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What constitutes a Jet?
Jets are collimated bunches of particles produced by hadronization of a
quark or gluon.
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What constitutes a Jet?
Jets can emerge from a variety of processes

◮ scattering of partons inside colliding protons,
◮ hadronic decay of heavy particles,
◮ radiative gluon emission from partons, . . .

We use jet algorithms to combine particles in order to retrieve
information on what happened in the event.
No unique or optimal definition of a jet, but jets are widely used at
hadron colliders as a proxy for hard quarks and gluons.

figure by G. Salam
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Why are Jets important?

QCD processes are at the heart of modern hadron colliders.

Most of CMS and ATLAS searches make use of jets.

The increase in energy and pileup at the LHC is raising the necessity
for a deeper understanding of jet processes.
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Example: Inclusive Jet Spectrum

Agreement between experiment and theory over several orders of
magnitudes ⇒ precise probe of underlying interactions
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Example: Background discrimination in Higgs production
Main background to Higgs production via gluon fusion (with W+W−

decay) is tt̄ production.
=⇒ background can be separated with veto on hard jets.
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How are Jets defined?

A jet definition includes

a jet algorithm mapping final state particle momenta to jet momenta,

parameters required by the algorithm, typically the jet radius R ,

a recombination scheme indicating what momentum to assign to the
combination of two particles (eg. 4-vector sum)

A good jet definition should also

be simple to implement in an experimental analysis,

be simple to implement in theoretical calculations,

yield cross sections that are finite at any order in perturbation theory
and relatively insensitive to hadronization.
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Jet algorithm classes

There are two main classes of jet algorithms

Cone algorithms

A top-down approach, centered around the idea of finding stable cones
from energy flow.

Sequential recombination algorithms

A bottom-up approach, defined by an iterative recombination of particles
using a distance measure.

At the LHC, most jet definitions used are based on sequential
recombination algorithms, as they are simpler and closer to the underlying
QCD branching picture.
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Jet algorithms and the jet radius
A jet algorithm maps final state particle momenta to jet momenta.

{pi}
︸︷︷︸

particles

=⇒ {jk}
︸︷︷︸

jets

This requires an external parameter, the jet radius R , which specifies an
angular scale.

The jet radius R defines up to which point separate partons are
recombined into a single jet.

Figure : Gluon emission from a quark combined into a single jet.
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Cambridge/Aachen algorithm with incoming hadrons

The basic idea is to invert QCD branching process, clustering pairs which
are closest in metric defined by the divergence structure of the theory

Definition
1 For any pair of particles i , j find the minimum of

dij =
∆R2

ij

R2

where ∆Rij = (yi − yj)
2 + (φi − φj)

2.

2 If the minimum distance dij > 1 then the corresponding particle is
removed from the list and defined as a jet, otherwise i and j are
merged.

3 Repeat until no particles are left.

Most algorithms used nowadays at hadron colliders follow this pattern,
with some variations in the distance measure (eg. the anti-kt algorithm).
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Perturbative properties

Jet properties will be affected by gluon radiation and g → qq̄ splitting.

In particular, considering gluon emissions from an initial parton for a jet of
radius R , then

radiation at angles > R reduces the jet energy,

radiation at angles < R generates a mass for the jet.

We will try to investigate the effects of perturbative radiation on a jet
analytically, particularly in the small-R limit.
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Example: Jet pt with emissions at angle θ > R
We can calculate the average energy difference between the hardest final
state jet and the initial quark, considering emissions beyond the reach of
the jet. In the small-R limit, we find

〈∆z〉hardestq =

∫
O(1) dθ2

θ2

∫

dz(max[z , 1− z ]− 1)
αs

2π
pqq(z)Θ(θ − R)

=
αs

π
CF

(

2 ln 2−
3

8

)

lnR +O(αs)

Figure : Gluon emission beyond the reach of the jet.
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Jet radius values

In recent years, jet radii have become ever smaller.

What are usual values for the jet radius R ?

Most common choice of jet radius is R = 0.4 (ATLAS) or R = 0.5
(CMS).

In some environments (eg. heavy ions), even smaller values down to
R = 0.2 are used.

