APC-Perimeter-Solvay Workshop

DM In etection: some anomalies many constraints

Marco Cirelli (CNRS IPhT Saclay)

APC-Perimeter-Solvay Workshop

DM In etection: some anomalies many constraints

Marco Cirelli (CNRS IPhT Saclay)

DM exists

DM exists

galactic rotation curves

weak lensing (e.g. in clusters)

'precision cosmology' (CMB, LSS)

DM exists

galactic rotation curves

'precision cosmology' (CMB, LSS)

DM is a neutral, very long lived, feebly- interacting corpuscle.

DM exists

galactic rotation curves

weak lensing (e.g. in clusters)

'precision cosmology' (CMB, LSS)

DM is a neutral, very long lived, weakly interacting particle.

Some of us believe in

 the WIMP miracle.- weak-scale mass ($10 \mathrm{GeV}-1 \mathrm{TeV}$)
- weak interactions $\sigma v=3 \cdot 10^{-26} \mathrm{~cm}^{3} / \mathrm{sec}$
- give automatically correct abundance

A matter of perspective: plausible mass ranges

thermal

particles

A matter of perspective: plausible mass ranges

‘only' 90 orders of magnitude!

A matter of perspective: plausible mass ranges

‘only' 90 orders of magnitude!

A matter of perspective: plausible mass ranges

‘only' 90 orders of magnitude!

production at colliders

LHC

indirect $^{\gamma} / \begin{gathered}\gamma \begin{array}{l}\text { from annihil in galactic center or halo } \\ \text { and from synchrotron emission } \\ \text { Fermi, ICT, rad }\end{array} \\ \text { from annihil in galactic halo or center }\end{gathered}$
ν, ν from annihil in massive bodies
SK, Icecube, Km3Net

direct detection

production at colliders

γ from annihil in galactic center or halo and from synchrotron emission

Fermi, ICT, radio telescopes.
from annihil in galactic halo or center
PAMELA, Fermi, HESS, AMS, balloons...
from annihil in galactic halo or center
from annihil in galactic halo or center
GAPS
$\nu, \bar{\nu}$ from annihil in massive bodies
SK, Icecube, Km3Net

direct detection

production at colliders

γ from annihil in gialactic center or halo and from synchrotron emission
from annihil in galactic halo or center
PAMELA, Fermi, HESS, AMS, balloons...
from annihil in galactic halo or center

from annihil in galactic hall or center

V, V from annihil in massive bodies

Cha URs

1. the PAMELA/Fermi/HESS 'excesses'

A matter of perspective: plausible mass ranges

‘only' 90 orders of magnitude!

Indirect Detection: basics \bar{p} and e^{+}from DM annihilations in halo

Indirect Detection: basics \bar{p} and from DM annihilations in halo

Indirect Detection: basics \bar{p} and $e^{\text {from }} \mathrm{DM}$ annihilations in halo

Indirect Detection: basics \bar{p} and from DM annihilations in halo

Indirect Detection: basics \bar{p} and from DM annihilations in halo

Indirect Detection: basics \bar{p} and from DM annihilations in halo

Indirect Detection: basics \bar{p} and from DM annihilations in halo

Indirect Detection: basics \bar{p} and from DM annihilations in halo

$\frac{\partial f^{\text {spectrum }}}{\partial t}-K(E) \cdot \nabla^{2} f-\frac{\partial}{\partial E}(b(E) f)+\frac{\partial}{\partial z}\left(V_{c} f\right)=Q_{\text {inj }}-2 h \delta(z) \Gamma_{\text {spall }} f$

Indirect Detection: basics \bar{p} and $e^{\text {from }} \mathrm{DM}$ annihilations in halo

What sets the overall expected flux? flux $\propto n^{2} \sigma_{\text {annihilation }}$

Indirect Detection: basics \bar{p} and $e^{\text {from }} \mathrm{DM}$ annihilations in halo

What sets the overall expected flux?
flux $\propto n^{2} \sigma_{\text {annihilation }}$
astro\& particle cosmo

Indirect Detection: basics \bar{p} and e^{+}from DM annihilations in halo

What sets the overall expected flux?
flux $\propto n^{2} \sigma_{\text {annihilation }}$ astro\& particle reference cross section: cosmo

$$
\sigma v=3 \cdot 10^{-26} \mathrm{~cm}^{3} / \mathrm{sec}
$$

From N-body numerical simulations:

$$
\begin{aligned}
\text { NFW : } & \rho_{\mathrm{NFW}}(r) & =\rho_{s} \frac{r_{s}}{r}\left(1+\frac{r}{r_{s}}\right)^{-2} \\
\text { Einasto : } & \rho_{\mathrm{Ein}}(r) & =\rho_{s} \exp \left\{-\frac{2}{\alpha}\left[\left(\frac{r}{r_{s}}\right)^{\alpha}-1\right]\right\} \\
\text { Isothermal : } & \rho_{\mathrm{Iso}}(r) & =\frac{\rho_{s}}{1+\left(r / r_{s}\right)^{2}} \\
\text { Burkert: } & \rho_{\mathrm{Bur}}(r) & =\frac{\rho_{s}}{\left(1+r / r_{s}\right)\left(1+\left(r / r_{s}\right)^{2}\right)} \\
\text { Moore : } & \rho_{\mathrm{Moo}}(r) & =\rho_{s}\left(\frac{r_{s}}{r}\right)^{1.16}\left(1+\frac{r}{r_{s}}\right)^{-1.84}
\end{aligned}
$$

