Jet Physics and the Small-R Limit

Frédéric Dreyer

work with Gavin Salam, Matteo Cacciari, Mrinal Dasgupta & Gregory Soyez

Laboratoire de Physique Théorique et Hautes Énergies

Journées Jeunes Chercheurs, 11 December 2014

Outline

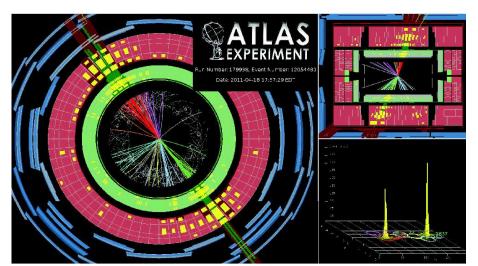
- Introduction
 - Jet algorithms
 - Perturbative properties of jets
- ② Generating functionals
 - Evolution equations
- Observables
 - Inclusive microjet observables
 - Hardest microjet observables
 - Microjet vetoes
- 4 Conclusion

Overview

- Introduction
 - Jet algorithms
 - Perturbative properties of jets
- Generating functionals
 - Evolution equations
- Observables
 - Inclusive microjet observables
 - Hardest microjet observables
 - Microjet vetoes
- 4 Conclusion

What constitutes a Jet?

Jets are collimated bunches of particles produced by hadronization of a quark or gluon.



What constitutes a Jet?

- Jets can emerge from a variety of processes
 - scattering of partons inside colliding protons,
 - hadronic decay of heavy particles,
 - ▶ radiative gluon emission from partons, ...
- We use jet algorithms to combine particles in order to retrieve information on what happened in the event.
- No unique or optimal definition of a jet, but jets are widely used at hadron colliders as a proxy for hard quarks and gluons.

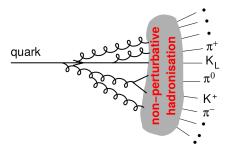


figure by G. Salam

Why are Jets important?

- QCD processes are at the heart of modern hadron colliders.
- Most of CMS and ATLAS searches make use of jets.
- The increase in energy and pileup at the LHC is raising the necessity for a deeper understanding of jet processes.

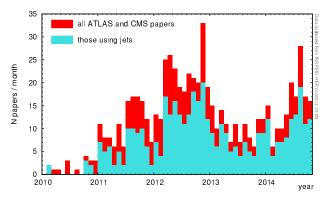
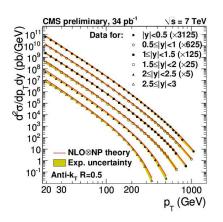
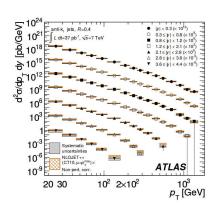


figure by G. Salam

Example: Inclusive Jet Spectrum

Agreement between experiment and theory over several orders of magnitudes \Rightarrow precise probe of underlying interactions

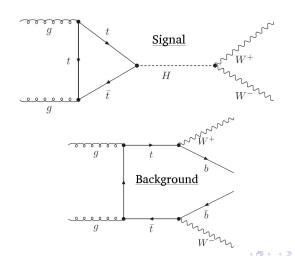




Example: Background discrimination in Higgs production

Main background to Higgs production via gluon fusion (with W^+W^- decay) is $t\bar{t}$ production.

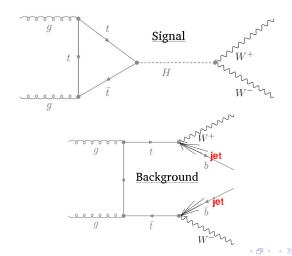
⇒ background can be separated with veto on hard jets.



Example: Background discrimination in Higgs production

Main background to Higgs production via gluon fusion (with $W^+W^$ decay) is $t\bar{t}$ production.

⇒ background can be separated with veto on hard jets.



How are lets defined?

A jet definition includes

- a jet algorithm mapping final state particle momenta to jet momenta,
- parameters required by the algorithm, typically the jet radius R,
- a recombination scheme indicating what momentum to assign to the combination of two particles (eg. 4-vector sum)

- be simple to implement in an experimental analysis,
- be simple to implement in theoretical calculations,
- yield cross sections that are finite at any order in perturbation theory

How are Jets defined?

