Constantes fondamentales, gravitation et cosmologie

Développements récents

Jean-Philippe UZAN

Constants

Fundamental constants play an important role in physics

- set the order of magnitude of phenomena;
- allow to forge new concepts;
- linked to the structure of physical theories;
- characterize their domain of validity;
- *gravity:* linked to the equivalence principle;

- *cosmology*: at the heart of reflections on fine-tuning/naturalness/design/ multiverse;

Constants

Fundamental constants play an important role in physics

- set the order of magnitude of phenomena;
- allow to forge new concepts;
- linked to the structure of physical theories;
- characterize their domain of validity;
- *gravity:* linked to the equivalence principle;

- *cosmology*: at the heart of reflections on fine-tuning/naturalness/design/ multiverse;

Any parameter not determined by the theories we are using.

It has to be assume constant (no equation/ nothing more fundamental) Reproductibility of experiments. One can only measure them.

Reference theoretical framework

The number of physical constants depends on the level of description of the laws of nature.

In our present understanding [*General Relativity* + *SU*(*3*)*xSU*(*2*)*xU*(*1*)]:

Reference theoretical framework

The number of physical constants depends on the level of description of the laws of nature.

In our present understanding [*General Relativity* + SU(3)xSU(2)xU(1)]:

Thus number can *increase* or *decrease* with our knowledge of physics

Constant	Symbol	Value
Speed of light	c	299 792 458 m s ⁻¹
Planck constant (reduced)	ħ	1.054 571 628(53) × 10 ^{−34} J s
Newton constant	G	6.674 28(67) × 10 ⁻¹¹ m ² kg ⁻¹ s ⁻²
Weak coupling constant (at m_Z)	$g_2(m_Z)$	0.6520 ± 0.0001
Strong coupling constant (at m_Z)	$g_3(m_Z)$	1.221 ± 0.022
Weinberg angle	$\sin^2 \theta_{\rm W}$ (91.2 GeV) _{MS}	0.23120 ± 0.00015
Electron Yukawa coupling	he	2.94 × 10 ⁻⁶
Muon Yukawa coupling	h_{μ}	0.000607
Tauon Yukawa coupling	h_{τ}	0.0102156
Up Yukawa coupling	$h_{\rm u}$	0.000016 ± 0.000007
Down Yukawa coupling	$h_{\rm d}$	0.00003 ± 0.00002
Charm Yukawa coupling	hc	0.0072 ± 0.0006
Strange Yukawa coupling	$h_{\rm s}$	0.0006 ± 0.0002
Top Yukawa coupling	h_{t}	1.002 ± 0.029
Bottom Yukawa coupling	$h_{\rm b}$	0.026 ± 0.003
Quark CKM matrix angle	$\sin \theta_{12}$	0.2243 ± 0.0016
	$\sin \theta_{23}$	0.0413 ± 0.0015
	$\sin \theta_{13}$	0.0037 ± 0.0005
Quark CKM matrix phase	$\delta_{\rm CKM}$	1.05 ± 0.24
Higgs potential quadratic coefficient	$\hat{\mu}^2$? -(250.6 ±1.2) GeV ²
Higgs potential quartic coefficient	λ	? 1.015 ±0.05
QCD vacuum phase	$\theta_{\rm QCD}$	< 10 ⁻⁹

« C'est alors, considérant ces faits, qu'il me vint à l'esprit que si l'on supprimait totalement la résistance du milieu, tous les corps descendraient avec la même vitesse. »

> Galilée, *in Discours concernant deux sciences nouvelles*, 1638 Traduction de Maurice Clavelin, PUF, 1995.

« Il y a une puissance de la gravité, qui concerne tous les corps, proportionnelle aux différentes quantités de matière qu'ils contiennent. »

« Cette force est toujours proportionnelle à la quantité de matière des corps, & elle ne diffère de ce qu'on appelle l'inertie de la matière que par la manière de la concevoir. »

« La force de la pesanteur entre les différentes particules de tout corps est inversement proportionnelle au carré des distances des positions des particules. » Isaac Newton, *in Principia*, Londres, 1687 Traduction d'Émilie du Châtelet, Paris, 1759.

Tests on the universality of free fall

On the basis of general relativity

The equivalence principle takes much more importance in general relativity

It is based on **Einstein equivalence principle**

universality of free fall local Lorentz invariance local position invariance

Not a basic principle of physics but mostly an empirical fact.

