\ell\ell}$ (GeV)	71-121		
$E_{\rm T}^{\rm miss}$ (GeV)			

Common selection (0,1,2 lepton channel):

pTV slicing (2 pTV regions)

jet separation reduces V+jets background

0 Lepton ($Z \rightarrow$ neutrinos) selection:

large missing transverse energy (> 100 GeV)

angular cuts to suppress multijet background (e.g. neutrino system back-to back wrt di-jet system)

Event Selection → suppress the backgrounds & slice the phase space

Variable	Multivariate analysis	
	common selection	
$p_{\rm T}^V$ (GeV)	0-120	> 120
$\Delta R(\text{jet}_1, \text{jet}_2)$	> 0.7 ($p_{\rm T}^V < 200 \text{ GeV}$
	0 lep	ton selection
$p_{\mathrm{T}}^{\mathrm{miss}}$ (GeV)		> 30
$\Delta \phi(oldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}},oldsymbol{p}_{\mathrm{T}}^{\mathrm{miss}})$		$< \pi/2$
$\min[\Delta \phi(E_{T}^{miss}, jet)]$	NII	> 1.5
$\Delta \phi(E_T^{miss}, dijet)$	NO	> 2.8
$\sum_{i=1}^{N_{ m jet}=2(3)} p_{ m T}^{{ m jet}_i}$ (GeV)		> 120 (150)
an a		-
	1 lep	ton selection
$m_{\rm T}^W$ (GeV)		-
$H_{\rm T}$ (GeV)	> 180	-
$E_{\rm T}^{\rm miss}$ (GeV)		> 20
	2 lepton selection	
$m_{\ell\ell}$ (GeV)	71-121	
$E_{\mathrm{T}}^{\mathrm{miss}}$ (GeV)		

Common selection (0,1,2 lepton channel):

pTV slicing (2 pTV regions)

jet separation reduces V+jets background

0 Lepton (Z \rightarrow neutrinos) selection:

large missing transverse energy (> 100 GeV)

angular cuts to suppress multijet background (e.g. neutrino system back-to back wrt di-jet system)

1 Lepton (W \rightarrow lepton+neutrino) selection:

HT cut to suppress multi jet background (sum of the transverse energy of all the objects)

note: only muon channel used for pTV < 120 GeV (electron channel dominated by MJ background)

Event Selection → suppress the backgrounds & slice the phase space

Variable	Multivariate analysis	
	common selection	
$p_{\rm T}^V$ (GeV)	0-120	> 120
$\Delta R(\text{jet}_1, \text{jet}_2)$	$> 0.7 \ (p_{\rm T}^V < 200 \ { m GeV})$	
	0 lep	ton selection
$p_{\mathrm{T}}^{\mathrm{miss}}$ (GeV)		> 30
$\Delta \phi({m E}_{ m T}^{ m miss},{m p}_{ m T}^{ m miss})$		$< \pi/2$
$\min[\Delta \phi(\boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jet})]$	NII	> 1.5
$\Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{dijet})$	NU	> 2.8
$\sum_{i=1}^{N_{\text{jet}}=2(3)} p_{\text{T}}^{\text{jet}_i}$ (GeV)		> 120 (150)
		-
	1 lepton selection	
$m_{\rm T}^W$ (GeV)		-
$H_{\rm T}$ (GeV)	> 180	-
$E_{\rm T}^{\rm miss}$ (GeV)	_	> 20
ан таланын кооноо тики таларын кооноо кандан талар жана талар талар таларын таларын таларын таларын таларын та 	2 lepton selection	
$m_{\ell\ell}$ (GeV)	71-121	
$E_{\rm T}^{\rm miss}$ (GeV)		

Common selection (0,1,2 lepton channel):

pTV slicing (2 pTV regions)

jet separation reduces V+jets background

0 Lepton (Z \rightarrow neutrinos) selection:

large missing transverse energy (> 100 GeV)

angular cuts to suppress multijet background (e.g. neutrino system back-to back wrt di-jet system)

1 Lepton (W \rightarrow lepton+neutrino) selection:

HT cut to suppress multi jet background (sum of the transverse energy of all the objects)

2 Lepton (Z \rightarrow lepton+lepton) selection:

di-lepton invariant mass selects the Z peak

(tiny) signal vs (very large) backgrounds: 0 Leptons

(tiny) signal vs (very large) backgrounds: 1 Lepton

(tiny) signal vs (very large) backgrounds: 2 Lepton

MVA Analysis: Boosted Decision Trees

BDT training variables (exploit discriminating power coming from signal topologies)

