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Quantum physics : a particle is a wave

It can fluctuate in position, momentum

Observables have averaged quantities

Quantum field physics : special relativity

particles can be created and annihilated 

fluctuations of the vacuum
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reality, inflation ends at some finite time, and the approximation (60) although valid at early times,

breaks down near the end of inflation. So the surface ⌧ = 0 is not the Big Bang, but the end of

inflation. The initial singularity has been pushed back arbitrarily far in conformal time ⌧ ⌧ 0, and

light cones can extend through the apparent Big Bang so that apparently disconnected points are

in causal contact. In other words, because of inflation, ‘there was more (conformal) time before

recombination than we thought’. This is summarized in the conformal diagram in Figure 9.

6 The Physics of Inflation

Inflation is a very unfamiliar physical phenomenon: within a fraction a second the universe grew

exponential at an accelerating rate. In Einstein gravity this requires a negative pressure source or

equivalently a nearly constant energy density. In this section we describe the physical conditions

under which this can arise.

6.1 Scalar Field Dynamics

reheating

Figure 10: Example of an inflaton potential. Acceleration occurs when the potential energy of

the field, V (�), dominates over its kinetic energy, 1
2 �̇

2. Inflation ends at �end when the

kinetic energy has grown to become comparable to the potential energy, 1
2 �̇

2 ⇡ V . CMB

fluctuations are created by quantum fluctuations �� about 60 e-folds before the end of

inflation. At reheating, the energy density of the inflaton is converted into radiation.

The simplest models of inflation involve a single scalar field �, the inflaton. Here, we don’t

specify the physical nature of the field �, but simply use it as an order parameter (or clock) to

parameterize the time-evolution of the inflationary energy density. The dynamics of a scalar field

(minimally) coupled to gravity is governed by the action

S =

Z
d4x

p
�g


1

2
R +

1

2
gµ⌫@µ� @⌫� � V (�)

�
= SEH + S� . (61)

The action (61) is the sum of the gravitational Einstein-Hilbert action, SEH, and the action of a

scalar field with canonical kinetic term, S�. The potential V (�) describes the self-interactions of the

31
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Statistical fluctuations in the early universe
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Perturbative theory fails!

New techniques for computing QFT : 
Non perturbative renormalisation 
group
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Full quantum effective potential

• The effective potential :

gravitational effects 

• integrate over the fluctuations :
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Vk(�) ! V (�) as k ! 1
Vk(�) ! V0(�) as k ! 0
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Effective potential :
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3

The function Ĝκ is defined on the closed momentum con-
tour Ĉ and can be decomposed in terms of a statistical
(F̂κ) and a spectral (ρ̂κ) function as [29]

Ĝab
κ (p, p′) = F̂ ab

κ (p, p′)−
i

2
sign

Ĉ
(p− p′)ρ̂abκ (p, p′), (11)

where the sign function is understood on the contour.
Note the symmetry properties F̂ ab

κ (p, p′) = F̂ ba
κ (p′, p) and

ρ̂abκ (p, p′) = −ρ̂baκ (p′, p). Finally, equal-time commutation
relation imply ∂pρ̂abκ (p, p′)|p=p′ = −δab/Zκ. Using Eqs.
(8)-(11) in (4), we obtain, after simple manipulations,

V̇κ(φ) =
1

2

∫

ddp

(2π)d
Ṙκ(p)

F̂ aa
κ (p, p)

p
. (12)

We note, in particular, that the volume Ω factors out in
the p-representation.
Let us first illustrate the flow equation in the deep IR

in the case N = 1. With the ansatz (9), the correlator
(5) satisfies the inhomogeneous equation
[

∂2
p + 1−

ν2κ − 1
4 − Z−1

κ Rκ(p)

p2

]

Ĝκ(p, p
′) =

δ
Ĉ
(p− p′)

iZκ
,

(13)
where we defined νκ =

√

d2/4− V ′′
κ (φ)/Zκ. Equiva-

lently the functions F̂κ and ρ̂κ satisfy a similar equation
with right hand side set to zero. The latter are solved
as F̂κ(p, p′) = Z−1

κ Re {vκ(p)v⋆κ(p′)} and ρ̂κ(p, p′) =
−2Z−1

κ Im {vκ(p)v⋆κ(p′)} where the function vκ satisfies
the same homogeneous equation. Following [27], we em-
ploy the simple Litim regulator [32]

Rκ(p) = Zκ(κ
2 − p2)θ(κ2 − p2), (14)

for which one has

v′′κ(p) +

(

1−
ν2κ − 1

4

p2

)

vκ(p) = 0 for p ≥ κ, (15)

v′′κ(p)−
ν̄2κ − 1

4

p2
vκ(p) = 0 for p ≤ κ (16)

where ν̄κ =
√

ν2κ − κ2. Equation (12) becomes

V̇κ(φ) =
Ωd

2(2π)d

∫ κ

0
dp pd−1

[

(2− ηκ)κ
2 + ηκp

2
]

|vκ(p)|2 .

