Phenomenology of the

Accelerating Universe

Federico Piazza

Nobel Prize in Physics 2011

The Universe is accelerating!

Nobel Prize in Physics 2011

The Universe is accelerating!
...why?!

The only consistent Λ CDM low energy theory for a spin-two field $g_{\mu \nu}$.

The Astrophysical Journal, 483:565-581, 1997 July 10 © 1997. The American Astronomical Society. All rights reserved. Printed in U.S.A.

Beware of theoretical prejudice!

MEASUREMENTS ${ }^{1}$ OF THE COSMOLOGICAL PARAMETERS Ω AND Λ FROM THE FIRST SEVEN SUPERNOVAE AT $z \geq 0.35$

S. Perlmutter, ${ }^{2,3}$ S. Gabi, ${ }^{2,4}$ G. Goldhaber, ${ }^{2,3}$ A. Goobar, ${ }^{2,3,5}$ D. E. Groom, ${ }^{2,3}$ I. M. Hook, ${ }^{3,6}$
A. G. Kim, ${ }^{2,3}$ M. Y. Kim, ${ }^{2}$ J. C. Lee, ${ }^{2}$ R. Pain, ${ }^{2,7}$ C. R. Pennypacker, ${ }^{2,4}$ I. A. Small, ${ }^{2,3}$
R. S. Ellis, ${ }^{8}$ R. G. McMahon, ${ }^{8}$ B. J. Boyle, ${ }^{9,10}$ P. S. Bunclark, ${ }^{9}$ D. Carter, ${ }^{9}$ M. J. Irwin, ${ }^{9}$ K. Glazebrook, ${ }^{10}$ H. J. M. Newberg, ${ }^{11}$ A. V. Filippenko, ${ }^{3,6}$ T. Matheson, ${ }^{6}$ M. Dopita, ${ }^{12}$ and W. J. Couch ${ }^{13}$
(The Supernova Cosmology Project)
Received 1996 August 26; accepted 1997 February 6

Abstract

We have developed a technique to systematically discover and study high-redshift supernovae that can be used to measure the cosmological parameters. We report here results based on the initial seven of more than 28 supernovae discovered to date in the high-redshift supernova search of the Supernova Cosmology Project. We find an observational dispersion in peak magnitudes of $\sigma_{M_{B}}=0.27$; this dispersion narrows to $\sigma_{M_{B}, \text { corr }}=0.19$ after "correcting" the magnitudes using the light-curve "widthluminosity" relation found for nearby $(z \leq 0.1)$ Type Ia supernovae from the Calán/Tololo survey (Hamuy et al.). Comparing light-curve width-corrected magnitudes as a function of redshift of our distant ($z=0.35-0.46$) supernovae to those of nearby Type Ia supernovae yields a global measurement of the mass density $\Omega_{\mathrm{N}=,}, 88_{-0.60}^{+0.69}$ for a $\Lambda=0$ cosmology. For a spatially flat universe (i.en $\Omega_{\mathrm{M}} \Omega_{\Lambda=}=$ 1), we find $\Omega_{\mathrm{M}}=0.94_{-0.28}^{+0.34}$ on equivalently, a measurement of the cosmological constant, $\Omega_{\Lambda}=0.06_{-0.34}^{+0.28}$ (<0.51 at the 95% confidence level). For the more general Friedmann-Lemaître cosmologies with inde pendent Ω_{M} and Ω_{Λ}, the results are presented as a confidence region on the $\Omega_{M}-\Omega_{\Lambda}$ plane. This region does not correspond to a unique value of the deceleration parameter q_{0}. We present analyses and checks for statistical and systematic errors and also show that our results do not depend on the specifics of the width-luminosity correction. The results for Ω_{Λ}-versus $-\Omega_{\mathrm{M}}$ are inconsistent with Λ-dominated, low density, flat cosmologies that have been proposed to reconcile the ages of globular clusterestars with higher Hubble constant values.

The only consistent Λ CDM low energy theory for a spin-two field $g_{\mu \nu}$.

$g_{\mu \nu}+$ STUFF

Tensions with LCDM...?

Macaulay et al. '13
$w=-1.24_{-0.19}^{+0.18} \quad\left(95 \% ;\right.$ Planck $\left.+\mathrm{WP}+H_{0}\right)$

$g_{\mu \nu}+$ STUFF

$\Lambda \mathrm{CDM}$

$g_{\mu \nu}+$ STUFF

Other fundamental ingredients?

Dark Energy

The history of the Universe

Big Bang Cosmology

Inflation

Dark Energy

The history of the Universe

Big Bang Cosmology

Inflation

Planck paper

Geometrical anomalies? However: "small" effects...

Phenomenology of dark energy

- Two main classes of observables

Phenomenology of dark energy

- Two main classes of observables

$$
\begin{aligned}
& \quad \text { Background } \\
& \begin{aligned}
\phi & =\phi_{0}(t) \\
d s^{2} & =-d t^{2}+a^{2}(t) d x^{2} \\
\rho_{m} & =\rho_{m}(t)
\end{aligned}
\end{aligned}
$$

equation of state $w(z)$
growth rate, lensing potential, etc.

