On ghost-free massive gravity

based on: C. Deffayet, JM, G Zahariade [arXiv:1207.6338],[arXiv:1208.4493]; JM, D. Steer ([arXiv:1310.6560], [arXiv:1405.1862].

J Mourad
Université Paris Diderot
mourad@apc.univ-paris7.fr

11 June 2014

Plan

(1) Free massive spin 2 field
(2) Interacting massive spin 2
(3) ghostfree massive gravity: metric formulation

4 Vielbein formulation
(5) Translation invariant solutions

- β_{1} mass term
- β_{3} mass term
(6) Conclusion

Outline

(1) Free massive spin 2 field
(2) Interacting massive spin 2
(3) ghostfree massive gravity: metric formulation

4 Vielbein formulation
(5) Translation invariant solutions

- β_{1} mass term
- β_{3} mass term

6) Conclusion

Free massive spin 2 field

The massless action

The Einstein-Hilbert action for $g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}$ is

$$
\begin{equation*}
S_{0}=\frac{1}{2} \int h_{\mu \nu} \mathcal{G}^{\mu \nu} \tag{1}
\end{equation*}
$$

with

$$
\begin{align*}
\mathcal{G}^{\mu \nu} & =\mathcal{R}^{\mu \nu}-\frac{1}{2} \eta^{\mu \nu} \mathcal{R}^{\alpha}{ }_{\alpha}, \\
\mathcal{R}^{\mu \nu} & =\square h^{\mu \nu}-\partial^{(\mu} \partial_{\alpha} h^{\nu) \alpha}+\partial^{\mu} \partial^{\nu} h^{\alpha}{ }_{\alpha} . \tag{2}
\end{align*}
$$

The gauge summetry $\delta h_{\mu \nu}=\partial_{(\mu} \xi_{\nu)}$ is guaranteed by the Bianchi identity $\partial_{\mu} \mathcal{G}^{\mu \nu}=0$ and removes $2 \times D$ dof from from the $D(D+1) / 2$ components leaving $(D-2)(D-1) / 2-1$ dof.

Free massive spin 2 field

The massive action

Addition of the most general mass term

$$
\begin{equation*}
S_{1}=-\frac{m^{2}}{2} \int\left(h_{\mu \nu} h^{\mu \nu}-a\left(h_{\alpha}^{\alpha}\right)^{2}\right) \tag{3}
\end{equation*}
$$

Free massive spin 2 field

The massive action

Addition of the most general mass term

$$
\begin{equation*}
S_{1}=-\frac{m^{2}}{2} \int\left(h_{\mu \nu} h^{\mu \nu}-a\left(h_{\alpha}^{\alpha}\right)^{2}\right) \tag{3}
\end{equation*}
$$

gives the exchange amplitude

$$
\begin{equation*}
T . \Delta . T=\frac{T . T-\frac{1}{D-1}\left(T^{\prime}\right)^{2}}{\square-m^{2}}-\frac{\left(T^{\prime}\right)^{2}}{(D-1)\left(\square-\frac{m^{2}(1-a D)}{(D-2)(a-1)}\right)}, \tag{4}
\end{equation*}
$$

with $T^{\prime}=T_{\alpha}^{\alpha}$.

Free massive spin 2 field

The massive action

Addition of the most general mass term

$$
\begin{equation*}
S_{1}=-\frac{m^{2}}{2} \int\left(h_{\mu \nu} h^{\mu \nu}-a\left(h_{\alpha}^{\alpha}\right)^{2}\right) \tag{3}
\end{equation*}
$$

gives the exchange amplitude

$$
\begin{equation*}
T . \Delta . T=\frac{T . T-\frac{1}{D-1}\left(T^{\prime}\right)^{2}}{\square-m^{2}}-\frac{\left(T^{\prime}\right)^{2}}{(D-1)\left(\square-\frac{m^{2}(1-a D)}{(D-2)(a-1)}\right)}, \tag{4}
\end{equation*}
$$

with $T^{\prime}=T_{\alpha}^{\alpha}$.
so the action describes a massive spin 2 field and a massive scalar ghost.

Free massive spin 2 field

The Fierz-Pauli action

is obtained by setting $a=1$.

