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The frequency spectrum of gravitational waves

quantum fluctuations in the very early Universe
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White paper : supported by more than 1200 scientists

THE GRAVITATIONAL UNIVERSE

A science theme addressed by the eLISA mission observing the entire Universe

Prof. Dr. Karsten Danzmann
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30167 Hannover

Germany

karsten.danzmann@aei.mpg.de
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The last century has seen enormous progress in our understanding of
the Universe. We know the life cycles of stars, the structure of galaxies,
the remnants of the big bang, and have a general understanding
of how the Universe evolved. We have come remarkably far using
electromagnetic radiation as our tool for observing the Universe.
However, gravity is the engine behind many of the processes in the
Universe, and much of its action is dark. Opening a gravitational
window on the Universe will let us go further than any alternative.
Gravity has its own messenger: Gravitational waves, ripples in the
fabric of spacetime. They travel essentially undisturbed and let us peer
deep into the formation of the first seed black holes, exploring redshifts
as large as z - 20, prior to the epoch of cosmic re-ionisation. Exquisite
and unprecedented measurements of black hole masses and spins will
make it possiblt to trace the history of black holes across all stages
of galaxy evolution, and at the same time constrain any deviation
from the Kerr metric of General Relativity. eLISA will be the first ever
mission to study the entire Universe with gravitational waves. eLISA
is an all-sky monitor and will offer a wide view of a dynamic cosmos
using gravitational waves as new and unique messengers to unveil
The Gravitational Universe. It provides the closest ever view of the
early processes at TeV energies, has guaranteed sources in the form
of verification binaries in the Milky Way, and can probe the entire
Universe, from its smallest scales around singularities and black
holes, all the way to cosmological dimensions.
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Some principles to redefine the mission LISA & NGO:

* Keep the same principle of measurement and the same payload concept
* Innovate the least possible with respect to LISAPathfinder

* Optimize the orbit and the launcher: remove masse

 Simplify the payload

Daughter S/C Daughter S/C

Solutions

* Remove one of the triangle arms:
mother-daughter configuration

* Reduce the arm length from 5 Mkm to 1 Mkm

* New orbit closer to Earth (drift away)

* Inertial sensor identical to LISAPathfinder

* Nominal mission length: 2 years (ext. to 5 years)

Mother S/C



Roadmap for eLISA

eLISA Science Theme selected as L3 in 2013
Technology Roadmap work 2013 - 2015
Possibly continued Mission Concept Study 2014 — 2015
Successful LISA Pathfinder flight in 2015

— Assessment of technology status

— Possibly additional work, e.g. breadboarding
of Payload+ (1 to 4) years

Selection of Mission Concept in 2015 + (1 to 4)
Possibly Start EQM of complete Payload 2015 + (2 to 5)
Start of Industrial Definition Study 2015 + (2 to 5)
Start of Industrial Implementation 2015 + (6 to 9)
Launch in 2015 + (15 to 18)



The European consortium for eLISA

Instrument Board:
Instrument-PI (D), National Pls (I, F, UK, CH, DK, ES)

Phasemeter: ' 1SS: ' Phasemeter:

Instrument . -
Lead Dignostics

Integration TBD:
Design FDIR

Breadboard Integration
FPGA code ' '

Hardware ISS Caging

Testing




The science of eLISA

Massive binaries
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Sensitivity (1/ VHz) (i.e. equivalent-strain rms PSD)

LISA sensitivity
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Astronomy of supermassive black holes in the 2020s

Distance (in redshift)

Future Obs.EM
LSST, JWST, EELT,
X rays

aLIGO, aVIRGO, S SKA, P.ulsar
KAGRA Timing
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Test of gravity in strong regime

Plunge Merger Ringdown

N

Signal in X-channel (x1072%)

S A L o 0 &2 o o

2000 4000
(s)
Figure 2.23.: Gravitatibnal wave signal for the final few orbits, plunge, merg /and ringdown of a coalescing binary. The
total mass of syste (1 +2) = 2% 10° Mo, mass ratio m\/m, = 2, spin mégnitudes a; = 0.6 ay = 0.55, misalignment
between spins andrbital I few degrees, the distance to thesource z = 5. The inset shows the signal on a
larger data spa

RG: approximation postNewtonienne Théorie de perturbation

Loy = 103 Ly



precession of orbatal plane 5,
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EMRI (Extreme Mass Ratio Inspiral) N
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wavefarm amplitude
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Gravitational waves produced by massive objects S e
(stars or black holes of mass10 to 100 M) falling
into the horizon of a supermassive black hole.