If this principle holds then gravity is a consequence of the geometry of spacetime

This principle has been a driving idea in theories of gravity from Galileo to Einstein

ciple takes much more imr

GR in a nutshell

Underlying hypothesis

Equivalence principle

- Universality of free fall
- Local lorentz invariance
- Local position invariance

 $S_{matter}(\psi, g_{\mu
u}^{\vee})$

GR in a nutshell

Underlying hypothesis

Equivalence principle

- Universality of free fall
- Local lorentz invariance
- Local position invariance

$$S_{matter}(\psi,g_{\mu
u}^{})$$

Relativity

 $g_{\mu
u}=g^*_{\mu
u}$

Equivalence principle and constants

<u>In general relativity</u>, any test particle follows a geodesic, which does not depend on the mass or on the chemical composition

Imagine some constants are space-time dependent

1- Local position invariance is violated.

Equivalence principle and constants

<u>In general relativity</u>, any test particle follow a geodesic, which does not depend on the mass or on the chemical composition

Imagine some constants are space-time dependent

1- Local position invariance is violated.

But, now

2- Universality of free fall has also to be violated

Mass of test body = mass of its constituants + binding energy

In Newtonian terms, a free motion implies $\frac{d\vec{p}}{dt} = m \frac{d\vec{v}}{dt} = \vec{0}$

$$\frac{d\vec{p}}{dt} = \vec{0} = m\vec{a} + \frac{dm}{d\alpha}\dot{\alpha}\vec{v}$$
$$\vec{m}\vec{a}_{\rm anomalous}$$

Varying constants: constructing theories

 $S[\phi, \bar{\psi}, A_{\mu}, h_{\mu\nu}, \dots; c_1, \dots, c_2]$

Varying constants: constructing theories

$$S[\phi, \bar{\psi}, A_{\mu}, h_{\mu\nu}, \dots; c_1, \dots, c_2]$$

If a constant is varying, this implies that it has to be replaced by a dynamical field

This has 2 consequences:

1- the equations derived with this parameter constant will be modified one cannot just make it vary in the equations

2- the theory will provide an equation of evolution for this new parameter

The field responsible for the time variation of the « constant » is also responsible for a long-range (composition-dependent) interaction i.e. at the origin of the deviation from General Relativity.

Constants and systems of units

Constants and systems of units

- Modelisation of gyromagnetic factors [with K. Olive & Fang Luo (2011)]
- Planck & CMB constraints [with S. Galli, O. Fabre, S. Prunet, E. Menegoni, & Planck collaboration (2013)]
- Big bang nucleosynthesis [with A. Coc, E Vangioni, L. Olive (2007-2013)]
- Population III stars [with A. Coc, E. Vangioni, K. Olive, P. Descouvemont, G. Meynet, S. Ekström (2010)]

ANR VACOUL (PI: Patrick Petitjean) / ANR Thales (PI: Luc Blanchet)

Observables and primary constraints

A given physical system gives us an observable quantity

Step 1:

From a physical model of our system we can deduce the sensitivities to the primary physical parameters

$$\kappa_{G_k} = rac{\partial \ln O}{\partial \ln G_k}$$

Step 2:

The primary physical parameters are usually not fundamental constants.

$$\Delta \ln G_k = \sum_i d_{ki} \Delta \ln c_i$$

Physical systems

Atomic clocks & modelisation of gyromagnetic factors

[Luo, Olive, JPU, 2011]

Hydrogen atom

Atomic clocks

General atom

$$\nu_{\rm hfs} \simeq R_{\infty} c \times A_{\rm hfs} \times g_i \times \alpha_{\rm EM}^2 \times \bar{\mu} \times F_{\rm hfs}(\alpha)$$
$$\nu_{\rm elec} \simeq R_{\infty} c \times A_{\rm elec} \times F_{\rm elec}(Z,\alpha)$$

 $\kappa_{\alpha} \equiv \frac{\partial \ln F}{\partial \ln \alpha_{\rm EM}}$

Atom	Transition	sensitivity κ_{α}
$^{1}\mathrm{H}$	1s - 2s	0.00
⁸⁷ Rb	hf	0.34
^{133}Cs	${}^{2}S_{1/2}(F=2) - (F=3)$	0.83
171 Yb ⁺	$^{2}S_{1/2} - ^{2}D_{3/2}$	0.9
¹⁹⁹ Hg ⁺	${}^{2}S_{1/2} - {}^{2}D_{5/2}$	-3.2
⁸⁷ Sr	${}^{1}S_{0} - {}^{3}P_{0}$	0.06
²⁷ Al ⁺	${}^{1}S_{0} - {}^{3}P_{0}$	0.008