A jet definition includes

- a jet algorithm mapping final state particle momenta to jet momenta,
- parameters required by the algorithm, typically the jet radius R,
- a recombination scheme indicating what momentum to assign to the combination of two particles (eg. 4-vector sum)

A good jet definition should also

- be simple to implement in an experimental analysis,
- be simple to implement in theoretical calculations,
- yield cross sections that are finite at any order in perturbation theory and relatively insensitive to hadronization.

Jet algorithm classes

There are two main classes of jet algorithms

Cone algorithms

A top-down approach, centered around the idea of finding stable cones from energy flow.

Sequential recombination algorithms

A bottom-up approach, defined by an iterative recombination of particles using a distance measure.

At the LHC, most jet definitions used are based on sequential recombination algorithms, as they are simpler and closer to the underlying QCD branching picture.

7 / 29

Jet algorithms and the jet radius

A jet algorithm maps final state particle momenta to jet momenta.

$$\underbrace{\{p_i\}}_{\text{particles}} \Longrightarrow \underbrace{\{j_k\}}_{\text{jets}}$$

This requires an external parameter, the jet radius R, which specifies an angular scale.

The jet radius R defines up to which point separate partons are recombined into a single jet.

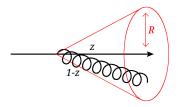


Figure: Gluon emission from a quark combined into a single jet.

Frédéric Dreyer (LPTHE) Jets JJC 2014 8 / 29

Cambridge/Aachen algorithm with incoming hadrons

The basic idea is to invert QCD branching process, clustering pairs which are closest in metric defined by the divergence structure of the theory

Definition

 \bullet For any pair of particles i, j find the minimum of

$$d_{ij} = \frac{\Delta R_{ij}^2}{R^2}$$

where
$$\Delta R_{ij} = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$
.

- ② If the minimum distance $d_{ij} > 1$ then the corresponding particle is removed from the list and defined as a jet, otherwise i and j are merged.
- 3 Repeat until no particles are left.

Most algorithms used nowadays at hadron colliders follow this pattern, with some variations in the distance measure (eg. the anti- k_t algorithm).

Perturbative properties

Jet properties will be affected by gluon radiation and g o q ar q splitting.

In particular, considering gluon emissions from an initial parton for a jet of radius R, then

- radiation at angles > R reduces the jet energy,
- ullet radiation at angles < R generates a mass for the jet.

We will try to investigate the effects of perturbative radiation on a jet analytically, particularly in the small-R limit.

Example: Jet p_t with emissions at angle $\theta > R$

We can calculate the average energy difference between the hardest final state jet and the initial quark, considering emissions beyond the reach of the jet. In the small-*R* limit, we find

$$\langle \Delta z \rangle_q^{\mathsf{hardest}} = \int_{-\pi}^{\mathcal{O}(1)} \frac{d\theta^2}{\theta^2} \int dz (\mathsf{max}[z, 1-z] - 1) \frac{\alpha_s}{2\pi} p_{qq}(z) \Theta(\theta - R)$$

$$= \frac{\alpha_s}{\pi} C_F \left(2 \ln 2 - \frac{3}{8} \right) \ln R + \mathcal{O}(\alpha_s)$$

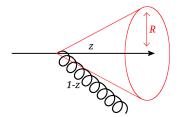


Figure: Gluon emission beyond the reach of the jet.

Frédéric Drever (LPTHE)

Jet radius values

In recent years, jet radii have become ever smaller.

What are usual values for the jet radius R?

- Most common choice of jet radius is R = 0.4 (ATLAS) or R = 0.5 (CMS).
- In some environments (eg. heavy ions), even smaller values down to R=0.2 are used.
- Many modern jet tools, such as trimming and filtering, resolve small subjets (typically with $R_{\text{sub}} = 0.2 0.3$) within moderate R jets.

Perturbation theory breaks down when

$$\alpha_s \ln \frac{1}{R} \sim \mathcal{O}(1)$$

where the resummation of $\alpha_s^n \ln^n R$ terms to all orders is required.

◆ロト ◆個 ト ◆ 重 ト ◆ 重 ・ 釣 Q (~)

Microjets

Definition

Microjets are jets with small values for the jet radius

$$R \ll 1$$

Small-R limit relevant in a number of contexts, e.g.

- In Higgs physics, where complicated dependence on the jet radius appears due to clustering, in particular in the resummation of jet veto logarithms.
- ullet Decay of heavy particles to boosted W,Z bosons and top quarks.
- Heavy-ion physics where small values for *R* are used due to the large background.
- In high pileup environments, where use of smaller *R* might help mitigate adverse effects of pileup.