Phenomenology of dark energy

- Two main classes of observables
- EUCLID, DESI etc... are specifically designed to target perturbation sector
- 'No shortage' of dark energy models (>5000 papers on Spires) Need for a Unifying and Effective description

Ideally...

- A limited number of effective operators, each one responsible for an observable dynamical feature (e.g. flavor-changing neutral currents in physics beyond Standard Model)

What are the relevant degrees of freedom?

QCD

EW theory

3 massive vector bosons, l`Higgs"...

Cosmology

Cosmological Perturbations!

They (re-)enter the horizon
I) Small in amplitude (expansion in number of cosmological perturbations)
2) Large in size (expansion in number of derivatives)

What are the relevant degrees of freedom?

QCD

nucleons and pions

I) Small in amplitude (expansion in number of cosmological perturbations)
2) Large in size (expansion in number of derivatives)

Unitary Gauge in Cosmology

Main idea: scalar degrees of freedom are `eaten' by the metric. Ex:
$\phi(t, \vec{x}) \rightarrow \phi_{0}(t) \quad(\delta \phi=0) \quad-\frac{1}{2} \partial \phi^{2} \rightarrow-\frac{1}{2} \dot{\phi}_{0}^{2}(t) g^{00}$

Unitary Gauge in Cosmology

Main idea: scalar degrees of freedom are `eaten' by the metric. Ex:
$\phi(t, \vec{x}) \rightarrow \phi_{0}(t) \quad(\delta \phi=0) \quad-\frac{1}{2} \partial \phi^{2} \rightarrow-\frac{1}{2} \dot{\phi}_{0}^{2}(t) g^{00}$
Effective Field Theory of Dark Energy:
(Gubitosi, F.P., Vernizzi 2012)
I) Assume WEP (universally coupled metric $S_{m}\left[g_{\mu \nu}, \Psi_{i}\right]$)
2) Write the most generic action for $g_{\mu \nu}$ compatible with the residual un-broken symmetries (3-diff).

The Action

$$
S=\int d^{4} x \sqrt{-g} \frac{M^{2}(t)}{2}\left[R-2 \lambda(t)-2 \mathcal{C}(t) g^{00}\right.
$$

The most generic action written in terms of $g_{\mu \nu}$ compatible with the residual symmetry of spatial diffeomorphisms

The Action

$$
S=\int d^{4} x \sqrt{-g} \frac{M^{2}(t)}{2}\left[R-2 \lambda(t)-2 \mathcal{C}(t) g^{00}\right.
$$

The most generic action written in terms of $g_{\mu \nu}$ compatible with the residual symmetry of spatial diffeomorphisms

Genuine 4-dim covariant terms are still allowed, but will in general be multiplied by functions of time cause time translations are broken

The Action

$$
S=\int d^{4} x \sqrt{-g} \frac{M^{2}(t)}{2}\left[R-2 \lambda(t)-2 \mathcal{C}(t) g^{00}\right.
$$

The most generic action written in terms of $g_{\mu \nu}$ compatible with the residual symmetry of spatial diffeomorphisms

General functions of time are allowed

The Action

$$
S=\int d^{4} x \sqrt{-g} \frac{M^{2}(t)}{2}\left[R-2 \lambda(t)-2 \mathcal{C}(t) g^{00}\right.
$$

The most generic action written in terms of $g_{\mu \nu}$ compatible with the residual symmetry of spatial diffeomorphisms
...as well as tensors with free ' 0 ' indices
Essentially: contractions with $\quad n_{\mu}=-\frac{\partial_{\mu} \phi}{\sqrt{-\left(\partial \phi^{2}\right)}}$

The Action

$$
S=\int d^{4} x \sqrt{-g} \frac{M^{2}(t)}{2}\left[R-2 \lambda(t)-2 \mathcal{C}(t) g^{00}\right.
$$

Any arbitrarily complicate action with one scalar d.o.f. will reduce to this in Unitary gauge, plus terms that start explicitly quadratic in the perturbations

The Action

$$
\begin{aligned}
& S=\int d^{4} x \sqrt{-g} \frac{M^{2}(t)}{2}\left[R-2 \lambda(t)-2 \mathcal{C}(t) g^{00}\right. \\
& \left.+\mu_{2}^{2}(t)\left(\delta g^{00}\right)^{2}-\mu_{3}(t) \delta K \delta g^{00}+\epsilon_{4}(t)\left(\delta K_{\nu}^{\mu} \delta K_{\mu}^{\nu}-\delta K^{2}+\frac{R^{(3)} \delta g^{00}}{2}\right)+\ldots\right]
\end{aligned}
$$

