

# Search for new resonances in ttbar final states with the ATLAS detector

Silvestre Marino ROMANO SAEZ (2<sup>nd</sup> year PhD)

**LPC Clermont-Ferrand** 



#### ttbar heavy resonances

- Benchmark models (2HDM)
- Search in lepton + jets channel
  - Strategy
  - Selection
  - mtt reconstruction
- Impact of detector resolution
  - Jet rescaling method

## Introduction

- Several Beyond-the-SM (BSM) theories seeking to solve a variety of open questions in SM:
  - Neutrino mass
  - Mass spectrum of the particles
  - Inclusion of gravitation
  - Hierarchy problem, ...
- BSM theories predict new heavy particles which could couple strongly with the top quark

#### **Benchmark models**

- Searches for new particles in ttbar final states
  - Warped extra-dimensions (Randall-Sundrum):
    - Kaluza-Klein gluon (g<sub>kk</sub>)
    - KK Bulk-RS graviton (G<sub>kk</sub>)
  - Top-color model (TC):
    - Leptophobic TC heavy Z' boson
  - 2 Higgs Doublet Model (2HDM):
    - 4 scalars and 1 pseudo-scalar:

#### **Benchmark models**

- Searches for new particles in ttbar final states
  - Warped extra-dimensions (Randall-Sundrum):
    - Kaluza-Klein gluon (g<sub>kk</sub>) spin-1, width: 10-40% (broad resonance)
    - KK Bulk-RS graviton (G<sub>kk</sub>) spin-2, width: 3-6%
  - Top-color model (TC):
    - Leptophobic TC heavy Z' boson spin-1, width: 1.2% (narrow resonance)
  - 2 Higgs Doublet Model (2HDM):
    - 4 scalars and 1 pseudo-scalar: spin-0, width: from ~0% until 100%

Width have an impact in the potential discovery!

#### Top quark pairs

- Top quark decays before hadronizing
  - BR(t  $\rightarrow$  bW<sup>+</sup>) ~ 100%
- At the LHC, top pair production (LO) at 8 TeV.
  - 80% Gluon fusion: (a) and (b)
  - 20% quark-antiquark annihilation: (c)



- Top pair branching ratio:
   "alljets" 46%
   t+jets 15%
   "dileptons"
- Search for new physics in the Lepton + jets channel: Best balance between the BR and background rejection



#### **Experimental setup**

#### The ATLAS detector





#### Two Higgs doubles model (2HDM)

#### **2HDM motivation**

 Discovery of a SM Higgs-like particle at LHC: m<sub>h</sub> ~ 125 GeV



- Further investigations into the scalar sector
  - It may have richer structure
- Two-Higgs doublet are the simplest extension in the scalar sector of SM

#### **2HDM: Scalar sector**

- Two identical SU(2) doublets scalar fields  $\Phi_1$  and  $\Phi_2$
- Most general scalar potential invariant under electroweak symmetry (tree-level)

$$\begin{split} V &= m_{11}^2 \, \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \, \Phi_2^{\dagger} \Phi_2 - m_{12}^2 \, \left( \Phi_1^{\dagger} \Phi_2 + \Phi_2^{\dagger} \Phi_1 \right) + \frac{\lambda_1}{2} \left( \Phi_1^{\dagger} \Phi_1 \right)^2 + \frac{\lambda_2}{2} \left( \Phi_2^{\dagger} \Phi_2 \right)^2 \\ &+ \lambda_3 \, \Phi_1^{\dagger} \Phi_1 \, \Phi_2^{\dagger} \Phi_2 + \lambda_4 \, \Phi_1^{\dagger} \Phi_2 \, \Phi_2^{\dagger} \Phi_1 + \frac{\lambda_5}{2} \left[ \left( \Phi_1^{\dagger} \Phi_2 \right)^2 + \left( \Phi_2^{\dagger} \Phi_1 \right)^2 \right], \end{split}$$