Theoretically interesting because $\alpha_s \ln R \gg \alpha_s$, therefore calculations simplify and one can investigate all-order structure.

How relevant are small-*R* effects?

We can evaluate numerically how important the effect of perturbative $\ln R$ terms is on the microjet p_t .

Taking R = 0.2 we find that

- ullet quark-induced jets have a hardest microjet $p_t \sim 5-10\%$ smaller than the original quark,
- gluon-induced jets have a hardest microjet $p_t \sim 15-25\%$ smaller than the original gluon.

Resummation of $(\alpha_s \ln R)^n$ terms

"In the small R limit, new clustering logarithms [. . .] arise at each order and cannot currently be resummed."

— Tackmann, Walsh & Zuberi (arXiv:1206.4312)

How important can contributions from higher orders be, e.g. $(\alpha_s \ln R)^n$, especially at smaller values of R?

We aim to resum all leading logarithmic $(\alpha_s \ln R)^n$ terms in the limit of small R for a wide variety of observables.

We will approach this question using generating functionals.

Overview

- Introduction
 - Jet algorithms
 - Perturbative properties of jets
- Generating functionals
 - Evolution equations
- Observables
 - Inclusive microjet observables
 - Hardest microjet observables
 - Microjet vetoes
- 4 Conclusion

Evolution variable t

Start with a parton and consider emissions at successively smaller angular scales.

We introduce an evolution variable t corresponding to the integral over the collinear divergence weighted with α_s

$$t = \int_{R^2}^1 \frac{d\theta^2}{\theta^2} \frac{\alpha_s(p_t\theta)}{2\pi} = \frac{1}{b_0} \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{\alpha_s b_0}{2\pi} \ln \frac{1}{R^2} \right)^n$$

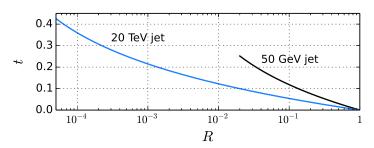


Figure : Plot of t as a function of R down to $Rp_t = 1 \text{ GeV}$ for $p_t = 0.01 - 20 \text{ TeV}$.

Generating functional

Definition

 $Q(x,t_1,t_2)$ is the generating functional encoding the parton content one would observe when resolving a quark with momentum xp_t at scale t_1 on an angular scale $t_2 > t_1$ (ie. $R_1 \gg R_2$).

The mean number of quark microjets of momentum zp_t produced from a quark of momentum p_t are

$$\frac{dn_{q(z)}}{dz} = \frac{\delta Q(1,0,t_2)}{\delta q(z)} \bigg|_{\forall q(z)=1,g(z)=1}$$

We can formulate an evolution equation for the generating functionals

$$egin{aligned} Q(x,0,t) &= Q(x,\delta_t,t) \left(1-\delta t \int dz \, p_{qq}(z)
ight) \ &+ \left.\delta_t \int dz \, p_{qq}(z)
ight[Q(zx,\delta_t,t) G((1-z)x,\delta_t,t)
ight]. \end{aligned}$$

The gluon generating functional $G(x, t_1, t_2)$ is defined the same way.

Quark evolution equation

We rewrite the equation on slide [17] in graphical form as an evolution equation for the quark generating functional,

$$\frac{d}{dt} - Q(x,t) = \int dz \, p_{qq}(z) \begin{bmatrix} z & Q(zx,t) \\ & & \\ & & \\ & & \end{bmatrix}$$

Here the blobs represent the generating functionals at a scale t.

◆ロト ◆部ト ◆意ト ◆意ト · 意 · 釣り○

Frédéric Dreyer (LPTHE) Jets JJC 2014 18 / 29

Evolution equations

We can write the complete evolution equations as differential equations, for the quark the previous graph corresponds to

Quark

$$\frac{dQ(x,t)}{dt} = \int dz \, p_{qq}(z) \left[Q(zx,t) \, G((1-z)x,t) - Q(x,t) \right].$$

In the gluon case we find,

Gluon

$$\frac{dG(x,t)}{dt} = \int dz \, p_{gg}(z) \left[G(zx,t)G((1-z)x,t) - G(x,t) \right]
+ \int dz \, n_f \, p_{gg}(z) \left[Q(zx,t)Q((1-z)x,t) - G(x,t) \right] .$$

◆ロ > ← (型 > ← (型 > ← (型)) を の (へ)

Solving the evolution equations

We can solve these equations order by order as a power expansion in t, writing

$$Q(x,t) = \sum_{n} \frac{t^{n}}{n!} Q_{n}(x),$$

$$G(x,t) = \sum_{n} \frac{t^{n}}{n!} G_{n}(x).$$

Furthermore the evolution equations can be used to perform an all-order resummation of $(\alpha_s \ln R)^n$ terms.