The Action

Background (expansion history)

$$
\begin{aligned}
& S=\int d^{4} x \sqrt{-g} \frac{M^{2}(t)}{2}\left[R-2 \lambda(t)-2 \mathcal{C}(t) g^{00}\right. \\
& \left.+\mu_{2}^{2}(t)\left(\delta g^{00}\right)^{2}-\mu_{3}(t) \delta K \delta g^{00}+\epsilon_{4}(t)\left(\delta K_{\nu}^{\mu} \delta K^{\nu}{ }_{\mu}-\delta K^{2}+\frac{R^{(3)} \delta g^{00}}{2}\right)+\ldots\right] \\
& \\
& \text { (linear) perturbations }
\end{aligned}
$$

Time-dependent couplings

The Power of the EFT of DE

$$
\begin{aligned}
& S=\int d^{4} x \sqrt{-g} \frac{M^{2}(t)}{2}\left[R-2 \lambda(t)-2 \mathcal{C}(t) g^{00}\right. \\
& \left.+\mu_{2}^{2}(t)\left(\delta g^{00}\right)^{2}-\mu_{3}(t) \delta K \delta g^{00}+\epsilon_{4}(t)\left(\delta K_{\nu}^{\mu} \delta K_{\mu}^{\nu}-\delta K^{2}+\frac{R^{(3)} \delta g^{00}}{2}\right)+\ldots\right]
\end{aligned}
$$

- Clear separation: background v.s. perturbed sector
- Expansion in number of cosmological perturbations
- Expansion in number of derivatives
- Observables, stability etc.

Examples

$$
\begin{aligned}
& S=\int d^{4} x \sqrt{-g} \frac{M^{2}(t)}{2}\left[R-2 \lambda(t)-2 \mathcal{C}(t) g^{00}\right. \\
& \left.+\mu_{2}^{2}(t)\left(\delta g^{00}\right)^{2}-\mu_{3}(t) \delta K \delta g^{00}+\epsilon_{4}(t)\left(\delta K_{\nu}^{\mu} \delta K_{\mu}^{\nu}-\delta K^{2}+\frac{R^{(3)} \delta g^{00}}{2}\right)+\ldots\right]
\end{aligned}
$$

Examples

$$
\begin{aligned}
& S=\int d^{4} x \sqrt{-g} \frac{M^{2}(t)}{2}\left[R-2 \lambda(t)-2 \mathcal{C}(t) g^{\text {const. }}\right. \\
& \left.+\mu_{2}^{2}(t)\left(\delta g^{00}\right)^{2}-\mu_{3}(t) \delta K \delta g^{00}+\epsilon_{4}(t)\left(\delta K_{\nu}^{\mu} \delta K_{\mu}^{\nu}-\delta K^{2}+\frac{R^{(3)} \delta g^{00}}{2}\right)+\ldots\right]
\end{aligned}
$$

Quintessence

Examples

$$
\begin{aligned}
& S=\int d^{4} x \sqrt{-g} \frac{M^{2}(t)}{2}\left[R-2 \lambda(t)-2 \mathcal{C}(t) g^{00}\right. \\
& \left.+\mu_{2}^{2}(t)\left(\delta g^{00}\right)^{2}-\mu_{3}(t) \delta K \delta g^{00}+\epsilon_{4}(t)\left(\delta K_{\nu}^{\mu} \delta K^{\nu}{ }_{\mu}-\delta K^{2}+\frac{R^{(3)} \delta g^{00}}{2}\right)+\ldots\right]
\end{aligned}
$$

Non-minimally coupled scalar field
(Brans-Dicke, f(R) etc.)

Examples

$$
\begin{aligned}
& S=\int d^{4} x \sqrt{-g} \frac{M^{2}(t)}{2}\left[R-2 \lambda(t)-2 \mathcal{C}(t) g g^{\text {const. }}\right. \\
& +\mu_{2}^{2}(t)\left(\delta g^{00}\right)^{2}-\mu_{3}(t) \delta K \delta g^{00}+\epsilon_{4}(t)\left(\delta K_{\nu}^{\mu} \delta K_{\mu}^{\nu}-\delta K^{2}+\frac{R^{(3)} \delta g^{00}}{2}\right)+\ldots
\end{aligned}
$$

K-essence (Amendariz-Picon et al., 2000)

$$
S=\int d^{4} x \sqrt{-g} P(\phi, X) \quad X \equiv g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi
$$

Examples

$$
\begin{aligned}
& S=\int d^{4} x \sqrt{-g} \frac{M^{2}(t)}{2}\left[R-2 \lambda(t)-2 \mathcal{C}(t) g g^{00}\right. \\
& \left.+\mu_{2}^{2}(t)\left(\delta g^{00}\right)^{2}-\mu_{3}(t) \delta K \delta g^{00}+\epsilon_{4}(t)\left(\delta K_{\nu}^{\mu} \delta K^{\nu}{ }_{\mu}-\delta K^{2}+\frac{R^{(3)} \delta g^{00}}{2}\right)+\ldots\right]
\end{aligned}
$$

"Galilean Cosmology" (Chow and Khoury, 2009)

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} e^{-2 \phi / M} R-\frac{r_{c}^{2}}{M}(\partial \phi)^{2} \square \phi\right]
$$

