Higgs inflation and large tensor-to-scalar ratio – status and predictivity

Fedor Bezrukov

CERN & University of Connecticut & RIKEN-BNL Research Center USA

June 10–13, 2014 Comsological Frontiers in Fundamental Physics APC, Paris France

Outline

Introduction – Standard Model and the reality of the Universe

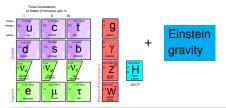
Higgs inflation – tree level

- The model with non-minimal gravity coupling
- Predictions: CMB parameters

Higgs inflation – Quantum corrections

- Background dependent cut-off scale
- Loop corrections at inflation
- Large r possibility

Standard Model – describes nearly everything

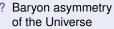


Describes

- all laboratory experiments electromagnetism, nuclear processes, etc.
- all processes in the evolution of the Universe after the Big Bang Nucleosynthesis (T < 1 MeV,
 - *t* > 1 sec)

Experimental problems:

- Laboratory
 - ? Neutrino oscillations
- Cosmology



Satance from center of colours ----

? Dark Matter

L_t/E_n (km/MeV)

Data - BG - Geo Ø

- ? Inflation
- ? Dark Energy

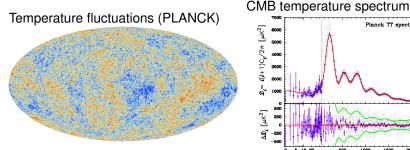
Minimal extensions of the SM to account for everything

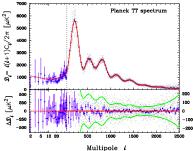
Should explain everything	
 Neutrino oscillations)
 Dark Matter 	> vMSM
 Baryon asymmetry of the Universe 	
• Inflation	this talk – with Higgs

in a minimal way

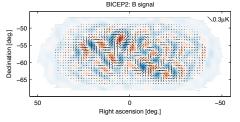
- Introduce minimal amount of new particle/parameters
 - Simple
 - Predictive
- No new scales up to gravity/inflation
 - With scale invariance removes hierarchy problem
 - Allows to make relations between inflation and particle physics

Perturbations at inflation are observable in CMB

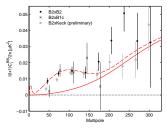




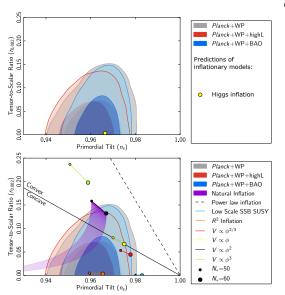
B-mode Polarization (BICEP2)



B-mode polarization spectrum

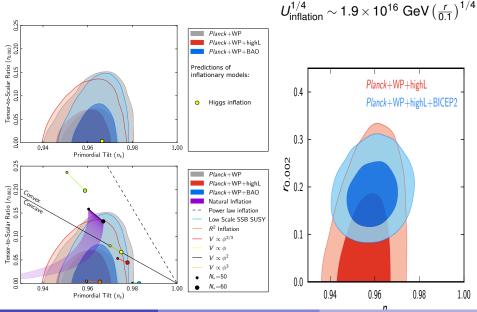


Inflationary parameters from CMB



$$U_{
m inflation}^{
m 1/4} \sim 1.9 imes 10^{
m 16}~{
m GeV} \left(rac{r}{
m 0.1}
ight)^{
m 1/4}$$

Inflationary parameters from CMB

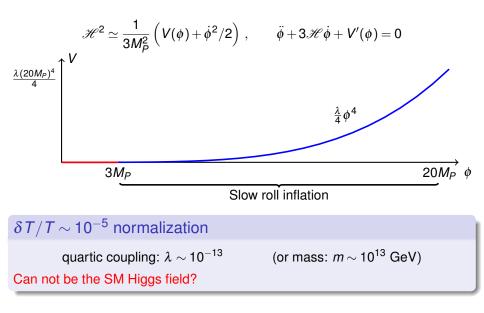


Fedor Bezrukov (CERN&UCONN&RBRC)

iggs inflation and large tensor-to-scalar ratio – statu

June 13 2014, APC 6 / 25

Chaotic inflation-a scalar field



Non-minimal coupling to gravity solves the problem

Quite an old idea

For a scalar field coupling to the Ricci curvature is possible (actually *required* by renormalization)