These methods allow us to calculate observables in the small-R limit up to a fixed order in perturbation theory, or to resum them to all orders numerically.

Overview

- Introduction
 - Jet algorithms
 - Perturbative properties of jets
- Generating functionals
 - Evolution equations
- Observables
 - Inclusive microjet observables
 - Hardest microjet observables
 - Microjet vetoes
- 4 Conclusion

Inclusive microjet observables

Definition

Given a parton of flavour i, the inclusive microjet fragmentation function $f_{j/i}^{\rm incl}(z,t)$ is the inclusive distribution of microjets of flavour j carrying a momentum fraction z.

The inclusive microjet fragmentation function satisfies a DGLAP-like equation.

$$\frac{df_{j/i}^{\mathsf{incl}}(z,t)}{dt} = \sum_{k} \int_{z}^{1} \frac{dz'}{z'} P_{jk}(z') f_{k/i}^{\mathsf{incl}}(z/z',t),$$

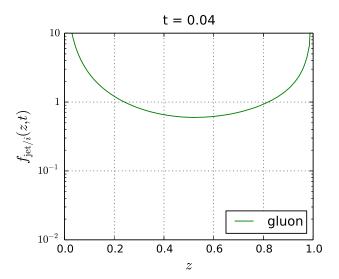
with initial condition

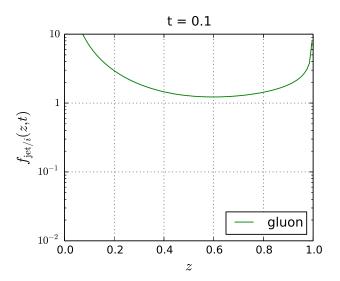
$$f_{j/i}^{\mathsf{incl}}(z,0) = \delta(1-z)\delta_{ji}.$$

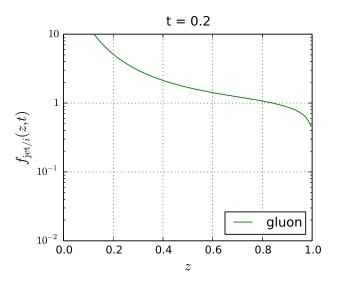
Momentum conservation ensures that

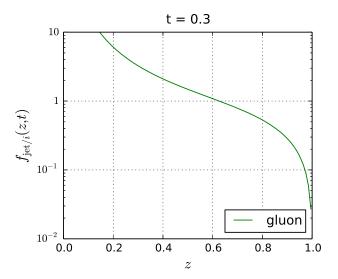
$$\sum_{j} \int dz \, z \, f_{j/i}^{\mathsf{incl}}(z,t) = 1.$$

◆ロト ◆個ト ◆音ト ◆音ト 音 めので









Jet spectrum from microjet fragmentation function

The jet spectrum can be obtained from the convolution of the inclusive microjet fragmentation function with the inclusive partonic spectrum from hard $2 \to 2$ scattering

$$rac{d\sigma_{
m jet}}{dp_t} = \sum_i \int_{p_t} rac{dp_t'}{p_t'} rac{d\sigma_i}{dp_t'} f_{
m jet/i}^{
m incl}(p_t/p_t',t),$$

where $f_{\text{jet}/i} \equiv \sum_{j} f_{j/i}$.

If we assume that the partonic spectrum is dominated by a single flavour i and that its p_t dependence is $d\sigma_i/dp_t \sim p_t^{-n}$ then

$$\frac{d\sigma_{
m jet}}{dp_t} \simeq \frac{d\sigma_i}{dp_t} \int_0^1 dz \, z^{n-1} f_{
m jet/i}^{
m incl}(z,t) \equiv \frac{d\sigma_i}{dp_t} \langle z^{n-1} \rangle_i^{
m incl}.$$

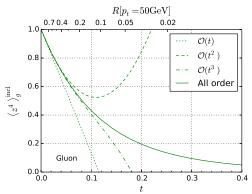
Frédéric Dreyer (LPTHE)

Moment of inclusive microjet spectrum $\langle z^4 \rangle$

At the LHC typical n values for the partonic spectrum range from about 4 at low p_t to 7 or even higher at high p_t . We show results for n=5.