Free massive spin 2 field

The Fierz-Pauli action

is obtained by setting $a=1$.
what is special about the FP action ?

Free massive spin 2 field

The Fierz-Pauli action

is obtained by setting $a=1$.

what is special about the FP action?

The equations of motion

$$
\begin{equation*}
\mathcal{G}_{\mu \nu}=m^{2}\left(h_{\mu \nu}-a \eta_{\mu \nu} h^{\prime}\right) . \tag{5}
\end{equation*}
$$

- and the Bianchi identity give

$$
\begin{equation*}
\partial^{\mu} h_{\mu \nu}-a \partial_{\nu} h^{\prime}=0, \tag{6}
\end{equation*}
$$

Free massive spin 2 field

The Fierz-Pauli action

is obtained by setting $a=1$.

what is special about the FP action?

The equations of motion

$$
\begin{equation*}
\mathcal{G}_{\mu \nu}=m^{2}\left(h_{\mu \nu}-a \eta_{\mu \nu} h^{\prime}\right) \tag{5}
\end{equation*}
$$

- and the Bianchi identity give

$$
\begin{equation*}
\partial^{\mu} h_{\mu \nu}-a \partial_{\nu} h^{\prime}=0 \tag{6}
\end{equation*}
$$

This removes a vectorial dof.

Free massive spin 2 field

- the trace of the equation

$$
\begin{equation*}
\frac{2-D}{2} \mathcal{R}=m^{2}(1-a D) h^{\prime}, \tag{7}
\end{equation*}
$$

- Using the vectorial constraint in $\mathcal{R}=2\left(\square h^{\prime}-\partial^{\mu} \partial^{\nu} h_{\mu \nu}\right)$ gives

$$
\begin{equation*}
\mathcal{R}=2(1-a) \square h^{\prime} \tag{8}
\end{equation*}
$$

Free massive spin 2 field

- the trace of the equation

$$
\begin{equation*}
\frac{2-D}{2} \mathcal{R}=m^{2}(1-a D) h^{\prime} \tag{7}
\end{equation*}
$$

- Using the vectorial constraint in $\mathcal{R}=2\left(\square h^{\prime}-\partial^{\mu} \partial^{\nu} h_{\mu \nu}\right)$ gives

$$
\begin{equation*}
\mathcal{R}=2(1-a) \square h^{\prime} \tag{8}
\end{equation*}
$$

so the trace becomes

$$
\begin{equation*}
(2-D)(1-a) \square h^{\prime}-m^{2}(1-a D) h^{\prime}=0 . \tag{9}
\end{equation*}
$$

Free massive spin 2 field

- the trace of the equation

$$
\begin{equation*}
\frac{2-D}{2} \mathcal{R}=m^{2}(1-a D) h^{\prime} \tag{7}
\end{equation*}
$$

- Using the vectorial constraint in $\mathcal{R}=2\left(\square h^{\prime}-\partial^{\mu} \partial^{\nu} h_{\mu \nu}\right)$ gives

$$
\begin{equation*}
\mathcal{R}=2(1-a) \square h^{\prime} \tag{8}
\end{equation*}
$$

so the trace becomes

$$
\begin{equation*}
(2-D)(1-a) \square h^{\prime}-m^{2}(1-a D) h^{\prime}=0 . \tag{9}
\end{equation*}
$$

So only for $a=1$ we have $\mathcal{R}=0$ and consequently $h^{\prime}=0$.

Outline

(1) Free massive spin 2 field
(2) Interacting massive spin 2
(3) ghostfree massive gravity: metric formulation
(4) Vielbein formulation
(5) Translation invariant solutions

- β_{1} mass term
- β_{3} mass term
(6) Conclusion

Interacting massive spin 2 field

Fierz-Pauli theory can be non linearly completed by considering actions

$$
\begin{equation*}
S_{g, m}=M_{g}^{2} \int d^{4} x \sqrt{-g}\left[R(g)-m^{2} V(\mathcal{M})\right] \tag{10}
\end{equation*}
$$

- V is a scalar function of $\mathcal{M}^{\mu}{ }_{\nu}=g^{\mu \sigma} f_{\sigma \nu}$,
- the theory contains, besides the dynamical metric $g_{\mu \nu}$, a non dynamical metric $f_{\mu \nu}$ usually considered to be flat.