- A.Zee'78, L.Smolin'79, B.Spokoiny'84
- D.Salopek J.Bond J.Bardeen'89

Scalar part of the (Jordan frame) action

$$S_J = \int d^4x \sqrt{-g} \left\{ -\frac{M_P^2}{2}R - \xi \frac{h^2}{2}R + g_{\mu\nu}\frac{\partial^{\mu}h\partial^{\nu}h}{2} - \frac{\lambda}{4}(h^2 - v^2)^2 \right\}$$

- *h* is the Higgs field; $M_P \equiv \frac{1}{\sqrt{8\pi G_N}} = 2.4 \times 10^{18} \text{GeV}$
- SM higgs vev $v \ll M_P/\sqrt{\xi}$ can be neglected in the early Universe
- At $h \gg M_P / \sqrt{\xi}$ all masses are proportional to h scale invariant spectrum!

[FB, Shaposhnikov'08]

Conformal transformation – nice way to calculate

It is possible to get rid of the non-minimal coupling by the conformal transformation (change of variables)

$$\hat{g}_{\mu
u}=\Omega^2 g_{\mu
u}\,,\qquad \Omega^2\equiv 1+rac{\xi\,h^2}{M_P^2}$$

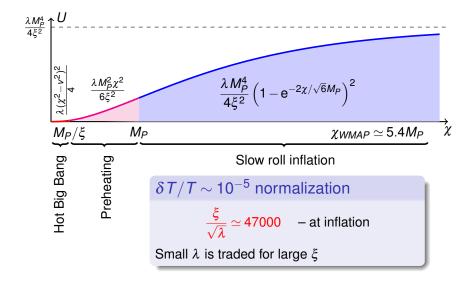
Redefinition of the Higgs field to get canonical kinetic term

$$\frac{d\chi}{dh} = \sqrt{\frac{\Omega^2 + 6\xi^2 h^2/M_P^2}{\Omega^4}} \implies \begin{cases} h \simeq \chi & \text{for } h < M_P/\xi \\ \Omega^2 \simeq \exp\left(\frac{2\chi}{\sqrt{6}M_P}\right) & \text{for } h > M_P/\xi \end{cases}$$

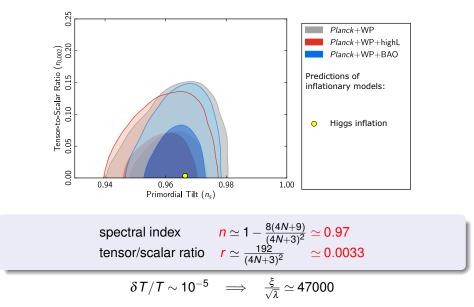
Resulting action (Einstein frame action)

$$S_{E} = \int d^{4}x \sqrt{-\hat{g}} \left\{ -\frac{M_{P}^{2}}{2}\hat{R} + \frac{\partial_{\mu}\chi\partial^{\mu}\chi}{2} - \frac{\lambda}{4}\frac{h(\chi)^{4}}{\Omega(\chi)^{4}} \right\}$$

Potential – different stages of the Universe



CMB parameters are predicted



Higgs decouples from all fields during inflation

Action for the gauge fields and fermions is invariant under conformal transformations $(A_{\mu} \mapsto A_{\mu}, \psi \mapsto \Omega^{3/2} \psi)$ except for the mass terms

$$\begin{aligned} \mathscr{L}_{A}^{J} &= g^{2}h^{2}A_{\mu}A_{\mu} \quad \mapsto \quad \mathscr{L}_{A}^{E} &= g^{2}\frac{h^{2}}{\Omega^{2}}A_{\mu}A_{\mu} = g^{2}\frac{M_{P}^{2}}{\xi}\left(1 - e^{-\frac{2\chi}{\sqrt{6}M_{P}}}\right)A_{\mu}A_{\mu} \\ \mathscr{L}_{Y}^{J} &= yh\bar{\psi}\psi \qquad \mapsto \quad \mathscr{L}_{Y}^{E} = y\frac{h}{\Omega}\bar{\psi}\psi = y\frac{M_{P}}{\sqrt{\xi}}\left(1 - e^{-\frac{2\chi}{\sqrt{6}M_{P}}}\right)^{1/2}\bar{\psi}\psi \end{aligned}$$

In inflationary region $h > M_P / \sqrt{\xi}$: $\Omega^2 \equiv 1 + \frac{\xi h^2}{M_P^2} \simeq \exp\left(\frac{2\chi}{\sqrt{6}M_P}\right)$

Exponentially weak coupling of χ to other matter

Non-minimal coupling made the Higgs potential flat and at the same time took care of the corrections from the other fields

Consistency

Up to now we assumed that the model is a full model, and anything beyond it does not spoil the story.