- 8 degrees of freedom  $\,\rightarrow\,$  3 correspond to the W, Z bosons masses
- The other 5 are manifested as physical particles
- Free parameters of the model:
  - tanβ: ratio between the two vev's
  - $\alpha$ : mixing angle of CP-even fields
  - Masses of the new particles



• 4 types of 2HDM: different coupling to fermions

| Туре                                            | $u_R$                                                                   | $d_R$                                                                            | $e_R$                                        |        |
|-------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------|--------|
| Type I<br>Type II<br>Lepton-specific<br>Flipped | $egin{array}{c} \Phi_2 \ \Phi_2 \ \Phi_2 \ \Phi_2 \ \Phi_2 \end{array}$ | $egin{array}{c} \Phi_2 \ \Phi_1 \ \Phi_2 \ \Phi_1 \ \Phi_2 \ \Phi_1 \end{array}$ | $\Phi_2$<br>$\Phi_1$<br>$\Phi_1$<br>$\Phi_2$ | → MSSM |

• 4 types of 2HDM: different coupling to fermions

| Туре                                            | $u_R$                                                                   | $d_R$                                                                            | $e_R$                                                   |        |
|-------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------|--------|
| Type I<br>Type II<br>Lepton-specific<br>Flipped | $egin{array}{c} \Phi_2 \ \Phi_2 \ \Phi_2 \ \Phi_2 \ \Phi_2 \end{array}$ | $egin{array}{c} \Phi_2 \ \Phi_1 \ \Phi_2 \ \Phi_1 \ \Phi_2 \ \Phi_1 \end{array}$ | $\Phi_2$<br>$\Phi_1 \checkmark$<br>$\Phi_1$<br>$\Phi_2$ | → MSSM |

• Couplings with SM particles modified by factors  $(g_{\Phi,\bar{q}/V,qV})$  depending of  $\alpha$  and  $\beta$ 

| Φ | $g_{\Phi ar{u} u}$     |                        | 9                      | $g_{\Phi VV}$           |                  |
|---|------------------------|------------------------|------------------------|-------------------------|------------------|
|   | Type I                 | Type II                | Type I                 | Type II                 | Type I/II        |
| h | $\cos lpha / \sin eta$ | $\cos lpha / \sin eta$ | $\cos lpha / \sin eta$ | $-\sin lpha / \cos eta$ | $\sin(eta-lpha)$ |
| H | $\sin lpha / \sin eta$ | $\sin lpha / \sin eta$ | $\sin lpha / \sin eta$ | $\cos lpha / \cos eta$  | $\cos(eta-lpha)$ |
| A | $\coteta$              | $\coteta$              | $\coteta$              | aneta                   | 0                |

12

• 4 types of 2HDM: different coupling to fermions

| Туре                                            | $u_R$                                                                   | $d_R$                                                                            | $e_R$ |        |
|-------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------|--------|
| Type I<br>Type II<br>Lepton-specific<br>Flipped | $egin{array}{c} \Phi_2 \ \Phi_2 \ \Phi_2 \ \Phi_2 \ \Phi_2 \end{array}$ | $egin{array}{c} \Phi_2 \ \Phi_1 \ \Phi_2 \ \Phi_1 \ \Phi_2 \ \Phi_1 \end{array}$ |       | → MSSM |

•  $|\sin(\beta - \alpha)| = 1 \rightarrow h$  scalar looks like SM Higgs boson

 $H^{SM} = h * sin(\beta - \alpha) + H * cos(\beta - \alpha)$ 





- $tan\beta = 1.0$  and  $sin(\beta \alpha) = 0.1$
- WW and ZZ channels are dominant wrt ttbar