Small-R terms are important here, around 30-50% effect on gluonic inclusive spectrum.

Convergence is slow: for gluon-initiated jets, the $\mathcal{O}(t^2)$ corrections (ie. NNLO) deviate noticeably from all-orders results below R=0.3



Hardest microjet observables

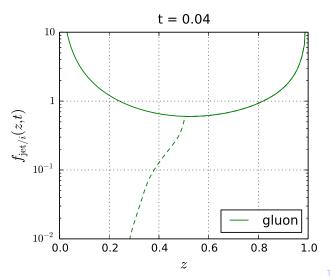
Definition

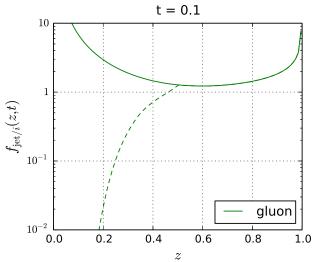
 $f^{\text{hardest}}(z)$ is the probability that the hardest microjet carries a momentum fraction z.

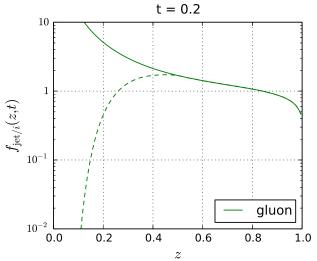
Probability conservation imposes

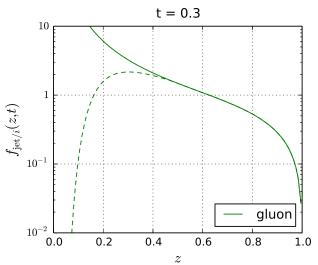
$$\int_0^1 dz \, f^{\mathsf{hardest}}(z) = 1$$

No general DGLAP-like equation, but equal to the inclusive microjet fragmentation function for z>0.5.









Microjet vetoes

Jet veto resummations are a context where all-order small-R corrections could be important.

Writing the probability of no gluon emissions above a scale p_t as

$$P(\text{no primary-parton veto}) = \exp\bigg[-\int_{\rho_t}^Q \frac{dk_t}{k_t} \bar{\alpha}_s(k_t) 2 \ln \frac{Q}{k_t}\bigg],$$

one can show that including small-R corrections and applying the veto on the hardest microjet, we have

 $U \equiv P(\text{no microjet veto})/P(\text{no primary-parton veto})$

$$= \exp\bigg[-2\bar{\alpha}_s(p_t)\ln\frac{Q}{p_t}\int_0^1 dz\, f^{\mathsf{hardest}}(z,t(R,p_t))\ln z\bigg].$$

The R-dependent correction generates a series of terms

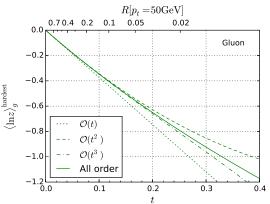
$$\alpha_s^{m+n}(Q) \ln^m(Q/p_t) \ln^n R.$$

Logarithmic moment $\langle \ln z \rangle$

The logarithmic moment of f^{hardest} is, as seen previously

$$\langle \ln z \rangle^{\mathsf{hardest}} \equiv \int_0^1 \, dz \, f^{\mathsf{hardest}}(z) \ln z \, .$$

This seems to have a particularly stable perturbative expansion.



Overview

- Introduction
 - Jet algorithms
 - Perturbative properties of jets
- @ Generating functionals
 - Evolution equations
- Observables
 - Inclusive microjet observables
 - Hardest microjet observables
 - Microjet vetoes
- 4 Conclusion

Conclusion

- Using a generating-functional approach, we carried out numerical LL resummation of ln R enhanced-terms in small-R jets.
- Resummation complemented by analytical calculations of the LL expansion for the first few orders in perturbation theory.
- Studied inclusive microjet spectrum and identified the spectrum of the hardest microjet emerging from parton fragmentation.
- Calculated the logarithmic moment of hardest microjet spectrum, relevant in particular for jet vetoes in Higgs-boson production.
- Small-R effects can be substantial, for example reducing the inclusive jet spectrum by 30 50% for gluon jets for R = 0.4 0.2.
- Study of phenomenological implications are forthcoming.

further reading on arXiv:1411.5182

JJC 2014 29 / 29