Atomic clocks

Clock 1	Clock 2	Constraint (yr^{-1})	Constants dependence	Reference
	$\frac{\mathrm{d}}{\mathrm{d}t}\ln\left(\frac{\nu_{\mathrm{clock}_1}}{\nu_{\mathrm{clock}_2}}\right)$			
⁸⁷ Rb	^{133}Cs	$(0.2 \pm 7.0) \times 10^{-16}$	$\frac{g_{Cs}}{q_{Rb}}\alpha_{EM}^{0.49}$	
87 Rb	^{133}Cs	$(-0.5 \pm 5.3) \times 10^{-16}$		Bize (2003)
$^{1}\mathrm{H}$	^{133}Cs	$(-32\pm 63) \times 10^{-16}$	$g_{C_s} \mu \alpha_{E_M}^{2.83}$	Fischer (2004)
$^{199}{ m Hg^{+}}$	^{133}Cs	$(0.2 \pm 7) \times 10^{-15}$	$g_{\rm Cs}\mu\alpha_{\rm EM}^{6.05}$	Bize (2005)
$^{199}Hg^{+}$	^{133}Cs	$(3.7 \pm 3.9) \times 10^{-16}$	EM	Fortier (2007)
$^{171}Yb^{+}$	^{133}Cs	$(-1.2 \pm 4.4) \times 10^{-15}$	$g_{\rm Cs}\mu\alpha_{\rm TM}^{1.93}$	Peik (2004)
$^{171}\mathrm{Yb^{+}}$	^{133}Cs	$(-0.78 \pm 1.40) \times 10^{-15}$	D - T EM	Peik (2006)
87 Sr	^{133}Cs	$(-1.0 \pm 1.8) \times 10^{-15}$	$q_{Cs}\mu\alpha_{-1}^{2.77}$	Blatt (2008)
87 Dy	87 Dv	(5 CH EM	Cingöz (2008)
²⁷ Al ⁺	$^{199} Hg^+$	$(-5.3\pm7.9)\times10^{-17}$	$\alpha_{\rm EM}^{-3.208}$	Blatt (2008)

Atomic clocks: from observations to constraints

The gyromagnetic factors can be expressed in terms of g_p and g_n (shell model).

 $\frac{\delta g_{\rm Cs}}{g_{\rm Cs}} \sim -1.266 \frac{\delta g_p}{g_p} \qquad \frac{\delta g_{\rm Rb}}{g_{\rm Rb}} \sim 0.736 \frac{\delta g_p}{g_p}$

All atomic clock constraints take the form

$$\frac{\dot{\nu}_{AB}}{\nu_{AB}} = \lambda_{g_{\rm p}} \frac{\dot{g}_{\rm p}}{g_{\rm p}} + \lambda_{\mu} \frac{\dot{\mu}}{\mu} + \lambda_{\alpha} \frac{\dot{\alpha}}{\alpha}$$

Using Al-Hg to constrain α , the combination of other clocks allows to constraint $\{\mu, g_p\}$.

Note: one actually needs to include the effects of the polarization of the non-valence nucleons and spin-spin interaction.

[Flambaum, 0302015,...

Atomic clocks: from observations to constraints

One then needs to express m_p and g_p in terms of the quark masses and Λ_{QCD} as

$$\frac{\delta g_{\rm p}}{g_{\rm p}} = \kappa_{\rm u} \frac{\delta m_{\rm u}}{m_{\rm u}} + \kappa_{\rm d} \frac{\delta m_{\rm d}}{m_{\rm d}} + \kappa_{\rm s} \frac{\delta m_{\rm s}}{m_{\rm s}} + \kappa_{\rm QCD} \frac{\delta \Lambda_{\rm QCD}}{\Lambda_{\rm QCD}}$$
$$\frac{\delta m_{\rm p}}{m_{\rm p}} = f_{T_{\rm u}} \frac{\delta m_{\rm u}}{m_{\rm u}} + f_{T_{\rm d}} \frac{\delta m_{\rm d}}{m_{\rm d}} + f_{T_{\rm s}} \frac{\delta m_{\rm s}}{m_{\rm s}} + f_{T_{\rm g}} \frac{\delta \Lambda_{\rm QCD}}{\Lambda_{\rm QCD}}$$

