Search for a vector like quark in the full hadronic final state at CMS experiment

José David Ruiz Álvarez Supervisor: Stéphanie Beauceron

IPNL Université Claude Bernard Lyon JJC - December 2014

Compact Muon Solenoid experiment at CERN's LHC

Outline

- Generalities
 - Standard Model
 - CMS
- T' vector like search
 - Pheno search design
 - Towards data @ CMS
- Conclusions

Higgs & Top

WW

ZZ

200

M_H[GeV]

l⁺+jets

tī

500

.++ ++++,

Fitted Top Mass (GeV)

1000

tī W+jets

Z+jets Single-Top QCD -+ Data

CMS: Compact Muon Solenoid

Extract parton structure from final state

5

CMS preliminary, L = 4.9 fb⁻¹

√s = 7 TeV

VLQ analysis

Physics introduction
Phenomenological studies
Data Analysis

Vector Like Quarks

Motivation

 \rightarrow New physics probably related to top and/or Higgs, the heaviest sector of the SM \rightarrow Introduce a top partner to cancel contribution to Higgs mass

T' production and decay

Pair production

→ Mixing with light quarks enhance the cross-section of production \rightarrow mT' >300 GeV, tH becomes the preferential decay channel \rightarrow Leading analysis for single production

Pheno search design: Single T'

- L=20fb⁻¹, xs=150fb @8TeV
 BR(T'→t,H)=0.5 m(T')=734.1 GeV
- Jet association (below)
- Fully hadronic (5+1 jets)

9

Final state:
 tH → Wbbb → jjbbb

Phenomenological studies

- Study done up to hadronization step in the MC.
- Analysis strategy:
 - 20 fb⁻¹ @ 8 TeV → Full hadronic channel: Highest expected number of events for the signal [~700 events] → Full mass reconstruction of T'
 - Background reduction: Higgs and top as handles.
 - Event selection: Keep high efficiencies on signal.
 - Cuts based on angular distributions \rightarrow Preservation from hadronization to fullsim

Five Jets Invariant Mass

12

sheno

Analysis @ CMS

The analysis

- Single T' \rightarrow t H \rightarrow W b H \rightarrow 3b j j + accompanying jet
- Main selection:
 - 3 b-tags
 - 2 b's \rightarrow higgs
 - 3rd b for top,
 2 non-btagged jets from W

t'

The analysis

- Main variable: 5 jets invariant mass M(5J)
- After selection → Main background: TTbar (~50%) + QCD (~50%)
- Based on a pheno study [1]:
 S. Beauceron et al. arXiv:1401.5979

15

AFTER FULL SELECTION

Spike from one QCD mc event with ~70 as weight

Pre-Selection

Full hadronic final state with 3b's and 2j's (making W, Top, Higgs) + 1 accompanying jet

- Trigger: Dijet_80_Dijet_60_Dijet_20
- Jet pt: 1st pt>150 GeV, 2nd pt>90 GeV, 3rd and 4th pt>70 GeV, 5th and 6th pt>30 GeV
- HT>630 GeV
- >= 3 b-tag

Reconstruction

 Chi2 sorting algorithm → T' reconstruction via H, W and top reconstruction:

$$\chi^{2} = \frac{(M_{H} - M_{bb})^{2}}{\sigma_{H}^{2}} + \frac{(M_{W} - M_{jj})^{2}}{\sigma_{W}^{2}} + \frac{(M_{t} - M_{bjj})^{2}}{\sigma_{t}^{2}}$$

With the following values [2]:

 $M_H = 125 \text{ GeV}/c^2$, $M_W = 84.06 \text{ GeV}/c^2$, $M_t = 175.16 \text{ GeV}/c^2$ $\sigma_H = 12.4 \text{ GeV}/c^2$ $\sigma_W = 10.12 \text{ GeV}/c^2$ and $\sigma_t = 17.35 \text{ GeV}/c^2$