Is this really the case?

Cut off scale today

Let us work in the Einstein frame for simplicity

Change of variables: $\frac{d\chi}{dh} = \frac{M_P \sqrt{M_P^2 + (\xi + 6\xi^2)h^2}}{M_P^2 + \xi h^2}$ leads to the higher order terms in the potential (expanded in a power law series) $V(\chi) = \lambda \frac{h^4}{4\Omega^4} \simeq \lambda \frac{h^4}{4} \simeq \lambda \frac{\chi^4}{4} + \# \frac{\chi^6}{(M_P/\xi)^2} + \cdots$

Unitarity is violated at tree level

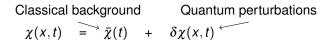
in scattering processes (eg. 2 \rightarrow 4) with energy above the "cut-off"

$$E > \Lambda_0 \sim \frac{MP}{\xi}$$

Hubble scale at inflation is $H \sim \lambda^{1/2} \frac{M_P}{\xi}$ – not much smaller than the today cut-off Λ_0 :(

[Burgess, Lee, Trott'09, Barbon, Espinosa'09, Hertzberg'10]

"Cut off" is background dependent!



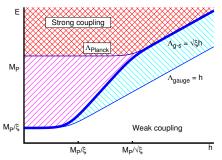
leads to background dependent suppression of operators of dim n > 4 $\frac{\mathscr{O}_{(n)}(\delta \chi)}{[\Lambda_{(n)}(\bar{\chi})]^{n-4}}$

Example

Potential in the inflationary region $\chi > M_P$: $U(\chi) = \frac{\lambda M_P^2}{4\xi^2} \left(1 - e^{-\frac{2\chi}{\sqrt{6}M_P}}\right)^2$ leads to operators of the form: $\frac{\mathscr{O}_{(n)}(\delta\chi)}{[\Lambda_{(n)}(\bar{\chi})]^{n-4}} = \frac{\lambda M_P^4}{\xi^2} e^{-\frac{2\bar{\chi}}{\sqrt{6}M_P}} \frac{(\delta\chi)^n}{M_P^n}$ Leading at high *n* to the "cut-off" $\Lambda \sim M_P$

Cut-off grows with the field background

Jordan frame



Relation between cut-offs in different frames:

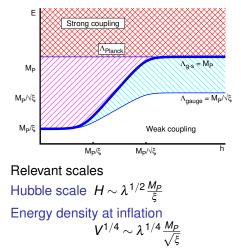
$$\Lambda_{Jordan} = \Lambda_{Einstein} \Omega$$

Reheating temperature $M_P/\xi < T_{\text{reheating}} < M_P/\sqrt{\xi}$

[FB, Magnin, Shaposhnikov, Sibiryakov'11]

Fedor Bezrukov (CERN&UCONN&RBRC) Higgs inflation and large tensor-to-scalar ratio – status

Einstein frame



- Running cut-off above typical energy scales all our calculations of perturbations on top of background solutions are ok (i.e. no need to worry about higher order corrections here)
- But what can we say about the background solutions itself?