Assuming unification.

$$\frac{\dot{\nu}_{AB}}{\nu_{AB}} = \lambda_{g_{\rm p}} \frac{\dot{g}_{\rm p}}{g_{\rm p}} + \lambda_{\mu} \frac{\dot{\mu}}{\mu} + \lambda_{\alpha} \frac{\dot{\alpha}}{\alpha} \qquad \longrightarrow \qquad \frac{\dot{\nu}_{AB}}{\nu_{AB}} = C_{AB} \frac{\dot{\alpha}}{\alpha}$$

 C_{AB} coefficients range from 70 to 0.6 typically. Model-dependence remains quite large.

Cosmic microwave background

[with S. Galli, O. Fabre, S. Prunet, E. Menegoni, et al. (2013)]

- $p + e \longleftrightarrow H + \gamma$ Reaction rate $\Gamma_{\rm T} = n_{\rm e} \sigma_{\rm T}$
- 1- Recombination $n_e(t),...$
- 3- Last scattering

Out-of-equilibrium process – requires to solve a Boltzmann equation

Dependence on the constants

Recombination of hydrogen and helium Gravitational dynamics (expansion rate) predictions depend on G, α, m_e

$$\sigma_{\rm T} = \frac{8\pi}{3} \frac{\hbar^2}{m_{\rm e}^2 c^2} \alpha_{\rm EM}^2$$

We thus consider the parameters: $\{\omega_{\rm b}, \omega_{\rm c}, H_0, \tau, n_s, A_s, \alpha \text{ or } m_e\}$

All the dependences of the constants can be included in a CMB code (recombination part: RECFAST): $(\alpha)^2(m)$

 $\begin{array}{l} E=h\nu \ Binding \ energies \\ \sigma_T \ Thomson \ cross-section \\ \sigma_n \ photoionisation \ cross-sections \\ \alpha \ recombination \ parameters \\ \beta \ photoionisation \ parameters \\ K \ cosmological \ redshifting \ of \ the \ photons \\ A \ Einstein \ coefficient \\ \Lambda_{2s} \ 2s \ decay \ rate \ by \ 2\gamma \end{array}$

$$\begin{split} \nu_{i} &= \nu_{i0} \left(\frac{\alpha}{\alpha_{0}}\right)^{2} \left(\frac{m_{e}}{m_{e0}}\right) \\ \sigma_{\mathrm{T}} &= \sigma_{\mathrm{T0}} \left(\frac{\alpha}{\alpha_{0}}\right)^{2} \left(\frac{m_{e}}{m_{e0}}\right)^{-2} \\ \sigma_{n} &= \sigma_{n0} \left(\frac{\alpha}{\alpha_{0}}\right)^{-1} \left(\frac{m_{e}}{m_{e0}}\right)^{-2} \\ & \ddots \\ \alpha_{i} &= \alpha_{i0} \left(\frac{\alpha}{\alpha_{0}}\right)^{3} \left(\frac{m_{e}}{m_{e0}}\right)^{-3/2} \\ \beta_{i} &= \beta_{i0} \left(\frac{\alpha}{\alpha_{0}}\right)^{3} \\ K_{i} &= K_{i0} \left(\frac{\alpha}{\alpha_{0}}\right)^{-6} \left(\frac{m_{e}}{m_{e0}}\right)^{-3} \\ A_{i} &= A_{i0} \left(\frac{\alpha}{\alpha_{0}}\right)^{5} \left(\frac{m_{e}}{m_{e0}}\right) \\ \Lambda_{i} &= \Lambda_{i0} \left(\frac{\alpha}{\alpha_{0}}\right)^{8} \left(\frac{m_{e}}{m_{e0}}\right) \end{split}$$

Dependence on the constants

Effect on the temperature power spectrum

Effect on the polarization power spctrum

Effect on the cross-correlation

Varying α alone

 $\{\omega_{\rm b}, \omega_{\rm c}, H_0, \tau, n_s, A_s, \alpha \text{ or } m_e\}$