At small $\mathrm{r}: \rho(r) \propto 1 / r^{\gamma}$

6 profiles:

 cuspy: NFW, Moore mild: Binasto smooth: isothermal, Burkert EinastoB = steepened \#inasto(effect of baryons?)

DM halo	α	$r_{s}[\mathrm{kpc}]$	$\rho_{s}\left[\mathrm{GeV} / \mathrm{cm}^{3}\right]$
NFW	-	24.42	0.184
Einasto	0.17	28.44	0.033
EinastoB	0.11	35.24	0.021
Isothermal	-	4.38	1.387
Burkert	-	12.67	0.712
Moore	-	30.28	0.105

antiprotons

electrons + positrons

electrons + positrons

Are these signals of Dark Matter?

positron fraction

antiprotons

electrons + positrons

Are these signals of Dark Matter?

YFS: few TeV, leptophilic DM

 with huge $\langle\sigma v\rangle \approx 10^{-23} \mathrm{~cm}^{3} / \mathrm{sec}$
antiprotons

electrons + positrons

Are these signals of Dark Matter?

YㅍF: few TeV, leptophilic DM with huge $\langle\sigma v\rangle \approx 10^{-23} \mathrm{~cm}^{3} / \mathrm{sec}$

NTO: a formidable 'background' for future searches

DM DM $\rightarrow \mu \mu$, Einasto profile
DM DM $\rightarrow \tau \tau$, Einasto profile

DM DM $\rightarrow \tau \tau$, Iso profile

PS: post AMS 2013

Are these signals of Dark Matter?

YIFS: one TeV, leptophilic DM with huge $\langle\sigma v\rangle \approx 10^{-23} \mathrm{~cm}^{3} / \mathrm{sec}$ 'tension' between positron frac and $\mathrm{e}^{+}+\mathrm{e}^{-}$

PS: post AIMS 2013

DM DM $\rightarrow \mu \mu$, Iso profile

$M_{\mathrm{DM}}[\mathrm{GeV}]$
$M_{\mathrm{DM}}[\mathrm{GeV}]$

Indirect

direct detection

production at colliders

indirect
γ from annihil in galactic center or halo and from synchrotron emission

Fermi, ICT, radio telescopes...
from annihil in galactic hall or center
PAMBLA, Fermi, HESS, AMS, balloons.
from annihil in galactic halo or center
from annihil in galactic halo or center
V, V from annihil in massive bodies

Indirect Detection: constraints γ from DM annihilations in galactic center

Indirect Detection: constraints

 a.) γ from DM annihilations in galactic center
$D M$
$-W^{+}, Z, \bar{b}, \tau^{+}, \bar{t}, h \ldots \rightsquigarrow e^{ \pm}, \stackrel{(-)}{p},(-)$
$D$$\ldots$ and γ

Indirect Detection: constraints

 a.) γ from DM annihilations in galactic center
$D M$
$\bullet W^{+}, Z, \bar{b}, \tau^{+}, \bar{t}, h \ldots \rightsquigarrow e^{ \pm}, \stackrel{(-)}{p},(-)$
D, and γ

Indirect Detection: constraints

 a.) γ from DM annihilations in galactic center
typically sub-TeV energies

Indirect Detection: constraints

b. γ from DM annihilations in Satellite Galaxies

$D M$
$\left.-W^{+}, Z, Z, \bar{b}, \tau^{+}, t, h, h \ldots \rightsquigarrow e^{\mp}, \stackrel{(-}{p}\right)(\stackrel{(-)}{D} \ldots$ and γ
$W^{ \pm}, \stackrel{(-)}{p}, \stackrel{(-)}{D} \ldots$ and γ

Indirect Detection: constraints c. γ from Inverse Compton on $e^{ \pm}$in halo

- upscatter of CMB, infrared and starlight photons on energetic $e^{ \pm}$
- probes regions outside of Galactic Center

Indirect Detection: constraints

c. γ from Inverse Compton on $e^{ \pm}$in halo IR bkgd

- upscatter of CMB, infrared and starlight photons on energetic $e^{ \pm}$
- probes regions outside of Galactic Center

Indirect Detection: constraints c. γ from Inverse Compton on $e^{ \pm}$in halo Star Light

- upscatter of CMB, infrared and starlight photons on energetic $e^{ \pm}$
- probes regions outside of Galactic Center