Variable	0-Lepton	1-Lepton	2-Lepton	
p_{T}^{V}		×	×	
$E_{\mathrm{T}}^{\mathrm{miss}}$	×	×	×	
$p_{\mathrm{T}}^{b_1}$	×	×	×	
$p_{\mathrm{T}}^{b_2}$	×	×	×	
m_{bb}	×	×	×	
$\Delta R(b_1,b_2)$	×	×	×	
$ \Delta\eta(b_1,b_2) $	×		×	
$\Delta \phi(V,bb)$	×	×	×	
$ \Delta\eta(V,bb) $			×	
H_{T}	×			
$\min[\Delta \phi(\ell,b)]$		×		
$m_{ m T}^W$		×		
$m_{\ell\ell}$			×	
$MV1c(b_1)$	×	×	×	
$MV1c(b_2)$	×	×	×	
	Only in 3-jet events			
$p_{\mathrm{T}}^{\mathrm{jet}_3}$	×	×	×	
m_{bbj}	×	×	×	

As coherent as possible across lepton channels and high/low pTV regions

MVA training

- starting from a minimal set of variables (mbb, dR(b,b))
- keep the set with the better discriminating power
- check the modelling / correlations of all the variables (data/MC)

MVA Analysis: Boosted Decision Trees

BDT training variables (exploit discriminating power coming from signal topologies)

Variable	0-Lepton	1-Lepton	2-Lepton	
p_{T}^{V}		×	×	
$E_{\mathrm{T}}^{\mathrm{miss}}$	×	×	×	
$p_{\mathrm{T}}^{b_1}$	×	×	×	
$p_{\mathrm{T}}^{b_2}$	×	×	×	
m_{bb}	×	×	×	
$\Delta R(b_1,b_2)$	×	×	×	
$ \Delta\eta(b_1,b_2) $	×		×	
$\Delta \phi(V,bb)$	×	×	×	
$ \Delta\eta(V,bb) $			×	
H_{T}	×			
$\min[\Delta \phi(\ell,b)]$		×		
$m_{ m T}^W$		×		
$m_{\ell\ell}$			×	
$MV1c(b_1)$	×	×	×	
$MV1c(b_2)$	×	×	×	
	Only in 3-jet events			
$p_{\mathrm{T}}^{\mathrm{jet}_3}$	×	×	×	
m_{bbj}	×	×	×	

We do **not cut** on the BDT output, but instead we **FIT** the score distribution **Profile Likelihood Fit**

MVA training

- starting from a minimal set of variables (mbb, dR(b,b))
- keep the set with the better discriminating power
- check the modelling / correlations of all the variables (data/MC)

$$\lambda(\mu) = rac{L(\mu, \hat{oldsymbol{ heta}})}{L(\hat{\mu}, \hat{oldsymbol{ heta}})} \;.$$

Profile Likelihood PLR Ratio

$$t_{\mu} = -2\ln\lambda(\mu)$$

test statistic

$$p_{\mu} = \int_{t_{\mu, \mathrm{obs}}}^{\infty} f(t_{\mu}|\mu) \, dt_{\mu} \; ,$$

The (in)famous p-value

p=2.87 x 10-7 Z(significance) = 5σ (discovery!)

Extracting the Signal: Our Fit Model

Very large and complex phase space, with several background contributions:

extremely complex fit model

- systematic uncertainties
 - 1. leptons
 - 2. jets
 - 3. b-tagging
 - 4. pTV-dependent

can cause migration across different regions

Extracting the Signal: Our Fit Model

It allows us to:

- "learn" the background modelling from on region, and "export" it to an other
- combine the discriminating power of several signal regions

States and the state of the states of the st	month a company and the second start the start is
Process	Scale factor
$t\bar{t}$ 0-lepton	1.36 ± 0.14
$t\bar{t}$ 1-lepton	1.12 ± 0.09
$t\bar{t}$ 2-lepton	0.99 ± 0.04
Wbb	0.83 ± 0.15
Wcl	1.13 ± 0.10
Zbb	1.09 ± 0.05
Zcl	0.88 ± 0.12