Varying m_e alone

 $\{\omega_{\rm b}, \omega_{\rm c}, H_0, \tau, n_s, A_s, \alpha \text{ or } m_e\}$

(α, m_e) -degeneracy

Why *Planck* does better

Why Planck does better

Why Planck does better

In conclusion

Independent variations of α and m_{e} are constrained to be

 $\Delta \alpha / \alpha = (3.6 \pm 3.7) \times 10^{-3}$ $\Delta m_e / m_e = (4 \pm 11) \times 10^{-3}$

This is a factor 5 better compared to WMAP analysis

Planck breaks the degeneracy with $\rm H_o$ and with $\rm m_e$ and other cosmological parameters (e.g. $\rm N_v$ or helium abundance)

Big bang nucleosynthesis & Population III stars

Nuclear physics at work in the universe

[Coc,Nunes,Olive,JPU,Vangioni 2006 Coc, Descouvemont, Olive, JPU, Vangioni, 2012 Ekström, Coc, Descouvemont, Meynet, Olive, JPU, Vangioni,2009]

BBN: basics

Stellar carbon production

Triple α coincidence (Hoyle)

- Equillibrium between ⁴He and the short lived (~10⁻¹⁶ s) ⁸Be : αα⇔⁸Be
- 2. Resonant capture to the $(l=0, J^{\pi}=0^+)$ Hoyle state: ⁸Be+ $\alpha \rightarrow {}^{12}C^*(\rightarrow {}^{12}C+\gamma)$

Simple formula used in previous studies

- 1. Saha equation (thermal equilibrium)
- 2. Sharp resonance analytic expression:

$$N_{A}^{2} \langle \sigma v \rangle^{\alpha \alpha \alpha} = 3^{3/2} 6 N_{A}^{2} \left(\frac{2\pi}{M_{\alpha} k_{B} T} \right)^{3} \hbar^{5} \gamma \exp \left(\frac{-Q_{\alpha \alpha \alpha}}{k_{B} T} \right)$$

with
$$Q_{\alpha\alpha\alpha} = E_R(^8\text{Be}) + E_R(^{12}\text{C})$$
 and $\gamma \approx \Gamma_{\gamma}$

Nucleus

E_R (keV)

 Γ_{α} (eV)

 Γ_{u} (meV)

[Ekström, Coc, Descouvemont, Meynet, Olive, JPU, Vangioni,2009]

Nuclear physics

Both phenomena involve nuclear physics.

The microphysics involves binding energies / resonnance energies / cross-sections

BBN: dependence on constants

Light element abundances mainly based on the balance between

- 1- expansion rate of the universe
- 2- weak interaction rate which controls n/p at the onset of BBN

Example: helium production

$$Y = \frac{2(n/p)_N}{1 + (n/p)_N} \qquad (n/p)_f \sim e^{-Q/k_B T_f} \swarrow (D_D, \eta)$$
$$(n/p)_N \sim (n/p)_f e^{-t_N/\tau_n}$$

freeze-out temperature is roughly given by

 $G_F^2(k_B T_f)^5 = \sqrt{GN}(k_B T_f)^2$

Coulomb barrier: $\sigma = \frac{S(E)}{E} e^{-2\pi \alpha Z_1 Z_2 \sqrt{\mu/2E}}$

Predictions depend on

$$egin{aligned} G_k &= (G, lpha, au_n, m_e, Q, B_D, \sigma_i) \ X &= (\eta, h, N_
u, \ldots) \end{aligned}$$
 Cornumes Oliv

Coc,Nunes,Olive,JPU,Vangioni 2006

(D m)

Sensitivity to the nuclear parameters

Independent variations of the BBN parameters

$$\begin{split} &-7.5\times 10^{-2} < \frac{\Delta B_D}{B_D} < 6.5\times 10^{-2} \\ &-8.2\times 10^{-2} < \frac{\Delta \tau_n}{\tau_n} < 6\times 10^{-2} \\ &-4\times 10^{-2} < \frac{\Delta Q}{Q} < 2.7\times 10^{-2} \end{split}$$

Abundances are very sensitive to B_{D} . Equilibrium abundance of D and the reaction rate $p(n,\gamma)D$ depend exponentially on B_D .

These parameters are not independent.

Difficulty: QCD and its role in low energy nuclear reactions.