Interacting massive spin 2 field

Fierz-Pauli theory can be non linearly completed by considering actions

$$
\begin{equation*}
S_{g, m}=M_{g}^{2} \int d^{4} x \sqrt{-g}\left[R(g)-m^{2} V(\mathcal{M})\right] \tag{10}
\end{equation*}
$$

- V is a scalar function of $\mathcal{M}^{\mu}{ }_{\nu}=g^{\mu \sigma} f_{\sigma \nu}$,
- the theory contains, besides the dynamical metric $g_{\mu \nu}$, a non dynamical metric $f_{\mu \nu}$ usually considered to be flat.
- V should be chosen such that
- (i) when $f_{\mu \nu}$ is taken to be $\eta_{\mu \nu}, g_{\mu \nu}=\eta_{\mu \nu}$ is a solution of the field equations,
- (ii) when expanded at quadratic order around this flat background, the action (10) has the Fierz-Pauli form .
There are infinitely many functions V that satisfy these requirements.

Interacting massive spin 2 field

the equations of motion

$$
\begin{equation*}
G_{\mu \nu}(g)=T_{\mu \nu}(g, f) \tag{11}
\end{equation*}
$$

Interacting massive spin 2 field

the equations of motion

$$
\begin{equation*}
G_{\mu \nu}(g)=T_{\mu \nu}(g, f) \tag{11}
\end{equation*}
$$

give the vectorial constraint

$$
\begin{equation*}
\nabla^{\mu} T_{\mu \nu}(g, f)=0 \tag{12}
\end{equation*}
$$

It removes a vectorial dof,

Interacting massive spin 2 field

the equations of motion

$$
\begin{equation*}
G_{\mu \nu}(g)=T_{\mu \nu}(g, f) \tag{11}
\end{equation*}
$$

give the vectorial constraint

$$
\begin{equation*}
\nabla^{\mu} T_{\mu \nu}(g, f)=0 \tag{12}
\end{equation*}
$$

It removes a vectorial dof, the scalar is not removed (Boulware-Deser ghost).

Interacting massive spin 2 field

the equations of motion

$$
\begin{equation*}
G_{\mu \nu}(g)=T_{\mu \nu}(g, f) \tag{11}
\end{equation*}
$$

give the vectorial constraint

$$
\begin{equation*}
\nabla^{\mu} T_{\mu \nu}(g, f)=0 \tag{12}
\end{equation*}
$$

It removes a vectorial dof, the scalar is not removed (Boulware-Deser ghost).
until the work of de Rham, Gabadadze and Tolley (dRGT) (2010)

Outline

(1) Free massive spin 2 field

(2) Interacting massive spin 2
(3) ghostfree massive gravity: metric formulation
(4) Vielbein formulation
(5) Translation invariant solutions

- β_{1} mass term
- β_{3} mass term
(6) Conclusion

ghostfree massive gravity

For a matrix X define F_{k} as

$$
\begin{equation*}
F_{k}(X)=\frac{1}{k!} X^{a_{1}}{ }_{\left[a_{1}\right.} \ldots X^{a_{k}}{ }_{\left.a_{k}\right]}, \tag{13}
\end{equation*}
$$

ghostfree massive gravity

For a matrix X define F_{k} as

$$
\begin{equation*}
F_{k}(X)=\frac{1}{k!} X^{a_{1}}{ }_{\left[a_{1}\right.} \ldots X^{a_{k}}{ }_{\left.a_{k}\right]}, \tag{13}
\end{equation*}
$$

The dRGT action

$$
\begin{equation*}
S=M_{P}^{2} \int d^{4} x \sqrt{-g}\left[R-m^{2} \sum_{k=0}^{k=4} \beta_{k} F_{k}\left(\sqrt{g^{-1} f}\right)\right] . \tag{14}
\end{equation*}
$$

ghostfree massive gravity

For a matrix X define F_{k} as

$$
\begin{equation*}
F_{k}(X)=\frac{1}{k!} X^{a_{1}}{ }_{\left[a_{1}\right.} \ldots X^{a_{k}}{ }_{\left.a_{k}\right]}, \tag{13}
\end{equation*}
$$