RG improved effective potential

$$U(\phi) = \frac{\lambda(\mu)}{4}\phi^4 + \sum_i \frac{m_i^4(\phi)}{64\pi^2} \left(\ln \frac{m_i^2(\phi)}{\mu^2} + \text{const}_i \right) + \cdots$$

with $m_i(\phi) = g\phi$, $\frac{\gamma}{\sqrt{2}}\phi$, so that $m_i^4 \propto \phi^4$

U should be independent on non-physical parameter μ – leads to RG equation for λ

$$\frac{\partial \lambda}{\partial \ln \mu} = \beta_{\lambda}$$

At the same time, one can choose μ ≃ m(φ) ≃ ytφ to minimize the logarithms

 α is of order one

RG improved potential for Higgs inflation

$$U_{
m RG\ improved}(\chi) = rac{\lambda(\mu)}{4} rac{M_P^4}{\xi^2} \left(1 - {
m e}^{-rac{2\chi}{\sqrt{6}M_P}}
ight)^2$$

with

$$\mu^{2} = \alpha^{2} m_{t}^{2}(\chi) = \alpha^{2} \frac{y_{t}^{2}(\mu)}{2} \frac{M_{P}^{2}}{\xi} \left(1 - e^{-\frac{2\chi}{\sqrt{6}M_{P}}}\right)$$

- Large λ slow (logarithmic) running, no noticeable change compared to tree level potential
- Small λ may give interesting "features" in the potential
- Strictly speaking ξ is also running not relevant for the current discussion for a set of reasons, especially in the region of small λ

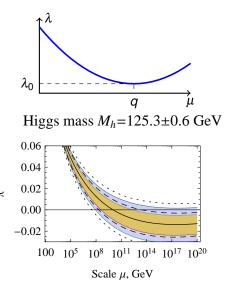
RG running indicates small λ at Planck scale

Renormalization evolution of the Higgs self coupling λ

$$\lambda \simeq \lambda_0 + b \ln^2 rac{\mu}{q}$$

 $\left. egin{small} b\simeq 0.000023 \ \lambda_0 - {
m small} \ q \ {
m of \ the \ order} \ M_{
ho} \end{array}
ight\} {
m depend \ on \ } M_{h}^{*}, \ m_{t}^{*}$

$$(4\pi)^2 \frac{\partial \lambda}{\partial \ln \mu} = 24\lambda^2 - 6y_t^4 + \frac{3}{8}(2g_2^4 + (g_2^2 + g_1^2)^2) + (-9g_2^2 - 3g_1^2 + 12y_t^2)\lambda$$



RG running indicates small λ at Planck scale

Potentials in different regimes

$$\lambda \simeq \lambda_0 + b \ln^2 \frac{\mu}{q}$$

$$b \simeq 0.000023$$

$$\lambda_0 - \text{small}$$

$$q \text{ of the order } M_p \} \text{ depend on } M_h^*, \ m_t^* \qquad \lambda_0$$

$$q \to \mu$$

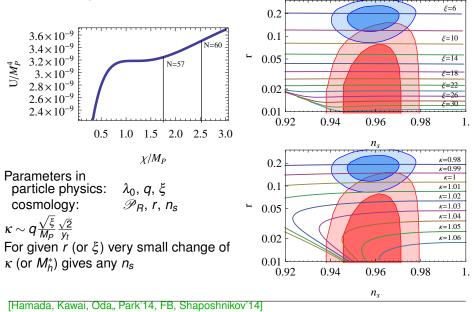
$$U(\chi) \simeq \frac{\lambda(\mu)M_P^4}{4\xi^2} \left(1 - e^{-\frac{2\chi}{\sqrt{6M_P}}}\right)^2 \qquad 3.\times 10^{-8}$$

$$\mu^2 = \alpha^2 \frac{y_t(\mu)^2}{2} \frac{M_P^2}{\xi} \left(1 - e^{-\frac{2\chi}{\sqrt{6M_P}}}\right) \qquad 1.\times 10^{-8}$$

$$0 \qquad 1 \qquad 2 \qquad 3 \qquad 4 \qquad 5$$

2

Interesting inflation near to the critical point



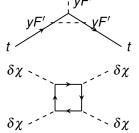
Connection with the low energy physics

Inflationary "masses" m_t^* , M_h^* differ from physical m_t , M_h Let us analyse counterterms generated by

$$\mathscr{L}_t = rac{y_t}{\sqrt{2}} ar{\psi}_t \psi_t F(\chi), \quad F(\chi) = rac{h(\chi)}{\Omega(h(\chi))}$$