Couplings: top quark, b quark and vector boson

| Φ | $g_{\Phi ar{u} u}$     |                        | 9                      | $g_{\Phi VV}$          |                  |
|---|------------------------|------------------------|------------------------|------------------------|------------------|
|   | Type I                 | Type II                | Type I                 | Type II                | Type I/II        |
| h | $\cos lpha / \sin eta$ | $\cos lpha / \sin eta$ | $\cos lpha / \sin eta$ | $-\sinlpha/\coseta$    | $\sin(eta-lpha)$ |
| H | $\sin lpha / \sin eta$ | $\sinlpha/\sineta$     | $\sin lpha / \sin eta$ | $\cos lpha / \cos eta$ | $\cos(eta-lpha)$ |
| A | $\coteta$              | $\coteta$              | $\coteta$              | aneta                  | 0                |





- $tan\beta = 1.0$  and  $sin(\beta \alpha) = 0.5$
- WW and ZZ channels are dominant
  - $\rightarrow$  Coupling with top quark is weaker

Couplings: top quark, b quark and vector boson

| Φ | $g_{\Phi ar{u} u}$     |                        | g                      | $g_{\Phi VV}$          |                  |
|---|------------------------|------------------------|------------------------|------------------------|------------------|
|   | Type I                 | Type II                | Type I                 | Type II                | Type I/II        |
| h | $\cos lpha / \sin eta$ | $\cos lpha / \sin eta$ | $\cos lpha / \sin eta$ | $-\sinlpha/\coseta$    | $\sin(eta-lpha)$ |
| H | $\sin lpha / \sin eta$ | $\sinlpha/\sineta$     | $\sin lpha / \sin eta$ | $\cos lpha / \cos eta$ | $\cos(eta-lpha)$ |
| A | $\coteta$              | $\coteta$              | $\coteta$              | aneta                  | 0                |

#### 2HDMs: Type II



- $tan\beta = 1.0$  and  $sin(\beta \alpha) = 1.0$
- SM-like limit
- ttbar channel is dominant
  - $\rightarrow$  Coupling W, Z vanish
- Couplings: top quark, b quark and vector boson

| Φ | $g_{\Phi ar{u} u}$     |                        | g                      | $g_{\Phi VV}$          |                  |
|---|------------------------|------------------------|------------------------|------------------------|------------------|
|   | Type I                 | Type II                | Type I                 | Type II                | Type I/II        |
| h | $\cos lpha / \sin eta$ | $\cos lpha / \sin eta$ | $\cos lpha / \sin eta$ | $-\sinlpha/\coseta$    | $\sin(eta-lpha)$ |
| H | $\sin lpha / \sin eta$ | $\sinlpha/\sineta$     | $\sin lpha / \sin eta$ | $\cos lpha / \cos eta$ | $\cos(eta-lpha)$ |
| A | $\coteta$              | $\coteta$              | $\coteta$              | aneta                  | 0                |

#### 2HDMs: Type I



- $tan\beta = 1.0$  and  $sin(\beta \alpha) = 1.0$
- SM-like limit
- Same couplings with u-type quraks than Type I  $\rightarrow$  ttbar channel is dominant
- Couplings: top quark, b quark and vector boson

| Φ | $g_{\Phi ar{u} u}$     |                        | g                      | $g_{\Phi VV}$          |                  |
|---|------------------------|------------------------|------------------------|------------------------|------------------|
|   | Type I                 | Type II                | Type I                 | Type II                | Type I/II        |
| h | $\cos lpha / \sin eta$ | $\cos lpha / \sin eta$ | $\cos lpha / \sin eta$ | $-\sinlpha/\coseta$    | $\sin(eta-lpha)$ |
| H | $\sin lpha / \sin eta$ | $\sin lpha / \sin eta$ | $\sinlpha/\sineta$     | $\cos lpha / \cos eta$ | $\cos(eta-lpha)$ |
| A | $\coteta$              | $\coteta$              | $\coteta$              | aneta                  | 0                |



ttbar resonances in the lepton+jets channel



- Top-antitop events selected in e/mu + jets channels
- Two types of jets topology: resolved and boosted
- Invariant mass of ttbar candidates are reconstructed
- Background estimation
- Invariant mass spectrum is searched for local excesses/deficits
- Limits are set in the cross-section\*BR if no significant excesses/deficits
- Cross-section\*BR limits translated into bounds on the allowed mass for new particles