The dRGT action

$$
\begin{equation*}
S=M_{P}^{2} \int d^{4} x \sqrt{-g}\left[R-m^{2} \sum_{k=0}^{k=4} \beta_{k} F_{k}\left(\sqrt{g^{-1} f}\right)\right] . \tag{14}
\end{equation*}
$$

- The mass term depends on the matrix square root γ

$$
\begin{equation*}
\gamma_{\sigma}^{\mu} \gamma_{\nu}^{\sigma}=g^{\mu \sigma} f_{\sigma \nu}, \tag{15}
\end{equation*}
$$

- proved to be ghostfree in the decoupling limit.

Outline

(1) Free massive spin 2 field

(2) Interacting massive spin 2
(3) ghostfree massive gravity: metric formulation

4 Vielbein formulation
(5) Translation invariant solutions

- β_{1} mass term
- β_{3} mass term
(6) Conclusion

Ghostfree massive gravity- The moving frame formulation

In terms of dynamical one-forms θ^{A} and non-dynamical ℓ^{A}, the dRGT action reads

$$
\begin{equation*}
S\left[\theta^{A}\right]=\frac{1}{2} \int \Omega^{A B} \wedge \theta_{A B}^{*}+\sum_{n=0}^{D-1} \beta_{n} \int \ell^{A_{1}} \wedge \cdots \wedge \ell^{A_{n}} \wedge \theta_{A_{1} \ldots A_{n}}^{*} \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
\theta_{A_{1} \ldots A_{n}}^{*} \equiv \frac{1}{(D-n)!} \epsilon_{A_{1} \ldots A_{D}} \theta^{A_{n+1}} \wedge \cdots \wedge \theta^{A_{D}} \tag{17}
\end{equation*}
$$

Hinterbichler and Rosen (2012), Deffayet, JM, Zahariade (2013)

Ghostfree massive gravity- The moving frame formulation

In terms of dynamical one-forms θ^{A} and non-dynamical ℓ^{A}, the dRGT action reads

$$
\begin{equation*}
S\left[\theta^{A}\right]=\frac{1}{2} \int \Omega^{A B} \wedge \theta_{A B}^{*}+\sum_{n=0}^{D-1} \beta_{n} \int \ell^{A_{1}} \wedge \cdots \wedge \ell^{A_{n}} \wedge \theta_{A_{1} \ldots A_{n}}^{*} \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
\theta_{A_{1} \ldots A_{n}}^{*} \equiv \frac{1}{(D-n)!} \epsilon_{A_{1} \ldots A_{D}} \theta^{A_{n+1}} \wedge \cdots \wedge \theta^{A_{D}} \tag{17}
\end{equation*}
$$

Hinterbichler and Rosen (2012), Deffayet, JM, Zahariade (2013)
The two actions coincide if

$$
\begin{equation*}
e^{A \mu} \ell^{B}{ }_{\mu}-e^{B \mu} \ell^{A}{ }_{\mu}=0 \tag{18}
\end{equation*}
$$

and we set

$$
\begin{equation*}
\gamma^{\mu}{ }_{\nu}=e_{A}{ }^{\mu} \ell^{A}{ }_{\nu} \tag{19}
\end{equation*}
$$

Ghostfree massive gravity- The moving frame formulation

The equations of motion

$$
\begin{equation*}
G_{A}=t_{A} \tag{20}
\end{equation*}
$$

or equivalently $G_{A B}=t_{A B}$, with

$$
\begin{equation*}
t_{A} \equiv \sum_{n=0}^{D-1} \beta_{n} \ell^{A_{1}} \wedge \cdots \wedge \ell^{A_{n}} \wedge \theta_{A A_{1} \ldots A_{n}}^{*} \equiv t_{A}^{B} \theta_{B}^{*} \tag{21}
\end{equation*}
$$

Ghostfree massive gravity- The moving frame formulation

The equations of motion

$$
\begin{equation*}
G_{A}=t_{A} \tag{20}
\end{equation*}
$$

or equivalently $G_{A B}=t_{A B}$, with

$$
\begin{equation*}
t_{A} \equiv \sum_{n=0}^{D-1} \beta_{n} \ell^{A_{1}} \wedge \cdots \wedge \ell^{A_{n}} \wedge \theta_{A A_{1} \ldots A_{n}}^{*} \equiv t_{A}^{B} \theta_{B}^{*} \tag{21}
\end{equation*}
$$