Examples

$S=\int d^{4} x \sqrt{-g} \frac{M^{2}(t)}{2}\left[R-2 \lambda(t)-2 \mathcal{C}(t) g^{00}\right.$
$\left.+\mu_{2}^{2}(t)\left(\delta g^{00}\right)^{2}-\mu_{3}(t) \delta K \delta g^{00}+\epsilon_{4}(t)\left(\delta K_{\nu}^{\mu} \delta K^{\nu}{ }_{\mu}-\delta K^{2}+\frac{R^{(3)} \delta g^{00}}{2}\right)+\ldots\right]$
"Generalized Galileons" (三 Horndeski)
(Deffayet et al., 201 I)
$\mathcal{L}_{2}=A(\phi, X)$,
$\mathcal{L}_{3}=B(\phi, X) \square \phi$,
$\mathcal{L}_{4}=C(\phi, X) R-2 C C_{, X}(\phi, X)\left[(\square \phi)^{2}-\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}\right]$,
$\mathcal{L}_{5}=D(\phi, X) G^{\mu \nu} \nabla_{\mu} \nabla_{\nu} \phi+\frac{1}{3} D_{, X}(\phi, X)\left[(\square \phi)^{3}-3(\square \phi)\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}+2\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{3}\right]$,

Examples

$$
\begin{aligned}
& S=\int d^{4} x \sqrt{-g} \frac{M^{2}(t)}{2}\left[R-2 \lambda(t)-2 \mathcal{C}(t) g^{00}\right. \\
& \left.\left.+\mu_{2}^{2}(t)\left(\delta g^{00}\right)^{2}-\mu_{3}(t) \delta K \delta g^{00}+\epsilon_{4}(t)\left(\delta K_{\nu}^{\mu} \delta K^{\nu}{ }_{\mu}-\delta K^{2}\right)+\frac{R^{(3)} \delta g^{00}}{2}\right)+\ldots\right]
\end{aligned}
$$

The most general (linear) theory without higher derivatives on the propagating degree of freedom

Equations of motion with higher derivatives BUT

- Not on the propagating degree of freedom once you solve the constraints
- Not if taken in appropriate combinations
- Not in some specific gauge (ex. the 3+1 ADM formalism)

$$
\begin{aligned}
& \mathcal{L}_{2}=A(\phi, X), \\
& \mathcal{L}_{3}=B(\phi, X) \square \phi, \\
& \mathcal{L}_{4}=C(\phi, X) R-2 C, X(\phi, X)\left[(\square \phi)^{2}-\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}\right], \\
& \mathcal{L}_{5}=D(\phi, X) G^{\mu \nu} \nabla_{\mu} \nabla_{\nu} \phi+\frac{1}{3} D_{, X}(\phi, X)\left[(\square \phi)^{3}-3(\square \phi)\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}+2\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{3}\right],
\end{aligned}
$$

$$
\mathcal{L}_{4}=C(\phi, X) R-2 C, X(\phi, X)\left[(\square \phi)^{2}-\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}\right],
$$

$$
\mathcal{L}_{4}=\left(2 X C_{X}-C\right)\left(K^{2}-K_{i j} K^{i j}\right)+C{ }^{(3)} R+\ldots
$$

$$
\mathcal{L}_{4}=C(\phi, X) R-2 C C_{, X}(\phi, X)\left[(\square \phi)^{2}-\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}\right],
$$

$$
\mathcal{L}_{4}^{\text {new }}=A(N, t)\left(K^{2}-K_{i j} K^{i j}\right)+B(N, t){ }^{(3)} R
$$

see also X. Gao 1406.0822

Generalization!

$$
\mathcal{L}_{4}=\left(2 X C_{X}-C\right)\left(K^{2}-K_{i j} K^{i j}\right)+C^{(3)} R+\ldots
$$

$3+1$ decomposition

$$
\mathcal{L}_{4}=C(\phi, X) R-2 C, X(\phi, X)\left[(\square \phi)^{2}-\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}\right],
$$

$$
\mathcal{L}_{4}^{\text {new }}=A(N, t)\left(K^{2}-K_{i j} K^{i j}\right)+B(N, t){ }^{(3)} R
$$

$$
H_{4}^{\mathrm{new}}=\int d^{3} x\left[N \mathcal{H}_{0}\left(N, h_{i j}, \pi^{i j}\right)+N^{i} \mathcal{H}_{i}\left(h_{i j}, \pi^{i j}\right)\right]
$$