Fit Model: Systematic Uncertainties (just a hint)

			svetomatic ranki	<u>na trom the xiev mive protile likelingor</u>
Signal		•	on the full	shannel combination (0, 1, 2 lontons):
Cross section (scale)	1% (qq), 50% (gg)		on the full t	
Cross section (PDF)	2.4% (qq), 17% (gg)			Δμ
Branching Ratio	3.3 %			-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
Acceptance (scale)	1.5-3.3%			0.10 0.1 0.00 0 0.00 0.1 0.10 0.2
3-jet acceptance (scale)	3.3-4.2%			
p_T^V shape (scale)	S		Wabb Wacom shape	
Acceptance (PDF)	2-5%		(p ^V > 120 GeV)	· · · · · · · · · · · · · · · · · · ·
p_T^V shape (NLO EW correction)	S		W+bl to W+bb normalisation	
Acceptance (parton shower)	8-13%		(p _T ^V > 120 GeV)	
Z+jets			W+bb normalisation	
Zl normalisation, 3/2-jet ratio	5%			
Zcl 3/2-jet ratio	26%	T	W+HF p _T ^V shape (3-jet)	
Z+hf 3/2-jet ratio	20%	/ · ·		
Z+hf/Zbb ratio	12%	Si	ignal acceptance (parton shower)	
$\Delta \phi(\text{iet}_1, \text{iet}_2), p_T^{\vee}, m_H$	Same Same Same Same Same Same Same Same		Zahl to Zahn normalisation (2-jet)	
W+jets	-	1/	Enorio Enos normanoanon (E joi)	
Wl normalisation, 3/2-jet ratio	10%	<u> </u>	b-jet energy resolution	
Wcl, W+hf 3/2-jet ratio	10%			
Wbl/Wbb ratio	35%		Z+bb, Z+c≅ m _j shape	
Wbc/Wbb, Wcc/Wbb ratio	12%		lat an an a balance	
$\Delta \phi(\text{jet}_1, \text{jet}_2), p_T^V, m_{bb}$	S		Jet energy resolution	
and the second			Dilepton tt normalisation	6
3/2-jet ratio	20%			
high/low- p_T^V ratio	7.5%		W+HF p ^V _T shape (2-jet)	
top $p_{\mathrm{T}}, m_{bb}, E_{\mathrm{T}}^{\mathrm{miss}}$	S		-	
Single top	p		Z+bb normalisation	°
Cross section	4% (s-,t-channel), 7% (Wt)		Jet energy scale 1	
Generator	3-52%			
$m_{bb}, p_{\mathrm{T}}^{b_2}$	S		b-jet tagging efficiency 4	•
Diboson			they high a ^V asymptication	
Cross section and acceptance (scale)	3-29%		ubar nign p_normalisation	
Cross section and acceptance (PDF)	2-4%			Pull: (θ - θ)/Δθ
m _{bb}	S		ATLAS	Normalisation
Multijet				$vs = 8 \text{ TeV}$, Ldt = 20.3 fb ⁻¹ +1 σ Postfit Impact on $\hat{\mu}$
0-, 2-lepton channels normalisation	100%			mu=125 GeV -1σ Postfit Impact on μ
1-lepton channel normalisation	2-60%			
Template variations, reweighting	S			-2 -15 -1 -05 0 05 1 15 2

profile likelihood fit andle newlylwe for

Δû

SM Candel Process: Diboson VZ→bb

1lepton

Olepton

VH→bb Results from the LHC Run1 dataset

VH→bb Results from the LHC Run1 dataset

Main changes wrt 2013 analysis: > 50%

- MVA analysis (BDT)
- MV1c b-tagging
- (same dataset analysed)

```
Significance = 1.4 (2.6)
obs.(exp.)
```

highest expected significance for H→bb searches

improvement

Conclusions

VH→bb : promising but very complex analysis

- Run1: no evidence, but good confidence with the analysis model and the background modelling (crucial for this search)
- Starting to work towards Run2: (approximately) expect to reach ~Run1 sensitivity after first 10 inverse femtobarn (~~~)

pb	8 TeV	13 TeV	ratio
ggF	19	44	2.3
VBF	1.6	3.7	2.3
VH	1.1	2.2	2
ttH	0.13	0.5	3.8

note: background processes are increasing too (ttbar ~x4)

- will benefit from the detector upgrade (IBL) and the increase center of mass energy
- very interesting to combine Run1+Run2 results (~) early
- will pursue also other production modes (VBF, VBF+gamma)
- start to test BSM physics ? (EFT models parameters can be constrained by VH)

Thank you !