- diffeomorphism invariance of the Einstein-Hilbert term implies the Bianchi identity

$$
\begin{equation*}
\mathcal{D} G_{A}=0=\mathcal{D} t_{A} \tag{22}
\end{equation*}
$$

Ghostfree massive gravity- The moving frame formulation

The equations of motion

$$
\begin{equation*}
G_{A}=t_{A} \tag{20}
\end{equation*}
$$

or equivalently $G_{A B}=t_{A B}$, with

$$
\begin{equation*}
t_{A} \equiv \sum_{n=0}^{D-1} \beta_{n} \ell^{A_{1}} \wedge \cdots \wedge \ell^{A_{n}} \wedge \theta_{A A_{1} \ldots A_{n}}^{*} \equiv t_{A}^{B} \theta_{B}^{*} \tag{21}
\end{equation*}
$$

- diffeomorphism invariance of the Einstein-Hilbert term implies the Bianchi identity

$$
\begin{equation*}
\mathcal{D} G_{A}=0=\mathcal{D} t_{A} \tag{22}
\end{equation*}
$$

- Lorentz invariance imposes

$$
\begin{equation*}
G_{[A B]}=0=t_{[A B]} \tag{23}
\end{equation*}
$$

- In many (but not all cases), this gives $e^{A \mu} \ell^{B}{ }_{\mu}-e^{B \mu} \ell^{A}{ }_{\mu}=0$

Ghostfree massive gravity- The moving frame formulation

The scalar constraint ?

a "trace" of the equations of motion

$$
\begin{equation*}
m^{A} G_{A}=m^{A} t_{A} \tag{24}
\end{equation*}
$$

gives a scalar constraint if $m^{A} G_{A}$ has no second order derivatives.

Ghostfree massive gravity- The moving frame formulation

The scalar constraint ?

a "trace" of the equations of motion

$$
\begin{equation*}
m^{A} G_{A}=m^{A} t_{A} \tag{24}
\end{equation*}
$$

gives a scalar constraint if $m^{A} G_{A}$ has no second order derivatives.
This is the case for β_{1} and β_{2}

Ghostfree massive gravity- The moving frame formulation

The scalar constraint?

a "trace" of the equations of motion

$$
\begin{equation*}
m^{A} G_{A}=m^{A} t_{A} \tag{24}
\end{equation*}
$$

gives a scalar constraint if $m^{A} G_{A}$ has no second order derivatives.
This is the case for β_{1} and β_{2}

$$
\begin{align*}
G_{A} & =d \sigma_{A}+\tau_{A}, \quad \sigma_{A}=-\frac{1}{2} \omega^{B C} \theta_{A B C}^{*} \tag{25}\\
\tau_{A} & =\frac{1}{2} \omega^{B}{ }_{[A} \omega^{C D} \theta_{C] B D}^{*} . \tag{26}
\end{align*}
$$

the vectorial constraint $\mathcal{D} t_{A}=0$ implies $\theta^{A} \sigma_{A}=0$ and $\ell^{A} \sigma_{A}=0$.
C. Deffayet, G. Zahariade, JM (2013)

Outline

(1) Free massive spin 2 field

(2) Interacting massive spin 2
(3) ghostfree massive gravity: metric formulation

4 Vielbein formulation
(5) Translation invariant solutions

- β_{1} mass term
- β_{3} mass term
(6) Conclusion

translation invariant solutions

In the linear FP theory, they are the Plane waves in the rest frame.

They capture the degrees of freedom.
A simplified hamiltonian framework, with exact (or numerical) solutions.

translation invariant solutions

In the linear FP theory, they are the Plane waves in the rest frame.

They capture the degrees of freedom.
A simplified hamiltonian framework, with exact (or numerical) solutions.
They also generalise the Bianchi I solutions of GR.

translation invariant solutions

In the linear FP theory, they are the Plane waves in the rest frame.