Low energy F'(0) = 1, at inflation $F'(\infty) = 0$

$$y_t
ightarrow y_t + rac{y_t^3}{16\pi^2} \left(rac{9}{4arepsilon} + C_t
ight) F'^2$$



$$m_t^* = m_t \left(1 - \frac{y_t^2 C_t}{16\pi^2} \right)$$

$$\lambda
ightarrow \lambda - rac{y_t^4}{16\pi^2} \left(rac{3}{arepsilon} - C_\lambda
ight) F'^4$$

$$M_h^* = M_h \left(1 - rac{y_t^4 C_\lambda}{16\pi^2} rac{v^2}{M_h^2}
ight)$$

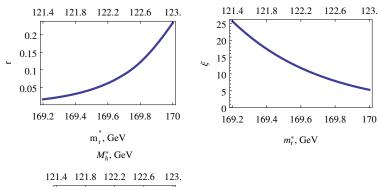
Inflation-particle mass difference $m^* - m$ of several GeV for $C \sim 1$

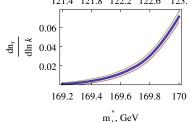
[FB, Magnin, Shaposhnikov, Sibiryakov'11, FB, Shaposhnikov'14]

Fedor Bezrukov (CERN&UCONN&RBRC)

liggs inflation and large tensor-to-scalar ratio – status

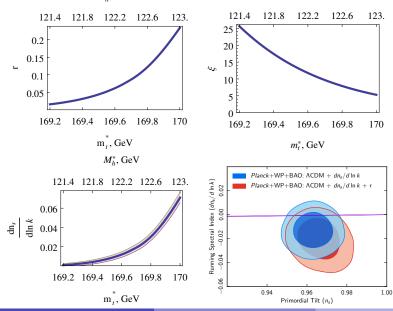
Cosmological parameters for critical point HI M_{h}^*, GeV





Fedor Bezrukov (CERN&UCONN&RBRC) Higgs inflatio

Cosmological parameters for critical point HI M_{h}^*, GeV

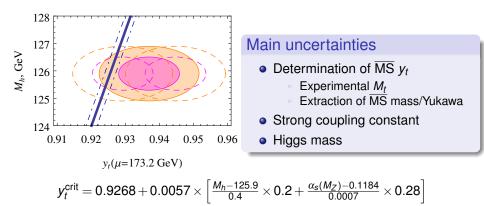


Fedor Bezrukov (CERN&UCONN&RBRC) Hig

liggs inflation and large tensor-to-scalar ratio – status

Electroweak vacuum should be stable

 2σ compatible with the observations



[FB, Kalmykov, Kniehl, Shaposhnikov'12, Buttazzo, Degrassi, Giardino, Giudice, Sala, *et al.*'13], Pikelner'QUARKS 14

Conclusions

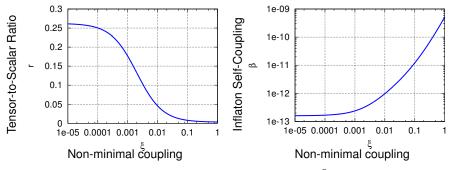
Higgs inflation as the minimal inflationary model:

- Large ξ regime
 - ▶ Cosmology: n_s ≃ 0.97, r ≃ 0.0033
 - Particle physics: rather generic
- Small ξ regime
 - Cosmology:
 - ★ any n_s, r
 - * predicts positive $dn_s/d\ln k, \ldots$
 - Particle physics:
 - * Higgs and top masses correspond to absolute vacuum stability
 - * High (inflationary) and low (particle physics) scale coupling constants are rather close when matched over the $h \sim M_P / \xi$ region

Is any of this true?

- Measure MS top quark Yukawa lepton collider, better theoretical analysis on hardon collider
- Measure CMB properties!

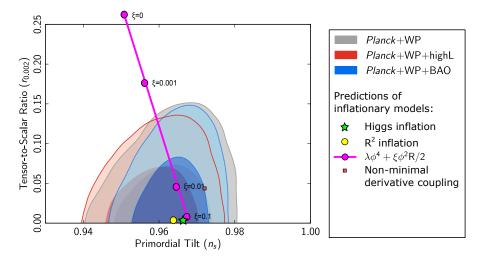
The tensor perturbations are suppressed, inflaton self-coupling β is increased



For each ξ the self-coupling β is fixed by $\delta T/T \simeq 10^{-5}$ requirement.