Many modern jet tools, such as trimming and filtering, resolve small
subjets (typically with Rsub = 0.2− 0.3) within moderate R jets.

Perturbation theory breaks down when

αs ln
1

R
∼ O(1)

where the resummation of αn
s ln

n R terms to all orders is required.
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Microjets

Definition

Microjets are jets with small values for the jet radius

R ≪ 1

Small-R limit relevant in a number of contexts, e.g.

In Higgs physics, where complicated dependence on the jet radius
appears due to clustering, in particular in the resummation of jet veto
logarithms.

Decay of heavy particles to boosted W ,Z bosons and top quarks.

Heavy-ion physics where small values for R are used due to the large
background.

In high pileup environments, where use of smaller R might help
mitigate adverse effects of pileup.

Theoretically interesting because αs lnR ≫ αs , therefore calculations
simplify and one can investigate all-order structure.
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How relevant are small-R effects?

We can evaluate numerically how important the effect of perturbative lnR
terms is on the microjet pt .

Taking R = 0.2 we find that

quark-induced jets have a hardest microjet pt ∼ 5− 10% smaller than
the original quark,

gluon-induced jets have a hardest microjet pt ∼ 15− 25% smaller
than the original gluon.
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Resummation of (αs lnR)
n terms

“In the small R limit, new clustering logarithms [. . . ] arise at each order
and cannot currently be resummed.”

— Tackmann, Walsh & Zuberi (arXiv:1206.4312)

How important can contributions from higher orders be, e.g. (αs lnR)
n,

especially at smaller values of R ?

We aim to resum all leading logarithmic (αs lnR)
n terms in the limit of

small R for a wide variety of observables.

We will approach this question using generating functionals.
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Evolution variable t
Start with a parton and consider emissions at successively smaller angular
scales.

We introduce an evolution variable t corresponding to the integral over the
collinear divergence weighted with αs

t =

∫ 1

R2

dθ2

θ2
αs(ptθ)

2π
=

1

b0

∞∑

n=1

1

n

(
αsb0
2π

ln
1

R2

)n

10−4 10−3 10−2 10−1 1

R

0.0
0.1
0.2
0.3
0.4

t 50 GeV jet
20 TeV jet

Figure : Plot of t as a function of R down to Rpt = 1GeV for pt = 0.01 − 20TeV.
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Generating functional

Definition

Q(x , t1, t2) is the generating functional encoding the parton content one
would observe when resolving a quark with momentum xpt at scale t1 on
an angular scale t2 > t1 (ie. R1 ≫ R2).

The mean number of quark microjets of momentum zpt produced from a
quark of momentum pt are

dnq(z)

dz
=

δQ(1, 0, t2)

δq(z)

∣
∣
∣
∣
∀q(z)=1,g(z)=1

We can formulate an evolution equation for the generating functionals

Q(x , 0, t) = Q(x , δt , t)

(

1− δt

∫

dz pqq(z)

)

+ δt

∫

dz pqq(z)

[

Q(zx , δt , t)G ((1− z)x , δt , t)

]

.

The gluon generating functional G (x , t1, t2) is defined the same way.
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Quark evolution equation

We rewrite the equation on slide [17] in graphical form as an evolution
equation for the quark generating functional,

Here the blobs represent the generating functionals at a scale t.
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Evolution equations

We can write the complete evolution equations as differential equations,
for the quark the previous graph corresponds to

Quark

dQ(x , t)

dt
=

∫

dz pqq(z) [Q(zx , t)G ((1− z)x , t)− Q(x , t)] .

In the gluon case we find,

Gluon

dG (x , t)

dt
=

∫

dz pgg (z) [G (zx , t)G ((1− z)x , t)− G (x , t)]

+

∫

dz nf pqg (z) [Q(zx , t)Q((1− z)x , t)− G (x , t)] .
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Solving the evolution equations

We can solve these equations order by order as a power expansion in t,
writing

Q(x , t) =
∑

n

tn

n!
Qn(x) ,

G (x , t) =
∑

n

tn

n!
Gn(x) .

Furthermore the evolution equations can be used to perform an all-order
resummation of (αs lnR)

n terms.