They capture the degrees of freedom.
A simplified hamiltonian framework, with exact (or numerical) solutions.
They also generalise the Bianchi I solutions of GR.

$$
\begin{equation*}
e_{00}=-N, \quad e_{0 i}=-N n_{i}, \quad e_{i j}=\pi_{i j}-N n_{i} n_{j} \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta^{00}=-\left(\frac{1}{N}-\zeta^{i j} n_{i} n_{j}\right), \quad \theta^{0 i}=-\zeta^{i j} n_{j}, \quad \theta^{i j}=\zeta^{i j} \tag{28}
\end{equation*}
$$

the $D(D+1) / 2$ variables all depend on $t, \zeta=\pi^{-1}$.

β_{1} mass term

$$
d s^{2}=-\frac{1}{N^{2}} d t^{2}+\left(\zeta^{2}\right)_{i j} d x^{i} d x^{j} \equiv-d T^{2}+\left(B^{-1}\right)_{i j} d x^{i} d x^{j}
$$

Bianchi

$$
\begin{equation*}
\mathrm{C}_{1} \equiv \operatorname{tr}\left(\dot{\mathrm{BB}}^{-1}\right)=0 \tag{29}
\end{equation*}
$$

Hamiltonian

$$
\begin{equation*}
n_{i}=0, \quad \mathrm{C}_{2} \equiv-\operatorname{tr}\left(\dot{\mathrm{BB}}^{-1}\right)^{2}+8 \mathrm{~m}^{2} \operatorname{tr}(1-\pi)=0 . \tag{30}
\end{equation*}
$$

Equations of motion

$$
\begin{equation*}
-\partial_{T}\left(\dot{B} B^{-1}\right)=2 m^{2}[\pi+2 \operatorname{tr}(1-\pi)-\mathrm{N}] \tag{31}
\end{equation*}
$$

β_{1} mass term

The lapse
The trace of the equations

$$
\begin{equation*}
N=1-\frac{2 D-3}{D-1} \operatorname{tr}(\pi-1) \tag{32}
\end{equation*}
$$

β_{1} mass term

The lapse

The trace of the equations

$$
\begin{equation*}
N=1-\frac{2 D-3}{D-1} \operatorname{tr}(\pi-1) \tag{32}
\end{equation*}
$$

Linearised limit $\pi=1+h$

$$
\begin{gather*}
\operatorname{tr}(\dot{\mathrm{h}})=0, \operatorname{tr}(\mathrm{~h})=0, \mathrm{~N}=1 . \tag{33}\\
\ddot{h}+m^{2} h=0 . \tag{34}
\end{gather*}
$$

β_{1} mass term

The lapse

The trace of the equations

$$
\begin{equation*}
N=1-\frac{2 D-3}{D-1} \operatorname{tr}(\pi-1) \tag{32}
\end{equation*}
$$

Linearised limit $\pi=1+h$

$$
\begin{gather*}
\operatorname{tr}(\dot{\mathrm{h}})=0, \operatorname{tr}(\mathrm{~h})=0, \mathrm{~N}=1 . \tag{33}\\
\ddot{h}+m^{2} h=0 \tag{34}
\end{gather*}
$$

- well posed initial value problem and $N \geq 0$.
- sectors of solutions depending on signature of π, negative implies effective potential unbounded from below.

β_{1} mass term

effective potential in 3D for positive and negative determinant

β_{1} mass term

effective potential in 3D for positive and negative determinant

numerical solution in the 4D diagonal case

β_{3} mass term

Bianchi

$$
\begin{equation*}
\mathrm{C}_{1} \equiv \operatorname{tr} \dot{\zeta}=0 . \tag{35}
\end{equation*}
$$

Hamiltonian

$$
n_{i}=0, \mathrm{C}_{2} \equiv\left(\operatorname{tr}\left(\dot{\mathrm{BB}}^{-1}\right)\right)^{2}-\operatorname{tr}\left(\left(\dot{\mathrm{BB}}^{-1}\right)^{2}\right)+8 \mathrm{~m}^{2}(1-\operatorname{det} \pi)=0
$$