same as GR: 3 "first class" constraints
$\frac{\delta}{\delta N}$

fixes N in terms of the other variables

6-3 = 3 d.o.f. As any healthy scalar tensor theory should have

- Equations of motion with higher derivatives
- Only two derivatives on the true propagating degree of freedom
- No ghosts
- Interesting phenomenology (modified Jeans phenomenon)
- Equations of motion with higher derivatives
- Only two derivatives on the true propagating degree of freedom
- No ghosts
- Interesting phenomenology (modified Jeans phenomenon)
usually, at small distances
$\left(\partial_{t}^{2}+c_{m}^{2} k^{2}\right) \delta \rho_{m} \approx 0$
- Equations of motion with higher derivatives
- Only two derivatives on the true propagating degree of freedom
- No ghosts
- Interesting phenomenology (modified Jeans phenomenon) usually, at small distances
$\left(\partial_{t}^{2}+c_{m}^{2} k^{2}\right) \delta \rho_{m} \approx 0$

$$
\begin{aligned}
& \left(\partial_{t}^{2}+c_{s}^{2} k^{2}\right) \delta \phi-C_{\phi} \dot{\phi} \partial_{t} \delta \rho_{m} \approx 0, \\
& \left(\partial_{t}^{2}+c_{m}^{2} k^{2}\right) \delta \rho_{m}-C_{m} k^{2} \partial_{t}(\delta \phi / \dot{\phi}) \approx 0
\end{aligned}
$$

Stability and Observables

 and in progress...$$
\begin{aligned}
& S=\int d^{4} x \sqrt{-g} \frac{M^{2}(t)}{2}\left[R-2 \lambda(t)-2 \mathcal{C}(t) g^{00}\right. \\
& \left.+\mu_{2}^{2}(t)\left(\delta g^{00}\right)^{2}-\mu_{3}(t) \delta K \delta g^{00}+\epsilon_{4}(t)\left(\delta K_{\nu}^{\mu} \delta K_{\mu}^{\nu}-\delta K^{2}+\frac{R^{(3)} \delta g^{00}}{2}\right)+\ldots\right]
\end{aligned}
$$

$$
\lambda(t), \quad \mathcal{C}(t), \quad \mu(t) \equiv \frac{d M^{2}(t)}{d t}
$$

$$
\left.\begin{array}{r}
\bar{w}(t) \\
\mu(t) \\
\mu_{3}(t) \\
\epsilon_{4}(t)
\end{array}\right\}
$$

Expansion History

Growth rate, lensing etc.

Stability

$S_{\pi}=\int a^{3}(t) M^{2}(t)\left[A\left(\mu, \mu_{2}^{2}, \mu_{3}, \epsilon_{4}\right) \dot{\pi}^{2}+B\left(\mu, \mu_{3}, \epsilon_{4}\right) \frac{(\vec{\nabla} \pi)^{2}}{a^{2}}\right]+$ lower order in derivatives.

No ghost: $A>0$
No gradient instabilities: $\mathrm{B}>0$

Stability

$$
S_{\pi}=\int a^{3}(t) M^{2}(t)\left[A\left(\mu, \mu_{2}^{2}, \mu_{3}, \epsilon_{4}\right) \dot{\pi}^{2}+B\left(\mu, \mu_{3}, \epsilon_{4}\right) \frac{(\vec{\nabla} \pi)^{2}}{a^{2}}\right]+\text { lower order in derivatives. }
$$

No ghost: $A>0 \quad$ No gradient instabilities: $B>0$

$$
\mu_{2}^{2}=0
$$

Stability

$S_{\pi}=\int a^{3}(t) M^{2}(t)\left[A\left(\mu, \mu_{2}^{2}, \mu_{3}, \epsilon_{4}\right) \dot{\pi}^{2}+B\left(\mu, \mu_{3}, \epsilon_{4}\right) \frac{(\vec{\nabla} \pi)^{2}}{a^{2}}\right]+$ lower order in derivatives. $\uparrow \quad \uparrow$
No ghost: $A>0 \quad$ No gradient instabilities: $B>0$

$$
\mu_{2}^{2} \gg H^{2}
$$

Growth rate

$$
G_{\text {eff }}(t)=G_{\text {eff }}\left(\mu, \mu_{3}, \epsilon_{4}\right)
$$

$f \equiv \frac{d \ln \delta}{d \ln a}=\Omega_{m}^{\gamma_{0}+\gamma_{1} \ln \left(\Omega_{m}\right)}$
Steigerwald, Bel Marinoni 1403.0898

Growth rate

$G_{\mathrm{eff}}(t)=G_{\mathrm{eff}}\left(\mu, \mu_{3}, \epsilon_{4}\right)$
$f \equiv \frac{d \ln \delta}{d \ln a}=\Omega_{m}^{\gamma_{0}+\gamma_{1} \ln \left(\Omega_{m}\right)}$

Steigerwald, Bel Marinoni 1403.0898

Non trivial result:

$\gamma_{0}<\gamma_{0}(\Lambda C D M)$

Growth rate (preliminary)

Modified gravity: less growth than LCDM?