(17)
Demanding the Bunch-Davies vacuum at large momen-

tum [27], equations (15) and (16) are solved as

vκ(p) =

√
πp

2
eiϕκHνκ(p) for p ≥ κ, (18)

vκ(p) =

√
πp

2
eiϕκ

[

c−κ
kν̄κ

pν̄κ
+ c+κ

pν̄κ

kν̄κ

]

for p ≤ κ, (19)

with ϕκ = π
2 (νκ + 1

2 ) and where Hν(z) is the Hankel
function of the first kind. The continuity of vκ(p) and
v′κ(p) at at p = κ imposes

c±κ =
1

2

[

Hνκ(κ)±
κ

ν̄κ
H ′

νκ(κ)

]

. (20)
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FIG. 1: The flow of the potential in the LPA (ηκ = 0) with
the ansatz Vκ(φ) = λκ(ρ− ρ̄κ)2/2, where ρ = φ2/2, for N = 1
and d = 3 (A3 = 3/16π2). The initial parameters at κ = 1
are λ1 = ρ̄1 = 0.1. The curves from right to left correspond to
ln 1/κ = 0, 0.1, 0.2, 0.3, 0.4, 0.51. The potential flattens as its
minimum decreases and reaches zero at a finite scale (leftmost
curve).

The momentum integral in (17) can be performed exactly
[27, 33]. However, we can readily obtain the flow equation
in the IR regime, κ ≪ 1. We shall see below that, in that
case, νκ ∈ R. Using Hν(z) =

2νΓ(ν)
iπ z−ν[1 + O(z2)] and

the definition of ν̄κ, we find, up to relative corrections
of O(κ2), c−κ = 2νκΓ(νκ)/iπκνκ and c+κ = −(κ/2νκ)2c−κ .
One easily checks that the contribution to (17) from c+κ in
(19) is thus IR supressed. After some simple calculations
we obtain, up to relative corrections of O(κ2),

V̇κ(φ) =
ΩdFνκ

2(2π)d
κd+2−2νκ

{

2− ηκ
d− 2ν̄κ

+
ηκ

d+ 2− 2ν̄κ

}

,

(21)
with Fν = [2νΓ(ν)]2/4π. Notice the κ−2νκ factor, which
arises from enhanced IR fluctuations.
To obtain a form of the flow equation with no explicit

dependence on κ, we introduce the rescaled variable

ρ =
Zκ

2
κ2φ2 and Uκ(ρ) = Vκ(φ), (22)

such that V ′′
κ (φ) = κ2[U ′

κ(ρ)+2ρU ′′
κ (ρ)]. We thus have d−

2νκ = O(κ2) and d−2ν̄κ ≈ 2
dκ

2[1+U ′
κ(ρ)+2ρU ′′

κ (ρ)] and
the first term in bracket in (21) gets further IR enhanced
by a factor κ−2. We obtain, in the limit κ ≪ 1,

U̇κ(ρ) = (2 − ηκ)

{

−ρU ′
κ(ρ) +

Ad

1 + U ′
κ(ρ) + 2ρU ′′

κ (ρ)

}

,

(23)
with Ad = dΩdFd/2/4(2π)

d = dΓ(d/2)/8πd/2+1 and
where the prime denotes a derivative with respect to ρ.
As announced, the flow equation (23) is similar to the
corresponding one in Euclidean space RD with D = 0
[25], up to the factor Ad. One thus expects the phase
structure in dS space to be qualitatively the same as that
of the flat Euclidean theory in low dimension.
The minimum ρ̄κ of Uκ(ρ) is defined as U ′

κ(ρ̄κ) = 0.
Using U̇ ′

κ(ρ̄κ)+ ˙̄ρκU ′′
κ (ρ̄κ) = 0, one gets the flow equation

˙̄ρκ = (2− ηκ)

{

ρ̄κ +Ad
3 + 2ρ̄κgκ

(1 + 2ρ̄κλκ)2

}

, (24)

Try a bare potential with vacuum 
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Easy to write the QFT equations in an expanding 
universe.

Difficult to solve them.

The usual perturbation theory fails : non-perturbative 
physics (symmetry restoration).

Non-perturbative approximations capture these physics.

A consistent theory of inflation must take quantum 
effects into account. 

Conclusion



Thank you!