Equations of motion

$$
\begin{aligned}
-\partial_{T}\left(\dot{B} B^{-1}\right)+\partial_{T} \operatorname{tr}\left(\dot{\mathrm{~B}}{ }^{-1}\right) & +\frac{1}{2}\left(\dot{B} B^{-1}\right) \operatorname{tr}\left(\dot{\mathrm{B}} \mathrm{~B}^{-1}\right) \\
-\frac{1}{4}\left[\left(\operatorname{tr}\left(\dot{\mathrm{BB}}^{-1}\right)\right)^{2}+\operatorname{tr}\left(\left(\dot{\mathrm{BB}}^{-1}\right)^{2}\right)\right] & =-2 m^{2}[\zeta(N \operatorname{det} \pi)-1],(37)
\end{aligned}
$$

β_{3} mass term

The lapse

- is not obtained from the trace of the eom.
- From the eom get $\ddot{\zeta}$ then use $\operatorname{tr} \dot{\zeta}=0$ to obtain N.

β_{3} mass term

The lapse

- is not obtained from the trace of the eom.
- From the eom get $\ddot{\zeta}$ then use $\operatorname{tr} \dot{\zeta}=0$ to obtain N.

For $\pi=\operatorname{diag}\left(e^{\delta}, \ldots, e^{\delta}, e^{\Delta}\right)$

$$
\begin{gather*}
c=\operatorname{tr} \zeta=(\mathrm{D}-2) \mathrm{e}^{-\delta}+\mathrm{e}^{-\Delta} \tag{38}\\
N=\frac{c e^{-(D-2) \delta}\left[(D-3) e^{(D-2) \delta}-2 c(D-3)+2(D-2)^{2} e^{-\delta}\right]}{\left(e^{-\delta}-e^{-\delta_{*}}\right)^{2}(D-2)^{2}(D-1)^{2}} \tag{39}
\end{gather*}
$$

with

$$
\begin{equation*}
e^{-\delta_{*}}=\frac{c(D-3)}{(D-2)(D-1)} \tag{40}
\end{equation*}
$$

β_{3} mass term

The lapse

- is not obtained from the trace of the eom.
- From the eom get $\ddot{\zeta}$ then use $\operatorname{tr} \dot{\zeta}=0$ to obtain N.

For $\pi=\operatorname{diag}\left(e^{\delta}, \ldots, e^{\delta}, e^{\Delta}\right)$

$$
\begin{gather*}
c=\operatorname{tr} \zeta=(\mathrm{D}-2) \mathrm{e}^{-\delta}+\mathrm{e}^{-\Delta} \tag{38}\\
N=\frac{c e^{-(D-2) \delta}\left[(D-3) e^{(D-2) \delta}-2 c(D-3)+2(D-2)^{2} e^{-\delta}\right]}{\left(e^{-\delta}-e^{-\delta_{*}}\right)^{2}(D-2)^{2}(D-1)^{2}} \tag{39}
\end{gather*}
$$

with

$$
\begin{equation*}
e^{-\delta_{*}}=\frac{c(D-3)}{(D-2)(D-1)} \tag{40}
\end{equation*}
$$

If $c>c_{\text {crit }}$ with

$$
\begin{equation*}
c_{\text {crit }}=\frac{D-1}{2^{1 /(D-1)}}\left(\frac{D-2}{D-3}\right)^{\frac{D-2}{D-1}} \tag{41}
\end{equation*}
$$

N changes sign and the evolution is singular at a finite time.

V and N

The potential $V(\delta)$ (red, solid lines) and $N(\delta)$ (blue dashed lines) in $D=4$ dimensions for which $c_{\text {crit }} \simeq 3.78$. LH panel: $c=3.3<c_{\text {crit }}$; RH panel $c=4>c_{\text {crit }}$.

Outline

(1) Free massive spin 2 field

(2) Interacting massive spin 2
(3) ghostfree massive gravity: metric formulation

4 Vielbein formulation
(5) Translation invariant solutions

- β_{1} mass term
- β_{3} mass term
(6) Conclusion

Conclusions

- Ghostfree massive gravity in the moving frame formulation :
- no square roots
- Constraints easy to obtain (β_{1} and β_{2}).
- Classical instabilities in some sectors of the solutions β_{1}
- Singular time evolution for β_{3}
- More tests for β_{1}.