Indirect Detection: constraints d. γ from outside the Galaxy

Indirect Detection: constraints (d.) γ from outside the Galaxy

Indirect Detection: constraints d.) γ from outside the Galaxy

Indirect Detection: constraints d.) γ from outside the Galaxy

Indirect Detection: constraints d.) γ from outside the Galaxy

Indirect Detection: constraints

 d.) γ from outside the Galaxy

- isotropic flux of prompt and ICS gamma rays, integrated over z and r
- depends strongly on halo formation details and history

Indirect Detection: constraints e. radio-waves from synchro radiation of $e^{ \pm}$in GC

Indirect Detection: constraints

 e. radio-waves from synchro radiation of $e^{ \pm}$in GC
γ from Inverse Compton on in halo

The PAMELA and FERMI regions are in conflict with these gamma constraints, and here...

γ from Inverse Compton on

in halo

γ from Inverse Compton on

in halo

Updated results from the FERMI coll. itself

Rermi

Gam cons aints

See also:
Papucci, Strumia,
0912.0742

DM particle annihilations produce free electrons

$$
\begin{aligned}
& -n_{\mathrm{A}} H_{0} \sqrt{\Omega_{\mathrm{M}}}(1+z)^{11 / 2} \frac{d x_{\mathrm{ion}}(z)}{d z}=I(z)-R(z) . \quad I(z)=\int_{e_{\mathrm{i}}}^{m_{\chi}} d E_{\gamma} \frac{d n}{d E_{\gamma}}(z) \cdot P\left(E_{\gamma}, z\right) \cdot N_{\mathrm{ion}}\left(E_{\gamma}\right) \quad P\left(E_{\gamma}, z\right)=n_{\mathrm{A}}(1+z)^{3}\left[1-x_{\mathrm{ion}}(z)\right] \cdot \sigma_{\text {tot }}\left(E_{\gamma}\right), \\
& N_{\text {ion }}\left(E_{\gamma}\right)=\eta_{\text {ion }}\left(x_{\text {ion }}(z)\right) E_{\gamma}\left[\frac{n_{\mathrm{H}}}{n_{\mathrm{A}}} \frac{1}{e_{i, \mathrm{H}}}+\frac{n_{\text {He }}}{n_{\mathrm{A}}} \frac{1}{e_{i, \mathrm{He}}}\right]=\eta_{\text {ion }}\left(x_{\text {ion }}(z)\right) \frac{E_{\gamma}}{\operatorname{GeV}} \mu \\
& \frac{d n}{d E_{\gamma}}(z)=\int_{\infty}^{z} d z^{\prime} \frac{d t}{d z^{\prime}} \frac{d N}{d E_{\gamma}^{\prime}}\left(z^{\prime}\right) \frac{(1+z)^{3}}{\left(1+z^{\prime}\right)^{3}} \cdot A\left(z^{\prime}\right) \cdot \exp \left[\Upsilon\left(z, z^{\prime}, E_{\gamma}^{\prime}\right)\right] . \\
& \Upsilon\left(z, z^{\prime}, E_{\gamma}^{\prime}\right) \simeq-\int_{z^{\prime}}^{z} d z^{\prime \prime} \frac{d t}{d z^{\prime \prime}} n_{\mathrm{A}}\left(1+z^{\prime \prime}\right)^{3} \sigma_{\text {tot }}\left(E_{\gamma}^{\prime \prime}\right) \\
& \begin{aligned}
\frac{d T_{\mathrm{igm}}(z)}{d z} & =\frac{2 T_{\mathrm{igm}}(z)}{1+z} \\
& -\frac{1}{H_{0} \sqrt{\Omega_{\mathrm{M}}}(1+z)^{5 / 2}}\left(\frac{x_{\mathrm{ion}}(z)}{1+x_{\mathrm{ion}}(z)+0.073} \frac{T_{\mathrm{CMB}}(z)-T_{\mathrm{igm}}(z)}{t_{\mathrm{c}}(z)}+\frac{2 \operatorname{heat}\left(x_{\mathrm{ion}}(z)\right) \mathcal{E}(z)}{3 n_{\mathrm{A}}(1+z)^{3}}\right)
\end{aligned} \\
& A(z)=\frac{\langle\sigma v\rangle}{2 m_{\chi}^{2}} \rho_{\mathrm{DM}, 0}^{2}(1+z)^{6}\left(1+\mathcal{B}_{i}(z)\right), \quad \mathcal{B}_{i}(z)=\frac{\Delta_{\mathrm{vir}}(z)}{3 \rho_{\mathrm{c}} \Omega_{\mathrm{M}}} \int_{M_{\min }}^{\infty} d M M \frac{d n}{d M}(z, M) F_{i}(M, z), \quad \frac{d n}{d M}(M, z)=\sqrt{\frac{\pi}{2}} \frac{\rho_{\mathrm{M}}}{M} \delta_{\mathrm{c}}(1+z) \frac{d \sigma(R)}{d M} \frac{1}{\sigma^{2}(R)} \exp \left(-\frac{\delta_{\mathrm{c}}^{2}(1+z)^{2}}{2 \sigma^{2}(R)}\right)
\end{aligned}
$$