#### **Event selection**

- Common selection:
  - Exactly 1 lepton (e or  $\mu$ ) in the acceptance of the detector
  - MET > 20 GeV
  - MTW (transverse mass computed using MET and lepton four-momentum)
    - MET + MTW > 60 GeV
- Boosted selection:
  - $\ge 1$  small-R jet
  - $\geq 1$  large-R jet
  - $\geq 1$  b-tagged small-R
- Resolved selection:
  - Fail boosted selection
  - $\ge 4$  small-R jets
  - $\geq 1$  b-tagged small-R jet
  - $Log_{10}\chi^2 < 0.9$



### Neutrino's reconstruction

- Neutrinos do not interact with the detector material
  - $\rightarrow$  inferred from the total transverse momentum balance
- Neutrino's momentum: transverse component from MET
  - Longitudinal component of the momentum is unknown (pZ)
  - pZ computed imposing an on-shell W mass constrain: lepton + MET system
  - Quadratic equation for pZ:
    - Real solutions:
      - Smallest pZ

$$p_{z,
u}^{\pm} = rac{\mu p_{z,l}}{p_{\mathrm{T},l}} \pm \sqrt{rac{\mu^2 p_{z,l}^2}{p_{\mathrm{T},l}^4} - rac{E_l^2 p_{\mathrm{T},
u}^2 - \mu^2}{p_{\mathrm{T},l}^2}}$$

- Non-real solutions:
  - MET is rescaled and rotated applying the minimum variation necessary to find one real solution

 $\rightarrow$  Imperfect resolution on MET is the most likely explanation for non-real solutions to pZ equation

Chi2 minimization: algorithm used to select the right jet combination to reconstruct mtt



• **Chi2 minimization:** algorithm used to select the right jet combination to reconstruct mtt



Chi2 minimization: algorithm used to select the right jet combination to reconstruct mtt



• **Chi2 minimization:** algorithm used to select the right jet combination to reconstruct mtt



• **Chi2 minimization:** algorithm used to select the right jet combination to reconstruct mtt

$$\chi^{2} = \left[\frac{m_{jj} - m_{W}}{\sigma_{W}}\right]^{2} + \left[\frac{m_{jjb} - m_{jj} - m_{th-W}}{\sigma_{th-W}}\right]^{2} + \left[\frac{m_{jl\nu} - m_{tl}}{\sigma_{tl}}\right]^{2} + \left[\frac{(p_{T,jjb} - p_{T,jl\nu}) - (p_{T,th} - p_{T,tl})}{\sigma_{P_{T,th} - P_{T,tl}}}\right]^{2}$$

- All possible jet permutation are tried
  - Only the permutation with lowest chi2 are used
- Constrains determined from the reconstructed objets matched to the partons



• **Chi2 minimization**: algorithm used to select the right jet combination to reconstruct mtt

$$\chi^{2} = \left[\frac{m_{jj} - m_{W}}{\sigma_{W}}\right]^{2} + \left[\frac{m_{jjb} - m_{jj} - m_{th-W}}{\sigma_{th-W}}\right]^{2} + \left[\frac{m_{jl\nu} - m_{tl}}{\sigma_{tl}}\right]^{2} + \left[\frac{(p_{T,jjb} - p_{T,jl\nu}) - (p_{T,th} - p_{T,tl})}{\sigma_{P_{T,th} - P_{T,tl}}}\right]^{2}$$

Chi2 performance: The algorithm selects the correct combination ~70% of the reconstructible events



#### mtt reconstruction

- Invariant mass of the ttbar pair is the discriminant variable
- ttbar pair is build by summing up the four momentum of jets, lepton and neutrino
- Reconstruction of mtt for the signal of benchmark models considered at different generated mass