BBN: fundamental parameters (1)

Neutron-proton mass difference:

$$Q=m_n-m_p=alpha\Lambda+(h_d-h_u)v$$

$$\frac{\Delta Q}{Q} = -0.6 \left(\frac{\Delta \alpha}{\alpha} + \frac{\Delta \Lambda}{\Lambda} \right) + 1.6 \left(\frac{\Delta (h_d - h_u)}{h_d - h_u} + \frac{\Delta v}{v} \right)$$

Neutron lifetime:

$$egin{aligned} & au_n^{-1} = G_F^2 m_e^5 f(Q/m_e) & m_e = h_e v \ & G_F = 1/\sqrt{2} \, v^2 \end{aligned} \ & \left[rac{\Delta au_n}{ au_n} = - \, 4.8 rac{\Delta v}{v} + 1.5 rac{\Delta h_e}{h_e} - 10.4 rac{\Delta (h_d - h_u)}{h_d - h_u} + 3.8 \left(rac{\Delta lpha}{lpha} + rac{\Delta \Lambda}{\Lambda}
ight) \end{aligned}$$

BBN: fundamental parameters (2)

D binding energy:

Use a potential model
$$V_{nuc} = \frac{1}{4\pi r} \left(-g_s^2 e^{-rm_\sigma} + g_v^2 e^{-rm_\omega} \right)$$

$$\frac{\Delta B_D}{B_D} = -48 \frac{\Delta m_\sigma}{m_\sigma} + 50 \frac{\Delta m_\omega}{m_\omega} + 6 \frac{\Delta m_N}{m_N}$$
Flambaum,Shuryak 2003

This allows to determine BD as a function of mass of the quarks (u,d,s), $\Lambda_{\text{QCD}},\,\alpha.$

This allows to determine all the primary parameters in terms of (h_i, v, Λ , α)

BBN: assuming GUT

GUT:

The low-energy expression for the QCD scale

$$\Lambda = \mu \left(rac{m_c m_b m_t}{\mu^3}
ight)^{2/27} \exp \left(- rac{2\pi}{9 lpha_3(\mu)}
ight)$$

We deduce

$$\frac{\Delta\Lambda}{\Lambda} = R\frac{\Delta\alpha}{\alpha} + \frac{2}{27} \left(3\frac{\Delta v}{v} + \sum_{i=c,b,t} \frac{\Delta h_i}{h_i} \right)$$

The value of *R* depends on the particular GUT theory and particle content which control the value of M_{GUT} and of $\alpha(M_{GUT})$. Typically <u>R=36</u>.

Assume (for simplicity) h_i=h

$$\begin{split} \frac{\Delta B_D}{B_D} &= -13\left(\frac{\Delta v}{v} + \frac{\Delta h}{h}\right) + 18R\frac{\Delta \alpha}{\alpha} \\ \frac{\Delta Q}{Q} &= 1.5\left(\frac{\Delta v}{v} + \frac{\Delta h}{h}\right) - 0.6(1+R)\frac{\Delta \alpha}{\alpha} \\ \frac{\Delta \tau_n}{\tau_n} &= -4\frac{\Delta v}{v} - 8\frac{\Delta h}{h} + 3.8(1+R)\frac{\Delta \alpha}{\alpha} \end{split}$$

A=5 & A=8

To go further: - influence on helium-5, lithium-5, beryllium-8, carbon-12 - cross-sections such as

 ${}^{3}\text{H}(\hat{d}, n){}^{4}\text{He}, {}^{3}\text{He}(d, p){}^{4}\text{He} \text{ and } {}^{4}\text{He}(\alpha \alpha, \gamma){}^{12}\text{C}$

To that goal, we introduced a modelisation that will also allow to study the stellar physics.

Cluster model & δ_{NN}

Cluster approach:

- solve the Schrödinger equation by considering Be8/C12 as clusters of α particle

 $\Psi^{JM\pi}_{^8\mathrm{Be}}=\mathcal{A}\phi_\alpha\phi_\alpha g^{JM\pi}_2(\rho)$

 $\Psi_{^{12}C}^{JM\pi} = \mathcal{A}\phi_{\alpha}\phi_{\alpha}\phi_{\alpha}g_{3}^{JM\pi}(\rho, R),$ - The Hamiltonian is then given by

$$H = \sum_{i=1}^{A} T(r_i) + \sum_{i < j=1}^{A} (V_{Coul.}(r_{ij}) + V_{Nucl.}(r_{ij}))$$