DM particles that fit PAMELA+FERMI+HESS produce
free electrons

Kanzaki et al., 0907.3985

DM particles that fit PAMELA+FERMI+HESS produce too many free electrons: bounds on optical depth of the Universe violated
$\tau=0.084 \pm 0.016$ (WMAP-5yr)

see also:

Huetsi, Hektor, Raidal 0906.4550
Kanzaki et al., 0907.3985
Huetsi et al., 1103.2766

DM DM $\rightarrow \tau \tau$, Einasto profile

Cirelli, Iocco, Panci, JCAP 0910

PAMELA+FERMI + HESS produce too many free electrons: bounds on optical depth of the Universe violated $\tau=0.084 \pm 0.016$ (WMAP-5yr)

Starts constraining even thermal DM!

DM DM $\rightarrow \tau \tau$, Einasto profile

Cirelli, Iocco, Panci, JCAP 0910

bot

Similar conclusion from global CMB fits

Galli, Iocco, Bertone, Melchiorri, PRD 80 (2009) Slatyer, Padmanabahn, Finkbeiner, PRD 80 (2009) Galli, Iocco, Bertone, Melchiorri, 1106.1528 (2011)
see also: Finkbeiner, Galli, Lin, Slatyer 1109.6322 (2011) Galli, Slatyer, Valdes, Iocco, 1306.0563 (2013)

(indicatively) PAMELA
+FERMI+HESS

Similar conclusion from global CMB fits

Giesen, Lesgourgues, Audren, Ali-Haïmoud (2012)

Theor eaction

Theor eaction

1. the 'PAMBLA frenzy'

- TeV or multi-TeV masses
- no hadronic channels
- very large flux
for any Majorana DM, s-wave annihilation cross section

$$
\sigma_{\mathrm{ann}}(\mathrm{DM} \mathrm{D} \mathrm{\bar{M}} \rightarrow f \bar{f}) \propto\left(\frac{m_{f}}{M_{\mathrm{DM}}}\right)^{2}
$$

difficult
difficult
ok

A matter of perspective: plausible mass ranges

‘only' 90 orders of magnitude!

Promp nisst line(s)

$$
E_{\gamma}=m_{\mathrm{DM}}
$$

primary channels

So what are the particle physics parameters?

1. Dark Matter mass
2. annihilation cross section $\sigma_{\text {ann }}$

What if a signal of DM is already hidden in Fermi diffuse γ data?

Ch. Weniger, 1204.2797
4.6σ (3.3σ with LEE)
$\langle\sigma v\rangle_{\chi \chi \rightarrow \gamma \gamma} \simeq$
$1.3 \cdot 10^{-27} \mathrm{~cm}^{3} / \mathrm{s}$
(large!)

What if a signal of DM is already hidden in Fermi diffuse γ data?

Ch. Weniger, 1204.2797
4.6σ (3.3σ with LEE)
$\langle\sigma v\rangle_{\chi \chi \rightarrow \gamma \gamma} \simeq$ $1.3 \cdot 10^{-27} \mathrm{~cm}^{3} / \mathrm{s}$ (large!)

Similar excesses found elsewhere (fluctuation?)

The excess is only in the GC (actually, a bit off-set)

And there might be 2 lines: $111 \mathrm{GeV}, 129 \mathrm{GeV}$

What if a signal of DM is already hidden in Fermi diffuse γ data?

Ch. Weniger, 1204.2797
4.6σ (3.3σ with LEE)
$\langle\sigma v\rangle_{\chi \chi \rightarrow \gamma \gamma} \simeq$
$1.3 \cdot 10^{-27} \mathrm{~cm}^{3} / \mathrm{s}$
(large!)

The Fermi coll's cold shower. An instrumental effect?

What if a signal of DM is already hidden in Fermi diffuse γ data?

Ch. Weniger, 1204.2797
4.6σ (3.3σ with LEE)
$\langle\sigma v\rangle_{\chi \chi \rightarrow \gamma \gamma} \simeq$ $1.3 \cdot 10^{-27} \mathrm{~cm}^{3} / \mathrm{s}$ (large!)

The Fermi coll's cold shower. An instrumental effect?

Theor eaction

2. the ' 130 GeV line' frenzy

It's 'easy' to make a line: any 2-body final state
with at least one γ. But:
DM is neutral: need 'somelhing' to couple to

DM is neutral: need 'something' to couple to γ

'Higss in space!' 0912.0004 Kyae, Park 1205.4151 Cline 1205.2688

$$
X \in \mathrm{SM}
$$

MSSM
dark sector...