# Impact of the detector resolution in the search for 2HDM signal into ttbar

#### 2 HDM signal into tt

- Decay channel:  $H/A \rightarrow t \bar{t}$
- Signal have same initial/final states than the SM bkg
  - Interference (peak/dip structure)

H signal + interference



## Smearing

- Detector smearing as a tool for phenomenology
  - Useful to understand the limitations induced by detectors on an theoretical well motivated analysis
  - Smearing techniques can help to produce rough estimates
- Detector resolution: assuming a gaussian impact
  - ~8% of the reconstructed mass for the ATLAS detector
  - Convolution of the mtt spectra with a gaussian of 8% width
    - $\sigma/\mu$  is interpreted as the detector resolution

#### Impact of detector resolution

 The smearing will help to check the impact of the resolution of ATLAS on the scalar signal w/ interference

Loss of sensitivity  $\rightarrow$  Signal more difficult to detect

• Improving the mtt resolution to balance the detector resolution:

 $\rightarrow$  Let use the information of the ttbar system





#### Jet rescaling

#### Rescaling the jets from W<sub>h</sub>

- Considering reconstructible events
- Rescale the jets 4-momentum  $(J_1 + J_2)$  to get the Mw value at the PDG
  - M<sub>w</sub> = 80.4 GeV
  - $k^{2}(\mathbf{J}_{1} + \mathbf{J}_{2})^{2} = (M_{W})^{2}$
- Top mass and mtt resolutions are improved





#### Rescaling the b-jets

- Rescale the b-jet 4-momentum:
  - Constraining the top mass ( $M_{top} = 172.5 \text{ GeV}$ )
- The jet rescaling absorbs the uncertainties on the mass reconstruction
- Improvement on the mtt resolution





#### Improvement of mtt resolution

• Relative mass difference:

$$rac{\Delta_{m_{tt}}}{m_{tt}^{true}} = rac{m_{tar{t}}^{ extsf{reco}} - m_{tar{t}}^{ extsf{true}}}{m_{tar{t}}^{ extsf{true}}}$$

• Gaussian fit to extract the mass resolution



# mtt resolution vs scalar mass (assuming perfect reconstruction)

- $\sigma$ (mtt diff rel) for all the mass points:
  - Low mass: improvement after each rescaling
  - High mass: degradation after the rescaling of the leptonic top
  - Uncertainty in the MET direction has large impact at high mass





Improvement wrt the no-rescaling case

$$1 - rac{\sigma_{Cal} - \sigma_{noCal}}{\sigma_{noCal}}$$

 ~25% improvement after W<sub>h</sub> and b<sub>h</sub> rescaling

# mtt resolution vs scalar mass (χ² algorithm)

- Same tendency using the standard reconstruction algorithm
  - High mass: degradation after the rescaling of the leptonic top





- ~20% improvement after W<sub>h</sub> and b<sub>h</sub> rescaling
- Reasonable considering the improvement in the ideal case

## Conclusion

- ttbar decay mode for the scalar signal is dominant in a region of the parameters space
- Improving the mass resolution will help to balance the impact of the detector resolution

Rescaling of Wh and bh:

- → ~25% in the assuming perfect reconstruction
- → ~20% using the chi2 minimization
- The calibration of the bl degrades the mtt resolution (investigations ongoing)
   Bad energy/direction resolutions of MET
- Next prospect: Rescaling the large-R jet for the boosted topology This study will be used in the search for tt resonance at 13 TeV

## Back up



40

Various BSM models predict resonances in the  $m_{t\bar{t}}$  spectrum

#### Warped extra-dimensions (Randall-Sundrum)

- Kaluza-Klein (KK) gluon (g<sub>KK</sub>) Spin-1, width: 10-40%
- KK/Bulk-RS graviton (G<sub>KK</sub>) Spin-2, width: 3-6%