Conclusions

- Unifying framework for dark energy/modified gravity
- Effective language: cosmological perturbations as the relevant d.o.f.
- Systematic way to address stability (e.g. stable violations of NEC)
- Observational constraints and forecasts: much work in progress

$$
\begin{array}{r}
S_{\pi}=\int a^{3} M^{2}\left\{\left[\left(\mathcal{C}+2 \mu_{2}^{2}\right)\left(1+\epsilon_{4}\right)+\frac{3}{4}\left(\mu-\mu_{3}\right)^{2}\right] \dot{\pi}^{2}\right. \\
\left.-\left[\left(\mathcal{C}+\frac{\stackrel{\mu}{3}_{3}}{2}-\dot{H} \epsilon_{4}+H \stackrel{\circ}{\epsilon}_{4}\right)\left(1+\epsilon_{4}\right)-\left(\mu-\mu_{3}\right)\left(\frac{\mu-\mu_{3}}{4\left(1+\epsilon_{4}\right)}-\mu-\stackrel{\circ}{\epsilon}_{4}\right)\right] \frac{(\vec{\nabla} \pi)^{2}}{a^{2}}\right\}
\end{array}
$$

$$
4 \pi G_{\text {eff }}=\frac{1}{2 M^{2}} \frac{2 \mathcal{C}+2\left(\mu+\stackrel{\circ}{\epsilon}_{4}\right)^{2}+\grave{\mu}_{3}-2 \dot{H} \epsilon_{4}+2 H \grave{\epsilon}_{4}+3(a / k)^{2} \mathcal{A}}{\left(1+\epsilon_{4}\right)^{2}\left[2 \mathcal{C}+\grave{\mu}_{3}-2 \dot{H} \epsilon_{4}+2 H \grave{\epsilon}_{4}\right]+2\left(1+\epsilon_{4}\right)\left(\mu+\stackrel{\circ}{\epsilon}_{4}\right)\left(\mu-\mu_{3}\right)-\left(\mu-\mu_{3}\right)^{2} / 2+3(a / k)^{2} \mathcal{A}^{\prime}}
$$

$$
\stackrel{\circ}{\mu}_{3} \equiv \dot{\mu}_{3}+\mu \mu_{3}+H \mu_{3}, \quad \quad \stackrel{\circ}{\epsilon}_{4} \equiv \dot{\epsilon}_{4}+\mu \epsilon_{4}+H \epsilon_{4}
$$

$$
\mathcal{A} \equiv 2 \dot{H} \mathcal{C}-\dot{H} \dot{\mu}_{3}+\ddot{H}\left(\mu-\mu_{3}\right)-2 H \dot{H} \mu_{3}-2 H^{2}\left(\mu^{2}+\dot{\mu}\right), \quad \mathcal{A}^{\prime} \equiv\left(1+\epsilon_{4}\right)^{2} \mathcal{A}
$$

The Action

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(t) R-\Lambda(t)-c(t) g^{00}\right]+S_{D E}^{(2)}
$$

Enough for background equations:

$$
\begin{aligned}
& c=\frac{1}{2}(-\ddot{f}+H \dot{f}) M^{2}+\frac{1}{2}\left(\rho_{D}+p_{D}\right) \\
& \Lambda=\frac{1}{2}(\ddot{f}+5 H \dot{f}) M^{2}+\frac{1}{2}\left(\rho_{D}-p_{D}\right)
\end{aligned}
$$

The Action

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(t) R-\Lambda(t)-c(t) g^{00}\right]+S_{D E}^{(2)}
$$

Enough for background equations:

$$
\begin{aligned}
c & =\frac{1}{2}(-\ddot{f}+H \dot{f}) M^{2}+\frac{1}{2}\left(\rho_{D}+p_{D}\right) \\
\Lambda & =\frac{1}{2}(\ddot{f}+5 H \dot{f}) M^{2}+\frac{1}{2}\left(\rho_{D}-p_{D}\right)
\end{aligned}
$$

Generally Related to post-newtonian parameters

The Action

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(t) R-\Lambda(t)-c(t) g^{00}\right]+S_{D E}^{(2)}
$$

Enough for background equations:

$$
\begin{gathered}
\qquad=\frac{1}{2}(-\ddot{f}+H \dot{f}) M^{2}+\frac{1}{2}\left(\rho_{D}+p_{D}\right) \\
\Lambda=\frac{1}{2}(\ddot{f}+5 H \dot{f}) M^{2}+\frac{1}{2}\left(\rho_{D}-p_{D}\right) \\
\text { Generally Related to post-newtonian parameters } \\
\text { "Bare" Planck Mass }
\end{gathered}
$$

The Action

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(t) R-\Lambda(t)-c(t) g^{00}\right]+S_{D E}^{(2)}
$$

Enough for background equations:

$$
\begin{array}{ll}
c=\frac{1}{2}(-\ddot{f}+H \dot{f}) M^{2}+\frac{1}{2}\left(\rho_{D}+p_{D}\right) & \\
\Lambda=\frac{1}{2}(\ddot{f}+5 H \dot{f}) M^{2}+\frac{1}{2}\left(\rho_{D}-p_{D}\right) & H^{2}=\frac{1}{3 f M^{2}}\left(\rho_{m}+\rho_{D}\right) \\
\text { enerally Related to post-newtonian parameters } & \dot{H}=-\frac{1}{2 f M^{2}}\left(\rho_{m}+\rho_{D}+p_{m}+p_{D}\right)
\end{array}
$$