Lee \&e Park² 1205.4675
magn dipole

Heo, Kim 1207. 1341

DM is neutral: need 'something' to couple to γ

The 'somelhing' implies usually a suppression

DM is neutral: need 'something' to couple to γ

The 'something' implies usually a suppression, but one needs a large $\gamma \gamma$ cross section $\left(0\left(10^{27} \mathrm{~cm}^{3} / \mathrm{s}\right)\right)$

DM is neutral: need 'somelhing' to couple to γ

$=10^{-n} x$

The 'something' implies usually a suppression, but one needs a large $\gamma \gamma$ cross section $\left(0\left(10^{27} \mathrm{~cm}^{3} / \mathrm{s}\right)\right)$
so the corresponding unsuppressed processes are too large:

- may overshoot other observations
- too large annihilation in the EU

Buchmuller, Garny 1206.7056
Cohen et al. 120\%.0800
Cholis, Tavakoli, Ullio 1207. 1468
Huang et al. 1208.026r

DM is neutral: need 'something' to couple to γ

The 'something' implies usually a suppression, but one needs a large $\gamma \gamma$ cross section $\left(0\left(10^{27} \mathrm{~cm}^{3} / \mathrm{s}\right)\right.$) so the corresponding unsuppressed processes are too large:

- may overshoot other observations
- too large annihilation in the EU

DM is neutral: need 'something' to couple to γ

The 'something' implies usually a suppression, but one needs a large $\gamma \gamma$ cross section $\left(0\left(10^{27} \mathrm{~cm}^{3} / \mathrm{s}\right)\right.$)
so the corresponding unsuppressed processes are too large:

- may overshoot other observations
- too large annihilation in the WU

But solutions exist

Ex. l: 'resonance, loop and forbidden channel'

(a) DM charged under $U^{\prime}(1)$
(b) Z^{\prime} is t_{R}-phílic
(c) $m_{D M} \leqslant m_{\text {top }}$

line (s)
with large rate if on resonance (a)
(masses \&e couplings)

Jackson, Servant,
Shaughnessy,
Trait, Tasso,
'Hiss in space',
0912.0004

However:

- anomalies, need to UV complete (b)

Đx. 2: 'resonance, tri-boson vertices, Chern-Simons'
(a) DM charged under U'(1)
(b) anomaly cancellation \rightarrow tri-boson CS terms

$$
\mathcal{L}_{\mathrm{CS}}=\alpha \varepsilon^{\mu \nu \rho \sigma} Z_{\mu}^{\prime} Z_{\nu} F_{\rho \sigma}^{Y}
$$

Dudas, Mambrini,
Pokorski, Romagnoni 2009-2012, 1205.1520
(c) $m_{Z^{\prime}}<m_{D M}$

relic abundance
a dififerent diagram wrt to line, open thanks to (c), works for large gauge coupling and small (loop?) CS coeff
Continuum? Under control

Ex. 3: 'pseudo-scalar mediation, p-and s-waves'
(a) DM charged under U(1) PQ
(b) anomalies \rightarrow tri-boson terms

\Rightarrow line (b)
with large rate if on resonance (a)

Continuum? Assume couplings to W and Z are suppressed

Exchange of s / h is p-wave, i.e. \vee dependent.

Suppressed today, large in BU.
relic abundance

Ex. 4: 'magnetic moments and coannihilations'

(a) DM has a magnetic moment

$$
\mu \bar{\chi}_{1} \sigma_{\mu \nu} \chi_{2} F^{\mu \nu}
$$

(b) DM sits in a multiplet with ~ 10 GeV splitting

relic abundance
is set by coannihilations, they would be too effective for large μ, but the splitting (b) suppresses.

Continuum? Ultra suppressed by the splitting (b)

Ex. 5: 'asymmetric DM'
(a) $D M-\overline{D M}$ initial asymmetry (b) $D M-\overline{D M}$ mixing \rightarrow late time oscillations, re-balance

relic abundance (a)
is produced via the asymmetry is decoupled from the annihilation

Ex. 5: 'asymmetric DM'
(a) $D M-\overline{D M}$ initial asymmetry (b) $D M-\overline{D M}$ mixing \rightarrow late time oscillations, re-balance

relic abundance (a)
is produced via the asymmetry is decoupled from the annihilation

Annihilations resume (b)

Ex. 5: 'asymmetric DM'
(a) $D M-\overline{D M}$ initial asymmetry
(b) $D M-\overline{D M}$ mixing \rightarrow late time oscillations, re-balance

relic abundance (a)
is produced via the asymmetry is decoupled from the annihilation

Annihilations resume (b)

Ex. 5: 'asymmetric DM'
(a) $D M-\overline{D M}$ initial asymmetry
(b) $D M-\overline{D M}$ mixing \rightarrow late time oscillations, re-balance

relic abundance (a)
is produced via the asymmetry is decoupled from the annihilation

Annihilations resume (b)

Ex. 5: 'asymmetric DM'