Allows to identify in a unique way the geometry of space-time close to a black hole
(the object cycles some 10° times before plunging into the horizon)



Data analysis
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Challenge: signals from the whole Universe all with a latge S/N ratio.
How to separate them?

(# ground interferometers)



important progress of the analysis methods these last years
thanks to the Mock LISA Data Challenge

Challenge 2.2 (training)

PSD of frac. freq. fluct. [1/Hz, one-sided)
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Data processing Data policy: all data publicly released

S/IC
| A
ESSCOREIANCS Telemetry
Ground
Stations
A
Telecommands l Telemetry
MOC
tous membres A
consortium LIPOTISORSS i l Raw & Level 0 Data
uest
> Users
Instrument Science e ———
Operations Operations Data products
Team Centre

Event notices

Calib. files

Prelim.

L1 data | L2&3 data T

Data Processing Centre

France




Centre Francois Arago (APC): external data center for the LISAPathfinder mission (2015-2016)
foreseen data processing center for eLISA

Francois Arago Centre (FACe)

LISAPathfinder exercise at FACe
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People matter, results count.



The purpose of the study:

Following theAPC study of a DPC for the L1 proposal, it was decided to
request CNES to perform a “Phase 0” study to consolidate the evaluation of
human resources and of the cost of the infrastructure.

The aim was to evaluate costs relative to the French contribution and the
fraction of this that the CNES would cover.

As the eLISA DPC was the first one to address the problem of data analysis
of a GW mission in space, the phase 0 was also the occasion to see what sort
of innovative solutions could be envisioned.




Q The Main Outcomes of the Study \‘(

The study has identified a number of items:
* The eLISA DPC will be the first one of its kind and certain risks/issues can be identified:
* The uncertainty in the number of sources which will be detected,
* The CPU power necessary for specific events, e.g coalescences of MBHB,

* The relation between the SOC/IOTs and the DPC, particularly in relation to data
quality.
* The assumed launch date (2034) and the development of the DPC up to the launch.
* The evaluation was based on a 2034 launch and 5 year mission + 2 years Post-Op.

* After evaluation, the amount of storage was not considered to be a driver,

* The need for “software assistance” to the pipeline consortium programmers was
identified.

* The MLDCs were considered as a valuable tool to define the requirements of the DPC,
particularly up to mission selection.

* A development platform (software, input/output conventions, databases, version
control,...) should be defined /adopted by the consortium and tested during the
upcoming MeLDCs

* The study suggests that the period up to mission selection should be used to define an
“Early DPC Setup”. It recommends that CNES assists the consortium in this period.
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Mutualized
infrastructures

eLISA-dedicated
infrastructures

Example: GAIA

eLISA Consortium

Non-selected ownership & control St .
Scenario (reservedinstances) ownership
(not enough
elasticity, Cloud will
be mainstream)

L'uamp’e E..-l:-l

© @

——

On-demand
instances

Reserved
instances

Full control over Less elastic
infrastructures in (vears)
the long term. Higher cost.

© ©

— —

Combination between
Reserved & on-
demand instances to
be optimized

High Contingency
availability. plan to deal
Lower cost. with supplier in

More elastic
(months)
Operations as a
service.

the long term

Physical Infrastructures criteria &

High
availability.
Most elastic

(hours)

3 criteria,
4 scenarios

nnnnnnnnnnnnnnnn

uuuuuuuuu

Contingency
plan to deal
with supplier in
the long term.

22



ends
. aY \og .
Froﬂt\e“ hno o
scend Ot‘ S_a_sere\lr\c
gxame! b: in«05” =
cou

infrastructures

infrastructures,
eLISA
consortium
ownership &
control

Physical Infrastructures scenarios:
characteristic

Scenario 3
Cloud
infrastructures,
Reserved
instances

Scenario 4
Cloud
infrastructures,
On-demand
instances

Pipelines & Algorithms

Desighed, Owned & Operated by NGO Consortium

NGO ReferencePlatform
(Software)

Designed,
Owned &
Operated by
\[cle;
Consortium

Desighed, Owned and mostly Operated by NGO
Consortium. Low-level layers could be operated by key

partners or third-party

Operating System (OS)

Hardware

Controlled &
Operated by
\[cle;

Consortium

Controlled &
Operated by
NGO
Consortium or
key partners
(eg: IN2P3, helix
nebula)

Controlled & Operated by third-

party




Simulated use case of infrastructure

Unanticipated

—
)
|
)

w <

2>

o ©

o s
o
S
<
—

0o

c

=

| 9

s 2

QO v

v >

>2

X ©

(7]