"Bare" Planck Mass Defined by the modified Friedman equations

The Action

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(t) R-\Lambda(t)-c(t) g^{00}\right]+S_{D E}^{(2)}
$$

Enough for background equations:

$$
\begin{array}{rlr}
c= & \frac{1}{2}(-\ddot{f}+H \dot{f}) M^{2}+\frac{1}{2}\left(\rho_{D}+p_{D}\right) & \text { Matter + Dark matter (in practice } \left.\rho_{m} \propto a^{-3}\right) \\
\Lambda=\frac{1}{2}(\ddot{f}+5 H \dot{f}) M^{2}+\frac{1}{2}\left(\rho_{D}-p_{D}\right) & H^{2}=\frac{1}{3 f M^{2}}\left(\rho_{m}+\rho_{D}\right) \\
\text { Senerally Related to post-newtonian parameters } & \dot{H}=-\frac{1}{2 f M^{2}}\left(\rho_{m}+\rho_{D}+p_{m}+p_{D}\right) \\
& \text { "Bare" Planck Mass Defined by the modified Friedman equations }
\end{array}
$$

Mixing with gravity 1: Brans-Dicke

$$
S=\int \sqrt{-g}\left(\frac{M^{2}}{2} f R-\Lambda-c g^{00}+\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K+\frac{1}{2} T^{\mu \nu} \delta g_{\mu \nu}\right)
$$

Apply Stueckelberg and go to Newtonian Gauge
$S \stackrel{\text { kinetic }}{=} \int M^{2} f\left[-3 \dot{\Psi}^{2}-2 \vec{\nabla} \Phi \vec{\nabla} \Psi+(\vec{\nabla} \Psi)^{2}+c \dot{\pi}^{2}-c(\vec{\nabla} \pi)^{2}+3(\dot{f} / f) \dot{\Psi} \dot{\pi}+(\dot{f} / f) \vec{\nabla} \pi(\vec{\nabla} \Phi-2 \vec{\nabla} \Psi)\right]$
Mixing

Mixing with gravity 1: Brans-Dicke

$$
S=\int \sqrt{-g}\left(\frac{M^{2}}{2} f R-\Lambda\left(c g^{00}+\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K+\frac{1}{2} T^{\mu \nu} \delta g_{\mu \nu}\right)\right.
$$

Apply Stueckelberg and go to Newtonian Gauge

$$
d s^{2}=-(1+2 \Phi) d t^{2}+a^{2}(1-2 \Psi) \delta_{i j} d x^{i} d x^{j}
$$

$S \stackrel{\text { kinetic }}{=} \int M^{2} f\left[-3 \dot{\Psi}^{2}-2 \vec{\nabla} \Phi \vec{\nabla} \Psi+(\vec{\nabla} \Psi)^{2}+c \dot{\pi}^{2}-c(\vec{\nabla} \pi)^{2}+3(\dot{f} / f) \dot{\Psi} \dot{\pi}+(\dot{f} / f) \vec{\nabla} \pi(\vec{\nabla} \Phi-2 \vec{\nabla} \Psi)\right]$

De-mixing $=$ conformal transformation
Mixing

$$
\begin{aligned}
& \Phi_{E}=\Phi+\frac{1}{2}(\dot{f} / f) \pi \\
& \Psi_{E}=\Psi-\frac{1}{2}(\dot{f} / f) \pi
\end{aligned}
$$

Mixing with gravity 1: Brans-Dicke

$$
S=\int \sqrt{-g}\left(\frac{M^{2}}{2} f R-\Lambda-c g^{00}+\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K+\frac{1}{2} T^{\mu \nu} \delta g_{\mu \nu}\right)
$$

Apply Stueckelberg and go to Newtonian Gauge

$$
d s^{2}=-(1+2 \Phi) d t^{2}+a^{2}(1-2 \Psi) \delta_{i j} d x^{i} d x^{j}
$$

$S^{\text {kinentic }} \int M^{2} f\left[-3 \dot{\Psi}^{2}-2 \vec{\nabla} \Phi \vec{\nabla} \Psi+(\vec{\nabla} \Psi)^{2}+c \dot{\pi}^{2}-c(\vec{\nabla} \pi)^{2}+3(\dot{f} / f) \dot{\Psi} \dot{\pi}+(\dot{f} / f) \vec{\nabla} \pi(\vec{\nabla} \Phi-2 \vec{\nabla} \Psi)\right]$

$$
1-\gamma \equiv \frac{\Phi-\Psi}{\Phi}=\frac{M^{2} \dot{f}^{2} / f}{2\left(c+M^{2} \dot{f}^{2} / f\right)} \quad \text { anisotropic stress }
$$

Newtonian limit

$$
G_{\text {eff }}=\frac{1}{8 \pi M^{2} f} \frac{c+M^{2} \dot{f}^{2} / f}{c+\frac{3}{4} M^{2} \dot{f}^{2} / f} \quad \text { dressed Newton constant }
$$