(a) $D M-\overline{D M}$ initial asymmetry
(b) $D M-\overline{D M}$ mixing \rightarrow late time oscillations, re-balance

relic abundance (a)
is produced via the asymmetry is decoupled from the annihilation

Annihilations resume (b)
(and the cross section needs to be large)

Ex. 5: 'asymmetric DM'

(a) $D M-\overline{D M}$ initial asymmetry
(b) $D M-\overline{D M}$ mixing \rightarrow late time oscillations, re-balance
 relic abundance (a)
is produced via the asymmetry is decoupled from the annihilation

Annihilations resume (b) \gg line (and the cross section needs to be large)

Ex. 5: 'asymmetric DM'

(a) $D M-\overline{D M}$ initial asymmetry
(b) $D M-\overline{D M}$ mixing \rightarrow late time oscillations, re-balance

relic abundance (a)
is produced via the asymmetry is decoupled from the annihilation

Annihilations resume (b) \rightarrow line (and the cross section needs to be large)

Continuum? Needs to be suppressed in some way today.

DM is neutral: need 'something' to couple to γ

The 'something' implies usually a suppression, but one needs a large $\gamma \gamma$ cross section $\left(0\left(10^{27} \mathrm{~cm}^{3} / \mathrm{s}\right)\right.$)
so the corresponding unsuppressed processes are too large:

- may overshoot other observations
- too large annihilation in the WU

But solutions exist

- may overshoot other observations
- too large annihilation in the MU

But solutions exist

- may overshoot other observations
- too large annihilation in the EU

But solutions exist

In summary:

- kinematically forbidden channel
- different diagrams
- s-wave vs p-wave
- coannihilations and splitting
- DM production is decoupled from annihilations - ...

3. the 'Hooperon'

A matter of perspective: plausible mass ranges

‘only' 90 orders of magnitude!

What if a signal of DM is already hidden in Fermi diffuse γ data from the GC?

A diffuse GeV excess from around the GC

What if a signal of DM is already hidden in Fermi diffuse γ data from the GC?

Hooper, Goodenough 1010.2752

A diffuse GeV excess from around the GC

What if a signal of DM is already hidden in Fermi diffuse γ data from the GC?

Hooper, Goodenough 1010.2752

A diffuse $G e V$ excess from around the GC

Objection: know your backgrounds!

Boyarsky et al., 1012.5839

Abazajian 1011.4275

What if a signal of DM is already hidden in Fermi diffuse γ data from the GC?

Hooper, Goodenough 1010.2752
Best fit: $8 \mathrm{GeV}, \tau^{+} \tau^{-}$, ~thermal ov

A diffuse GeV excess from around the GC

Objection: know your backgrounds!

Boyarsky et al., 1012.5839
Still works...

Abazajian 1011.4275
No, too few
(and we should have seen them elsewhere) and wrong spectra

Hooper et al. 1305.0830

What if a signal of DM is already hidden in Fermi diffuse γ data from the GC?

Hooper, Goodenough 1010.2752
Best fit: $8 \mathrm{GeV}, \tau^{+} \tau^{-}$, ~thermal ov

A diffuse GeV excess from around the GC

Objection: know your backgrounds!

Boyarsky et al., 1012.5839
Still works...

Abazajian 1011.4275
No, too few
(and we should have seen them elsewhere) and wrong spectra

Hooper et al. 1305.0830
MSPs exist.

What if a signal of DM is already hidden in Fermi diffuse γ data from the GC?

Hooper, Goodenough 1010.2752
Best fit: $8 \mathrm{GeV}, \tau^{+} \tau^{-}$, ~thermal ov

A diffuse GeV excess from around the GC

Objection: know your backgrounds!

Boyarsky et al., 1012.5839
Still works...

Abazajian 1011.4275
No, too few
(and we should have seen them elsewhere) and wrong spectra

Hooper et al. 1305.0830
No no, MSPs can do.

(LMXB (tracers of MSP?) seen in M31 with this distribution)

What if a signal of DM is already hidden in Fermi diffuse γ data from the GC?

Fermi bubbles

What if a signal of DM is already hidden in Fermi diffuse γ data from the GC?

- pancolyty

Fermi bubbles

What if a signal of DM is already hidden in Fermi diffuse γ data from the GC?
 Here there's no excess which cannot be explained in terms of ordinary ICS.

Fermi bubbles

Dan Hooper

What if a signal of DM is already hidden in Fermi diffuse γ data from the GC?

Best fit:
$\sim 10 \mathrm{GeV}$, leptons, \sim thermal ov
Fermi bubbles

Here there's no excess which cannot be explained in terms of ordinary ICS.

Hooper, Slatyer 1302.6589

What if a signal of DM is already hidden in Fermi diffuse γ data from the GC?

Best fit:
$\sim 10 \mathrm{GeV}$, leptons, \sim thermal ov
Fermi bubbles

Here there's no excess which cannot be explained in terms of ordinary ICS.