2
o
o
(Fp)
(aV]

2000

1000
500

J2 3 J4 J5 16 J7 J8 19 Jio  Ji1 J12 )13 Jj14 )15 e J17 )18 J19 J200 21

11

2 Max # of Cores For Recurring analysis

Max # of Cores for sum of Peaks & Recurring

Scenario 4

Scenarios 1, 2 and 3
Dedicated or Reserved infrastructure

Purely on-demand infrastructures

o — o
1=y o 1=y
S n S
& “ _

501

I
e
)
—

/\2283

13 14 15 16 J7 18 19 J10 J11 J12 113 114 J15 J16 117 118 J19 120 J21
1 Max # of Cores For Recurring analysis

Max # of Cores for sum of Peaks & Recurring

12

=¥=Scenario On demand resources

=3 =3 =3 o o
S 8 & 8 8
2 8 @® &8 =&
& & 4 S
—
L -
S
=
b
RS -
e
=2)
ﬂ/ﬁMﬁfﬂNf/////////////////// =

/////////////////////

Sl

S
L

a

S
T
R
RSN
ey

L

S
L
faiitan
[

HE

S

ﬂﬁﬂﬂﬁﬂﬁ/f

S

////////////////////

e

3 S
L
u//////////////

2000
1500
1000

500

1 T A O S e (VA i ]

11

Max # of Cores for sum of Peaks & Recurring 11 Max # of Cores For Recurring analysis

# Scenario dedicated internal means

= This scenario maximizes resource allocation by providing on-

= These scenarios are characterized by an initial investment

demand hosting according to on-the-fly needs. It allows

managing resource needs, without facing any initial
investment: resource allocation depends upon the

instantaneous needs of the resources

equals to maximum needs to be sure to be able to cover

resource needs

24



Q The Main Outcomes of the Study \‘(

The study has identified a number of items:
* The eLISA DPC will be the first one of its kind and certain risks/issues can be identified:
* The uncertainty in the number of sources which will be detected,
* The CPU power necessary for specific events, e.g coalescences of MBHB,

* The relation between the SOC/IOTs and the DPC, particularly in relation to data
quality.
* The assumed launch date (2034) and the development of the DPC up to the launch.
* The evaluation was based on a 2034 launch and 5 year mission + 2 years Post-Op.

* After evaluation, the amount of storage was not considered to be a driver,

* The need for “software assistance” to the pipeline consortium programmers was
identified.

* The MLDCs were considered as a valuable tool to define the requirements of the DPC,
particularly up to mission selection.

* A development platform (software, input/output conventions, databases, version
control,...) should be defined /adopted by the consortium and tested during the
upcoming MeLDCs

* The study suggests that the period up to mission selection should be used to define an
“Early DPC Setup”. It recommends that CNES assists the consortium in this period.




Cost and Human ressources

b b 0,25 0,25 1 1 1
Manager
Governance : DPC
Sclentist APC 0,25 0,25 1 1 1
Governance: DPC
AR AR CNES 0,05 0,25 1 1 1
Human  Iscience Operations |APC 1 0 0 1 2
e I SaTT
(FTE) o CNES 0,05 0,5 1 2,5 2
Support
Reference Platform
Development & 0.5
P i CNES 0,5 2,5 3 2
Team)
Total FTE (per year) 1 1,75 6,5 9,5 9
Total man.year Y - 3,5 52 57 18

Phase 0, A

Phases B, C | Phases C, D

Early DPC



Why start so early?

* allow as soon as possible the community to develop code in a coordinated way: this

is very important if one has to release the data publicly.

 coordinate with the ground interferometers

* the data will address a large community (astrophysicists) which is not used to this kind of
data: provide simulated data and associated software to get acquainted with such data.

* because this is a discovery mission, the development of code will not stop with the
launch: conceive the centre and its development platform in way that allows flexibility
and adapt to new discoveries or new theories; better start early to benefit evolution of
thinking in coming years.



Website eLISA

https://www.elisascience.org/
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L I S A We will observe gravitational waves in space
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The Gravitational Universe:
You can support the
Gravitational Universe
science theme, as addressed
by the eLISA mission concept.

onment testing. Credit: Astrium UK

eLISA will be a large-scale space mission designed to detect one of the most elusive phenomena in
astronomy - gravitational waves. With eLISA we will be able to survey the entire universe directly with
gravitational waves, to tell us about the formation of structure and galaxies, stellar evolution, the early
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