- We assume that

 $V_{ij} = (1 + \delta_{\alpha})V_{ij}^{C} + (1 + \delta_{NN})V_{ij}^{N}$ to obtain B_D , E_R (⁸Be), E_R (¹²C)

- δ_{NN} is an effective parameter

Cluster model
$$\leftarrow$$
 Theoretical analysis
 $\Delta B_D/B_D = 5.716 \times \delta_{\rm NN}.$
 $\frac{\Delta B_D}{B_D} = 18 \frac{\Delta \Lambda_{\rm QCD}}{\Lambda_{\rm QCD}} - 17 \left(\frac{\Delta v}{v} + \frac{\Delta h_s}{h_s}\right)$

Microscopic calculation

Note:

 $\Delta B_{\rm D}/B_{\rm D}$ $\Delta B_D / B_D = 5.716 \times \delta_{\rm NN}$ -0.08 -0.06 -0.04 -0.02 0.02 0.04 0.06 0.08 E_R (MeV) 0.6 $E_R(^8\text{Be}) = (0.09184 - 12.208 \times \delta_{\text{NN}}) \text{ MeV}$ $\mathbf{E}_{\mathbf{R}}(^{12}\mathbf{C})$ 0.5 $E_R(^{12}C) = (0.2876 - 20.412 \times \delta_{NN}) \text{ MeV}$ 0.4 0.3 0.2 - δ_{NN} > 7.52×10⁻³, Be8 becomes stable 0.1 E_R(⁸Be) $-\delta_{NN} > 0.15$, dineutron is stable 0 $-\delta_{NN} > 0.35$, diproton is stable -0.1 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 - effect of α is subdominant $\boldsymbol{\delta}_{NN}$

□ Link to fundamental couplings through B_D or δ_{NN}

Primordial CNO production

Primordial CNO may affect dynamics of Pop III if CNO/H>10⁻¹²-10⁻¹⁰

In standard BBN CNO/H= $(0.2-3)10^{-15}$ [locco et al (2007); Coc et al. (1012)]. It proceeds as

⁷Li(α , γ)¹¹B ⁷Li(n, γ)⁸Li(α , n)¹¹B ¹¹B(p, γ)¹²C ¹¹B(d, n)¹²C, ¹¹B(d, p)¹²B ¹¹B(n, γ)¹²B which bridge the gap between A=7 and A=12.

Constraints

FIG. 12 (color online). Update Fig. 4 of Ref. [22] assuming S = 240 and R = 36 (solid blue line), using new rates for ${}^{3}\text{He}(\alpha, \gamma){}^{7}\text{Li}$ [73] and ${}^{1}\text{H}(n, \gamma)\text{D}$ [74] and the Ω_{b} value from WMAP7 [4]. The top axis is $-\delta_{\text{NN}}$ from Eq. (5.8) (mind the sign) and the dashed red line assumes $N_{\nu} = 4$.

BBN / Pop III

In the temperature range 0.1 GK -1 GK, the baryon density during BBN changes from 0.1 to 10^{-5} g/cm³.

-Variation of the reaction rates is limited at higher T

-3-body reactions are less efficient

In population III stars, the situation is however different:

- density varies between 30 to 3000 g/cm³,

- 3α occurs during the helium burning phase, without significant sources of Li-7, D, p, n so that the 2-body « route » is not effective.

Effects on the stellar evolution

Composition at the end ofcore He burning

Stellar evolution of massive Pop. III stars

We choose **typical** masses of 15 and 60 M_{\odot} stars/ $Z=0 \Rightarrow$ Very specific stellar evolution

 $\Delta \mathbf{B}_{\mathbf{D}} / \mathbf{B}_{\mathbf{D}}$

 δ_{NN}

The standard region: Both ¹²C and ¹⁶O are produced.