[Tsujikawa, Gumjudpai'04, FB'08, Okada, Rehman, Shafi'10]

Inflationary predictions are ok for $\xi \gtrsim 0.003$



Shift symmetric UV completion allows to have a form of effective theory during inflation

$$\mathscr{L} = \frac{(\partial_{\mu}\chi)^{2}}{2} - U_{0}\left(1 + \sum u_{n}e^{-n\cdot\chi/M}\right)$$
$$= \frac{(\partial_{\mu}\chi)^{2}}{2} - U_{0}\left(1 + \sum \frac{1}{k!}\left[\frac{\delta\chi}{M}\right]^{k}\sum n^{k}u_{n}e^{-n\cdot\bar{\chi}/M}\right)$$

Effective action (from quantum corrections of loops of $\delta \chi$) $\mathscr{L}_{\text{eff}} = f^{(1)}(\chi) \frac{(\partial_{\mu} \chi)^{2}}{2} - U(\chi) + f^{(2)}(\chi) \frac{(\partial^{2} \chi)^{2}}{M^{2}} + f^{(3)}(\chi) \frac{(\partial \chi)^{4}}{M^{4}} + \cdots$

All the divergences are absorbed in u_n and in $f^{(n)} \sim \sum f_l e^{-n\chi/M}$

UV completion requirement

Shift symmetry (or scale symmetry in the Jordan frame) is respected $\chi \mapsto \chi + \text{const}$

Connection of inflationary and low energy physics requires more assumptions on the UV theory

$$\lambda U(\bar{\chi} + \delta \chi) = \lambda \left(U(\bar{\chi}) + \frac{1}{2} U''(\bar{\chi}) (\delta \chi)^2 + \frac{1}{3!} U'''(\bar{\chi}) (\delta \chi)^3 + \cdots \right)$$

in one loop: $\lambda U''(\bar{\chi})\bar{\Lambda}^2$, $\lambda^2 (U''(\bar{\chi}))^2 \log \bar{\Lambda}$, in two loops: $\lambda U^{(IV)}(\bar{\chi})\bar{\Lambda}^4$, $\lambda^2 (U''')^2 \bar{\Lambda}^2$, $\lambda^3 U^{(IV)} (U'')^2 (\log \bar{\Lambda})^2$,

If no power law divergences are generated

then the loop corrections are arranged in a series in λ $U(\chi) = \lambda U_1(\chi) + \lambda^2 U_2(\chi) + \lambda^3 U_3(\chi) + \cdots$

A rule to fix the finite parts of the counterterm functions $U_i(\chi)$

Example – dimensional regularisation + \overline{MS}

Summary on radiative corrections

- The tree level calculations can be ok, as far as the cut-off is background dependent
- Underlying theory respects shift (scale) invariance effective (order by order) analysis of the inflationary potential is possible
- Underlying theory respects scale invariance and does not generates any quadratic contributions calculations are fully possible provided the action *and* the subtraction rules are specified.

- F. L. Bezrukov and M. Shaposhnikov *Phys. Lett.* **B659** (2008) 703–706, arXiv:0710.3755.
- C. P. Burgess, H. M. Lee and M. Trott JHEP 09 (2009) 103, arXiv:0902.4465.
- J. L. F. Barbon and J. R. Espinosa Phys. Rev. D79 (2009) 081302, arXiv:0903.0355.

F. Bezrukov, A. Magnin, M. Shaposhnikov, and S. Sibiryakov JHEP 1101 (2011) 016, arXiv:1008.5157.

- Y. Hamada, H. Kawai, K.-y. Oda, and S. C. Park arXiv:1403.5043.
- F. Bezrukov and M. Shaposhnikov arXiv:1403.6078.

- F. Bezrukov, M. Y. Kalmykov, B. A. Kniehl, and M. Shaposhnikov JHEP 1210 (2012) 140, arXiv:1205.2893.
- D. Buttazzo, G. Degrassi, P. P. Giardino, G. F. Giudice, F. Sala, et al. arXiv:1307.3536.
- S. Tsujikawa and B. Gumjudpai *Phys. Rev.* D69 (2004) 123523, astro-ph/0402185.
 - F. L. Bezrukov arXiv:0810.3165.
 - N. Okada, M. U. Rehman and Q. Shafi *Phys.Rev.* **D82** (2010) 043502, arXiv:1005.5161.