- Jet set with smallest chi2 kept
- Chi2<140 required after reconstruction

Analysis selection

Based on Higgs, W and Top presence:

- Higgs selection:
 - ΔR(bb)<1.2
 - 100 GeV < M(bb)H^{reco} < 150 GeV
- W/Top selection:
 - M(Top^[reco 2nd])/M(Higgs^{reco})< 0.4x(M(W^[reco 2nd])/M(Higgs^{reco}))-0.2
- T'+6th jet selection:
 - |η(j⁶)|>1
 - ΔR(Tp^{reco},j⁶)>4.6
- Full Event selection:
 - Higgs^{reco} pT>180 GeV and Top^{reco} pT>180 GeV
 - $2.2 < \Delta R (W^{reco} H^{reco}) < 3.5$
 - [(Pt(Higgs^{reco})+Pt(Top^{reco}))/HT) > 0.65
 - 0.3<(M(Higgs^{reco})+M(Top^{reco}))/M(Tp^{reco})<0.5

TTbar contamination

PT correlations

Higgs pt and top pt for backgrounds from MC (left) and signal (right). Clear correlation that allows a good discrimination between signal and backgrounds₂₀

Mass correlations

This cut profits from the existence of a second W and top in ttbar. Backgrounds from MC (left) and signal (right). Strong correlation for background gives a good handle to discriminate background from signal.

Data driven background estimation

- Based on two samples:
 - Signal enriched sample: Selection with at least 3 CSVM, one combination of jets (smallest chi2, and chi2<140)
 - Control sample: Selection with at least 3 CSVL vetoing events with at least 3 CSVM, all combinations (Statistically enriched)
- Use M5J shape from control sample to estimate it on signal enriched sample.
- Normalize shape of control sample to signal enriched sample.

- Robust method: All backgrounds estimated in one go
- Negligible signal contamination on control sample, ~1%
 - \rightarrow Uncertainty in bkg shape from estimation procedure (shape compatibility)
 - \rightarrow Uncertainty in bkg normalization from signal contamination
- Validation on early stages of the selection (bkg dominated) due to lack of statistics in QCD MC

Testing the method

- Take different values for b-tagging working point → Independence of WP
- Compare M(5J) for ttbar MC (large stats) between both schema

 \rightarrow Shape agreement between schema and WP for ttbar

- Compare shape M(5J) in data between different WP in estimation scheme → Independence of WP for BKG
- Redo at different stages of the selection, to ensure good behavior as a measure of the cuts → Validation on bkg enriched samples

Systematics

	Signal	BKG	Value (preliminar)
B-tagging	Х		7%
JEC	Х		6.5%
PDF	Х		~10%
Theory	Х		10%
Luminosity	Х	Х	2.6%
Trigger	Х		5%
BKG shape estimation		X	~15%
Signal contamination		Х	<1%
BKG normalization		Х	~20%

Conclusions

- New search on single top + Higgs resonances developed for the full hadronic final state [AN-14-169]
 - New stringent limits from 8 TeV data collected by CMS
 - Insight on the most crucial part of the SM nowadays: Top - Higgs interplay
 - Original background estimation method developed
 - Possible need for new set up to extend the analysis to Run II
- Prospects:
 - Final results \rightarrow Systematics, preapproval, ...

References

- [1]: S. Beauceron, G. Cacciapaglia, A. Deandrea, and J. D. Ruiz-Alvarez, "Fully hadronic decays of a singly produced vector-like top partner at the LHC", arXiv:1401.5979.
- [2]: CMS Collaboration Collaboration, "Search for the standard model Higgs boson produced in association with a W or a Z boson and decaying to bottom quarks", *Phys.Rev.* D89 (2014), no. 1, 012003, doi:10.1103/PhysRevD.89.012003, arXiv:1310.3687.

V. S. Sébastian Brochet, Stéphane Perriès and S. Tosi, "Search for tt resonances in semileptonic final state (low mass)",. CMS AN-12-488.