> **The ¹⁶O region:** The 3α is slower than ¹²C(α,γ)¹⁶O resulting in a higher T_C and a conversion of most ¹²C into ¹⁶O

> The ²⁴Mg region: With an even weaker 3α , a higher T_C is achieved and ${}^{12}C(\alpha,\gamma){}^{16}O(\alpha,\gamma){}^{20}Ne(\alpha,\gamma){}^{24}Mg$ transforms ${}^{12}C$ into ${}^{24}Mg$

> The ¹²C region: The 3α is faster than ¹²C(α , γ)¹⁶O and ¹²C is not transformed into ¹⁶O

Constraint

 $^{12}C/^{16}O \sim 1 \Rightarrow -0.0005 < \delta_{NN} < 0.0015$

or -0.003 < $\Delta B_D / B_D$ < 0.009

Conclusions

The effect of the variation of fundamental constants on the nuclear physics processes needed to infer BBN predictions & describe the evolution of Pop . III stars have been modelled.

Constraints on the variation of the nuclear interaction

It can be related to fundamental constants (via Deuterium)

Stable A=5 & A=8 does not affect primordial CNO predictions

Evolution of Pop. III stars can be significantly affected

The tuning required to get C/O or order 1 is 1/1000 (Hoyle fine tuning)

Spatial variation

Spatial variation?

<u>Claim:</u> Dipole in the fine structure constant [« Australian dipole »]

Indeed, this is a logical possibility to reconcile VLT constraints and Keck claims of a variation.

A possible theoretical model

[Olive, Peloso, JPU, 2010]

Idea: Spatial discontinuity in the fundamental constant due to a domain wall crossing our Hubble volume.

Spatial distribution of the constants

Constants vary on sub-Hubble scales.

- may be detected

- microphysics in principle acessible

Constants vary on super-Hubble scales.

- landscape ?

- exact model of a theory which dynamically gives a distribution of fondamental constants

- no variation on the size of the observable universe

[JPU, 2011]

Spatial variation on CMB

If one assumes that some constants have a dipolar variation

$$c_a(n,z) = c_{0a}(z) + \sum_{i=-1}^{1} \delta c_a^{(i)}(z) Y_{1i}(n).$$

then the CMB temperature can be expanded as

$$egin{aligned} \Theta(m{n}) &= ar{\Theta}[m{n}, c_a(m{n})] \ &= ar{\Theta}\left[m{n}, c_{0a} + \sum_{i=-1}^1 \delta c_a^{(i)}(z) Y_{1i}(m{n})
ight] \ &\simeq ar{\Theta}[m{n}] + \sum_a \sum_{i=-1}^{+1} rac{\partial ar{\Theta}[m{n}]}{\partial c_a} \delta c_a^{(i)}(z) Y_{1i}(m{n}) \end{aligned}$$

The coefficients of the multipolar expansion are thus

$$a_{\ell m} \ = \ \bar{a}_{\ell m} + \sqrt{\frac{3}{4\pi}} \sum_{a} \sum_{i} \delta c_a^{(i)} (-1)^m \sum_{LM} \frac{\partial \bar{a}_{LM}}{\partial c_a} \ \times \ \sqrt{(2\ell+1)(2L+1)} \left(\begin{array}{cc} \ell & L & 1 \\ -m & M & i \end{array} \right) \left(\begin{array}{cc} \ell & L & 1 \\ 0 & 0 & 0 \end{array} \right)$$

Spatial variation on CMB

[Prunet, JPU, Brunier, Bernardeau, 2005]

This implies multipole correlations

Analysis of Planck data

This allows to design an estimator of the D_{lm} [prunet et al (2005); Hansen-Lewis (2009)]

Masking effect also induces l-correlations

Simulations of 10³ maps with no modulation + Planck masking Simulation of a CMB with α modulation

Simulated map with $\delta \alpha = 10^{-3}$ / Planck data

The amplitude of a modulation of α is constrained to $\delta \alpha < 6_{x}10^{-4}$ (1 σ) at z= 1000 First constraint from the CMB To be compared with $\delta \alpha / \alpha = (0.97 \pm 0.22) \times 10^{-4}$ (4 σ) at z=2 [webb et al. (2011)]

Conclusions and perspective

In the past years, we have obtained a series of results concerning the variation of fundamental constants:

- Theoretical modelling of g_p ; useful for clock & quasars
- Study of coupled variations in GUT
- First model of pure spatial variations

-CMB

- improved constraint by a factor 5 compared to WMAP
- lift the degeneracy between $\alpha,\,m_e\,\text{and}\,H_o$
- First constraint on spatial variation
- Nuclear physics:

-BBN: improved constraints; detailed study of A=5 & A=8

-Pop III stars: fine tuning at 10⁻³ (anthropic)

Physical systems: new and future