These methods allow us to calculate observables in the small-R limit up to
a fixed order in perturbation theory, or to resum them to all orders
numerically.
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Inclusive microjet observables

Definition

Given a parton of flavour i , the inclusive microjet fragmentation function
f incl
j/i (z , t) is the inclusive distribution of microjets of flavour j carrying a
momentum fraction z .

The inclusive microjet fragmentation function satisfies a DGLAP-like
equation.

df incl
j/i (z , t)

dt
=

∑

k

∫ 1

z

dz ′

z ′
Pjk(z

′)f inclk/i (z/z
′, t),

with initial condition
f inclj/i (z , 0) = δ(1 − z)δji .

Momentum conservation ensures that

∑

j

∫

dz z f inclj/i (z , t) = 1.
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Inclusive microjet fragmentation function
Peak at 1 is original parton, peak at 0 is soft gluon microjets.
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Inclusive microjet fragmentation function
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Jet spectrum from microjet fragmentation function

The jet spectrum can be obtained from the convolution of the inclusive
microjet fragmentation function with the inclusive partonic spectrum from
hard 2 → 2 scattering

dσjet
dpt

=
∑

i

∫

pt

dp′t
p′t

dσi
dp′t

f incljet/i (pt/p
′
t , t),

where fjet/i ≡
∑

j fj/i .
If we assume that the partonic spectrum is dominated by a single flavour i
and that its pt dependence is dσi/dpt ∼ p−n

t then

dσjet
dpt

≃
dσi
dpt

∫ 1

0
dz zn−1f incljet/i (z , t) ≡

dσi
dpt

〈zn−1〉incli .
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Moment of inclusive microjet spectrum 〈z4〉
At the LHC typical n values for the partonic spectrum range from about 4
at low pt to 7 or even higher at high pt . We show results for n = 5.

Small-R terms are important here, around 30− 50% effect on gluonic
inclusive spectrum.

Convergence is slow: for gluon-initiated jets, the O(t2) corrections (ie.
NNLO) deviate noticeably from all-orders results below R = 0.3
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Hardest microjet observables

Definition

f hardest(z) is the probability that the hardest microjet carries a momentum
fraction z .

Probability conservation imposes

∫ 1

0
dz f hardest(z) = 1

No general DGLAP-like equation, but equal to the inclusive microjet
fragmentation function for z > 0.5.
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Hardest microjet fragmentation function
Solid line: inclusive microjet fragmentation function.
Dashed line: hardest microjet fragmentation function.
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Solid line: inclusive microjet fragmentation function.
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Hardest microjet fragmentation function
Solid line: inclusive microjet fragmentation function.
Dashed line: hardest microjet fragmentation function.
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Microjet vetoes
Jet veto resummations are a context where all-order small-R corrections
could be important.
Writing the probability of no gluon emissions above a scale pt as

P(no primary-parton veto) = exp

[

−

∫ Q

pt

dkt
kt

ᾱs(kt)2 ln
Q

kt

]

,

one can show that including small-R corrections and applying the veto on
the hardest microjet, we have

U ≡ P(no microjet veto)/P(no primary-parton veto)

= exp

[

− 2ᾱs(pt) ln
Q

pt

∫ 1

0
dz f hardest(z , t(R , pt)) ln z

]

.

The R-dependent correction generates a series of terms

αm+n
s (Q) lnm(Q/pt) ln

n R .
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Logarithmic moment 〈ln z〉
The logarithmic moment of f hardest is, as seen previously

〈ln z〉hardest ≡

∫ 1

0
dz f hardest(z) ln z .

This seems to have a particularly stable perturbative expansion.
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Conclusion

Using a generating-functional approach, we carried out numerical LL
resummation of lnR enhanced-terms in small-R jets.

Resummation complemented by analytical calculations of the LL
expansion for the first few orders in perturbation theory.

Studied inclusive microjet spectrum and identified the spectrum of
the hardest microjet emerging from parton fragmentation.

Calculated the logarithmic moment of hardest microjet spectrum,
relevant in particular for jet vetoes in Higgs-boson production.

Small-R effects can be substantial, for example reducing the inclusive
jet spectrum by 30− 50% for gluon jets for R = 0.4− 0.2.

Study of phenomenological implications are forthcoming.

further reading on arXiv:1411.5182
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