What if a signal of DM is already hidden in Fermi diffuse γ data from the GC?

Best fit:
~ 10 GeV, leptons, \sim thermal ov
Fermi bubbles

Here there's no excess which cannot be explained in terms of ordinary ICS.

Objection:
nothing tells you that the input $e^{ \pm}$ spectrum stays the same at high and low latitudes
(the ISRF too, but one can better model that)

Response:
even if you try, the input $e^{ \pm}$spectrum has to be weird (a δ fnct at 16 GeV ?!?)

Hooper, Slatyer 1302.6589

What if a signal of DM is already hidden in Fermi diffuse γ data from the GC?

A compelling case for annihilating DM

Using events with accurate directional reconstruction

Best fit:
$\sim 35 \mathrm{GeV}$, quarks, ~thermal ov

As found in previous studies [8, 9], the inclusion of the dark matter template dramatically improves the quality of the fit to the Fermi data. For the best-fit spectrum and halo profile, we find that the inclusion of the dark matter template improves the formal fit by $\Delta \chi^{2} \simeq 1672$, corresponding to a statistical preference greater than 40σ.

What if a signal of DM is already hidden in Fermi diffuse γ data from the GC?

Fermi-LAT excess

Including secondary emission changes the conclusions

But: propagation is approximate
Lacroix, Bœhm, Silk 1403.198ヶ

Best fit:
~10 GeV, leptons, ~thermal ov

An excess with respect to what? Extracting 'data points' is not trivial:

i. choose a ROI (shape, extension, masking...) and harvest Fermi-LAT data ii. impose sensible cuts (Pass N, angles, CTBCORE...)
iii. in each energy bin, fit to a sum of spatial templates:

1. Fermi Coll. diffuse
2. isotropic
3. unresolved point sources
4. features (bubbles...)
5. AOB (molecular gas...)
iv. repeat the same, adding a template for:
6. Dark Matter, having chosen a certain profile!
v. if iii. \rightarrow iv. improves χ^{2}, there's evidence for DM
vi. the component fitted by 6 is the residual excess to be explained

Note:

Adding 6 will in general change the recipe of $1 . .5$ (you'll need a bit more of x here, a bit less of y there...). Changing the profile of 6 too.

etation

Millisec pulsars

Abazajian 1011.4275
Hooper et al. 1305.0830
Yuan, Zhang 1404.2318

A transient phenomenon:

the GC spit 10^{52} ergs in $\mathrm{e}^{ \pm} 1 \mathrm{mln}$ yrs ago and they do ICS on ambient light, 'fits' both spectrum and morphology

Petrović, Serpico, Zaharijas 1405.7928

but: can one really get everything right?

Non-trivial

Sgra spectrum

a SN explosion spits protons 5000 yrs ago and they do spallations + bremsstrahlung as well as e ${ }^{ \pm}$which do ICS... fits spectrum \&e morphology

Carlson, Profumo 1405.7685

but: why correlation with gas density not seen?

Theor s eaction

3. the 'Hooperon'

4. the 'Hooperon'

A matter of perspective: plausible mass ranges

‘only' 90 orders of magnitude!

Bulbul et ail., 1402.2301
$3.55-3.57 \pm 0.03 \mathrm{KeV}$
73 clusters
$\mathrm{z}=0.01-0.35$

Boyarsky, Ruchayskiy, 1402.4119

3.5 KeV

Andromeda galaxy

+ Perseus cluster
$z=0$ and 0.0179

Theor eaction

4. the ' 3.5 KeV ' line

Sterile neutrino decay

$$
\begin{aligned}
& m_{\nu}=7.1 \mathrm{KeV} \\
& \tau \simeq 10^{29} \mathrm{sec} \\
& \sin ^{2} 2 \theta \sim \text { few } 10^{-11}
\end{aligned}
$$

Sterile neutrino decay

$m_{\nu}=7.1 \mathrm{KeV}$
$\tau \simeq 10^{29} \mathrm{sec}$ $\sin ^{2} 2 \theta \sim$ few 10^{-11}

Possible challenges:

- EU production?
- Perseus flux too large?

Bulbul et al., 1402.2301

Sterile neutrino decay

$$
\begin{aligned}
& m_{\nu}=7.1 \mathrm{KeV} \\
& \tau \simeq 10^{29} \mathrm{sec} \\
& \sin ^{2} 2 \theta \sim \text { few } 10^{-11}
\end{aligned}
$$

Possible challenges:

- EU production?
- Perseus flux too large?

Other possibilities:

axion (1402.7335), axino (1403.1536, 1403.1782, 1403.6621), modulus (1403.1733), ALP (1403.2370), gravitino (1403.6503), excited DM (1404.4795), the good the bad and the unlikely (1403.1570), sgoldstino (1404.1339), magnetic DM (1404.5446), majoron (1404.1400), annihilating effective DM (1404.1927), 7KeV scalar DM (1404.ฉ२२0)...