Mixing with gravity 2 :
(Cf. braiding: Deffayet et al., 2010)

$$
\begin{gathered}
f(t)=1 \\
S=\int \sqrt{-g}\left(\frac{M^{2}}{2} f R-\Lambda-c g^{00}+\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K+\frac{1}{2} T^{\mu \nu} \delta g_{\mu \nu}\right)
\end{gathered}
$$

Apply Stueckelberg and go to Newtonian Gauge

$$
S \stackrel{\text { kinetic }}{=} \int M^{2}\left[-3 \dot{\Psi}^{2}-2 \vec{\nabla} \Phi \vec{\nabla} \Psi+(\vec{\nabla} \Psi)^{2}\right]+c \dot{\pi}^{2}-c(\vec{\nabla} \pi)^{2}-3 \bar{m}_{1}^{3} \dot{\Psi} \dot{\pi}-m_{1}^{3} \vec{\nabla} \Phi \vec{\nabla} \pi
$$

De-mixing \neq conformal transformation

$$
\begin{aligned}
& \Phi_{E}=\Phi+\frac{\bar{m}_{1}^{3}}{2 M^{2}} \pi \\
& \Psi_{E}=\Psi+\frac{\bar{m}_{1}^{3}}{2 M^{2}} \pi
\end{aligned}
$$

Mixing

Mixing with gravity 2 :
(Cf. braiding: Deffayet et al., 2010)

$$
\begin{gathered}
f(t)=1 \\
S=\int \sqrt{-g}\left(\frac{M^{2}}{2} f R-\Lambda-c g^{00}+\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K+\frac{1}{2} T^{\mu \nu} \delta g_{\mu \nu}\right)
\end{gathered}
$$

Apply Stueckelberg and go to Newtonian Gauge
$S \stackrel{\text { kinetic }}{=} \int M^{2}\left[-3 \dot{\Psi}^{2}-2 \vec{\nabla} \Phi \vec{\nabla} \Psi+(\vec{\nabla} \Psi)^{2}\right]+c \dot{\pi}^{2}-c(\vec{\nabla} \pi)^{2}-3 \bar{m}_{1}^{3} \dot{\Psi} \dot{\pi}-\vec{m}_{1}^{3} \vec{\nabla} \Phi \vec{\nabla} \pi$
Mixing

Mixing with gravity 2 :
(Cf. braiding: Deffayet et al., 2010)

$$
\begin{gathered}
f(t)=1 \\
S=\int \sqrt{-g}\left(\frac{M^{2}}{2} f R-\Lambda-c g^{00}+\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K+\frac{1}{2} T^{\mu \nu} \delta g_{\mu \nu}\right)
\end{gathered}
$$

Apply Stueckelberg and go to Newtonian Gauge
$S \stackrel{\text { kinetic }}{=} \int M^{2}\left[-3 \dot{\Psi}^{2}-2 \vec{\nabla} \Phi \vec{\nabla} \Psi+(\vec{\nabla} \Psi)^{2}\right]+c \dot{\pi}^{2}-c(\vec{\nabla} \pi)^{2}-3 \bar{m}_{1}^{3} \dot{\Psi} \dot{\pi}-\dot{m}_{1}^{3} \vec{\nabla} \Phi \vec{\nabla} \pi$

Speed of Sound of DE
Mixing

$$
c_{s}^{2}=\frac{c+\frac{1}{2}\left(H \bar{m}_{1}^{3}+\dot{m}_{1}^{3}\right)-\frac{1}{4} \bar{m}_{1}^{6} / M^{2}}{c+\frac{3}{4} \bar{m}_{1}^{6} / M^{2}}
$$

Mixing with gravity 2 :
(Cf. braiding: Deffayet et al., 2010)
$f(t)=1$
$S=\int \sqrt{-g}\left(\frac{M^{2}}{2} f R-\Lambda-c g^{00}+\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K+\frac{1}{2} T^{\mu \nu} \delta g_{\mu \nu}\right)$
Apply Stueckelberg and go to Newtonian Gauge
$S^{\text {kinetic }}=\int M^{2}\left[-3 \dot{\Psi}^{2}-2 \vec{\nabla} \Phi \vec{\nabla} \Psi+(\vec{\nabla} \Psi)^{2}\right]+c \dot{\pi}^{2}-c(\vec{\nabla} \pi)^{2}-3 \bar{m}_{1}^{3} \dot{\Psi} \dot{\pi}-\vec{m}_{1}^{3} \vec{\nabla} \Phi \vec{\nabla} \pi$

Newtonian limit

$$
1-\gamma=\frac{\Phi-\Psi}{\Phi}=0
$$

NO anisotropic stress

$$
G_{\mathrm{eff}}=\frac{1}{8 \pi M^{2} f}\left(1-\frac{\bar{m}_{1}^{3}}{4 c M^{2}}\right)^{-1} \text { dressed Newton constant }
$$