#### Top-colour (TC) model:

Leptophobic TC Z' boson (Z') Spin-1, width: 1.2%

#### Searches in all decay channels:

- All-hadronic ۰
- 1 lepton+jets 0
- (Dileptonic)



**Bulk-RS Graviton Branching Ratios** 

#### 2 HDM signal into Tt

- Decay channel:  $H/A \rightarrow t \bar{t}$
- Signal have same initial/final states than the SM bkg
  - Interference (peak/dip structure)



- $m_{t\bar{t}}$  at truth level:
  - SM bkg
  - Signal + bkg
  - Signal + bkg + interference

#### 2 HDM signal into tt

• Impact of the detector resolution (Smearing by 8%)

Loss of sensitivity  $\rightarrow$  Signal more difficult to detect

- Improving the mtt resolution to balance the detector resolution:
  - → Jet Rescaling



• 4 types of 2HDM: different coupling to fermions

| Туре                                            | $u_R$                                                                   | $d_R$                                                                            | $e_R$                                                                   |
|-------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Type I<br>Type II<br>Lepton-specific<br>Flipped | $egin{array}{c} \Phi_2 \ \Phi_2 \ \Phi_2 \ \Phi_2 \ \Phi_2 \end{array}$ | $egin{array}{c} \Phi_2 \ \Phi_1 \ \Phi_2 \ \Phi_1 \ \Phi_2 \ \Phi_1 \end{array}$ | $egin{array}{c} \Phi_2 \ \Phi_1 \ \Phi_1 \ \Phi_2 \ \Phi_2 \end{array}$ |

• $|sin(\beta - \alpha)| = 1 \rightarrow h$  scalar looks like SM Higgs boson

| Н <sup>SM</sup> = | h* | $sin(\beta)$ | $-\alpha$ ) | +H | * COS | s <b>(</b> β – | α) |
|-------------------|----|--------------|-------------|----|-------|----------------|----|
|-------------------|----|--------------|-------------|----|-------|----------------|----|

| $\Phi$ | $g_{\Phi ar{u} u}$     |                        | g                      | $g_{\Phi VV}$          |                  |
|--------|------------------------|------------------------|------------------------|------------------------|------------------|
|        | Type I                 | Type II                | Type I Type II         |                        | Type I/II        |
| h      | $\cos lpha / \sin eta$ | $\cos lpha / \sin eta$ | $\cos lpha / \sin eta$ | $-\sinlpha/\coseta$    | $\sin(eta-lpha)$ |
| H      | $\sin lpha / \sin eta$ | $\sin lpha / \sin eta$ | $\sin lpha / \sin eta$ | $\cos lpha / \cos eta$ | $\cos(eta-lpha)$ |
| Α      | $\coteta$              | $\coteta$              | $\coteta$              | aneta                  | 0                |

44

- Reconstructible events
  - Partons matched to the physics objects
  - Perfect reconstruction assumption
- Efficiencies of the reconstructible events
  - Between 50% and 60% after the matching of all the objects





45

#### 2 HDM signal into Tt

- Decay channel:  $H/A \rightarrow t \bar{t}$
- Signal have same initial/final states than the SM bkg
  - Interference (peak/dip structure)



H signal

H signal + interference



#### Lepton+jet channel: Physics objects

- Only considered electron/muon in the final state
- Mini-isolation: [ $\Sigma$  pT of tracks within a variable cone size]/pT
  - Stable performance with efficiency close to 100%





 a) Fixed-cone isolation: Cut on ∑p<sub>T</sub> (∑E<sub>T</sub>) in cone with fixed radius R



b) Mini-isolation: Cut on ∑p<sub>T</sub> (∑E<sub>T</sub>) in cone with radius R=k/p<sub>T</sub><sup>1</sup>

#### Lepton+jet channel: Physics objects

#### • Jets:



• B-tagging is applied to small-R jets

### **2HDM production mode**



• Gluon fusion  $(gg \rightarrow A/H)$  is the dominant channel