You need a quick reference for formulæ and methods to compute indirect detection signals?

You want to compute all signatures of your DM model in positrons, electrons, neutrinos, gamma rays... but you don't want to mess around with astrophysics?

You want to compute all signatures of your DM model in positrons, electrons, neutrinos, gamma rays... but you don't want to mess around with astrophysics?

'The Poor Particle Physicist Cookbook for Dark Matter Indirect Direction' PPPC 4 DM ID

We provide ingredients and recipes for computing signals of TeV-scale Dark Matter annihilations and decays in the Galaxy and beyond.

Cirelli, Corcella, Hektor, Hütsi, Kadastik, Panci, Raidal, Sala, Strumia

You want to compute all signatures of your DM model in positrons, electrons, neutrinos, gamma rays... but you don't want to mess around with astrophysics?

Propagation functions for electrons and positrons everywhere in the Galaxy:

Energy loss coefficient function $\mathbf{b}[\mathbf{E}, r, z]$ for electrons and positrons in the Galaxy: Mathematica function $\mathbf{b} . \mathrm{m}$, refer to the notebook Sample.nb for usage.

Annihilation	
Positrons:	The file ElectronHalofunctGalaxyAnn.m provides the halo functions The notebook Sample.nb shows how to load and use it.

Decay
Positrons: The file ElectronHaloFunctGalaxyDec.m provides the halo functions
$1\left(x, E_{s} r, z\right)$ at a point (r, z) in the Galaxy
The notebook Sample,nb shows how to load and use it.

Propagation functions for charged cosmic rays at the location of the Earth:

Annihilation

Positrons:

The file ElectronHalofunctEarthAnn.m provides the halo functions I($\left.x, E_{g} r_{\text {Earth }}\right)$ at the location of the Earth.
The notebook Sample.nb shows how to load and use it.

Table of fit coefficients for the reduced halo function $1(\lambda)$ (in the approximated formalism-see paper).

Antiprotons:
Iable of fit coefficients for the propagation function $R(T)$

Antideuterons: Table of fit coefficients for the propagation function $R(T)$.

Decay
Positrons:

> The file ElectronHalofunctEarthDec.m provides the halo functions $I\left(x, E_{s} I_{\text {Earth }}\right)$ at the location of the Earth.
> The notebook Sample.nb shows how to load and use it.

Table of fit coefficients for the reduced halo function $I(\lambda)$ (in the approximated formalism-see paper).

Antiprotons: Table of fit coefficients for the propagation function $R(T)$.

Fluxes of charged cosmic rays at the Earth, after propagation:

| Annihilation | Decay |
| :--- | :--- | :--- |
| Positrons: Mathematica function: the file ElectronFluxAnn.m provides the | Positrons:\quad Mathematica function: the file ElectronFluxDec.m provides the |

You want to compute all signatures of your DM model in positrons, electrons, neutrinos, gamma rays... but you don't want to mess around with astrophysics?

Main added value features:
compare different MCs
improved $e^{ \pm}$propagation

improved ICS γ-ray computation

Conclu ons \& utlook
Fints

γ
FHRMII, HESS,
VERITAS etc
\bar{P}
PAMIBLA
ν
SK, ICECUBE
Cosmology

Hopes

\section*{| IMALS | |
| :---: | :---: |
| e | |
| PAMELA | |
| FERMI | |
| HESS | |
| γ | |
| FERMI | |
| $X ~ X M M-N e w t o n ~$ | |}

γ	
FERMI, HESS,	
VERITAS etc	
\bar{P}	PAMELA
V	SK, ICECUBE
Cosmology	

Hopes

\bar{d} GAPS, AMS-02

AMS-02

- 'enhancements'
- new theory directions

Hopes

\bar{d} GAPS, AMS-02

AMS-02

- 'enhancements'
- new theory directions

Old wise remarks:

\section*{| Irintis | |
| :---: | :---: |
| e | PAMELA |
| | |
| | FERMI |
| HESS | |
| γ | FERMMI |
| X | XMM-Newton |}

γ
FFERMI, HESS,
VERITAS etc
\bar{P}
PAMELA
ν
SK, ICECUBE
Cosmology

Hopes

\bar{d} GAPS, AMS-02
$\gamma \quad \nu$

AMS-02

- 'enhancements'
- new theory directions

Old wise remarks:

- any convincing result must be multimessenger

\section*{| ILInts | |
| :---: | :---: |
| e | PAMBLA |
| FERMI | |
| HESS | |
| γ | FBRMI |
| X | XMM-Newton |}

γ
FERMMI, HESS,
VERITAS etc
\bar{P}
PAMELA
ν
SK, ICECUBE
Cosmology

Hopes

\bar{d} GAPS, AMS-02

$$
\gamma \quad \nu
$$

AMS-02

- 'enhancements'
- new theory directions

Old wise remarks:

- any convincing result must be multimessenger
- beware of uncertainties, beware of astrophysics

