Introduction to On-Shell Methods in Quantum Field Theory

David A. Kosower
Institut de Physique Théorique, CEA–Saclay

Orsay Summer School, *Correlations Between Partons in Nucleons*Orsay, France
July 2, 2014

Tools for Computing Amplitudes

 New tools for computing in gauge theories — the core of the Standard Model

- Motivations and connections
 - Particle physics: $SU(3) \times SU(2) \times U(1)$
 - $-\mathcal{N}$ = 4 supersymmetric gauge theories and strong coupling (AdS/CFT)
 - Witten's twistor string
 - Grassmanians
 - $-\mathcal{N}=8$ supergravity

Amplitudes

- Scattering matrix elements: basic quantities in field theory
- Basic building blocks for computing scattering cross sections

$$\mathcal{A}(\mathcal{A}^{\dagger}(gg^{\dagger} \rightarrow \mathcal{G}^{\dagger}g) \cdot g^{\dagger}g) \cdot g^{\dagger})$$

Using crossing

$$\mathcal{A}(\mathcal{A}(\theta \cdot g \overline{g} g g \cdot g \cdot g) \cdot g^+)$$

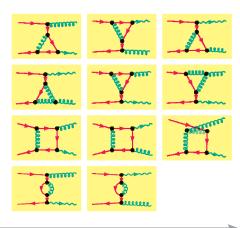
MHV

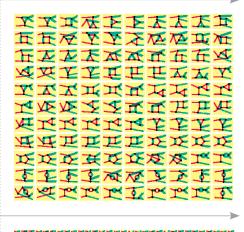
- Primary interest: in gauge theories; can derive all other physical quantities (e.g. anomalous dimensions) from them
- In gravity, they are the only physical observables

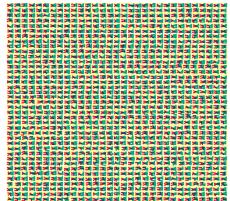
Trad

One loop

- Feynman Diagrams
 - Widely used for
 - Heuristic pictui
 - Introduces idea
 - Precise rules for
 - Classic successe discovery of asy
- How it works
 - Pick a process
 - Grab a graduat
 - Lock him or her
 - Provide a copySchroeder's Qu
 - Supply caffeine, a n instructions
 - Provide a computer compiler

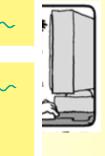






oach

rediate states



or at least of Peskin &

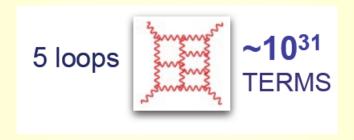
nt, and occasional

ca, a copy of FORM & a C++

A Difficulty

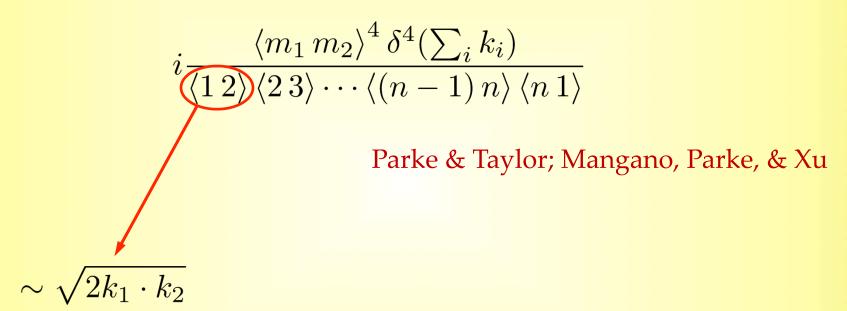
- Huge number of diagrams in calculations of interest factorial growth with number of legs or loops
- 2 \rightarrow 6 jets: 34300 tree diagrams, ~ 2.5 · 10⁷ terms ~2.9 · 10⁶ 1-loop diagrams, ~ 1.9 · 10¹⁰ terms

In gravity, it's even worse



Results Are Simple!

Parke–Taylor formula for A^{MHV}



Even Simpler in *N*=4 Supersymmetric Theory

Nair–Parke–Taylor formula for MHV-class amplitudes

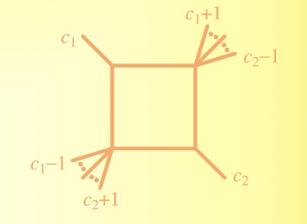
$$i \frac{\delta^{4|8}(\sum_{i} \lambda_{i}^{\alpha} \tilde{\lambda}_{i}^{\dot{\alpha}} \Big| \sum_{i} \lambda_{i}^{\alpha} \eta_{i}^{A})}{\langle 1 \, 2 \rangle \, \langle 2 \, 3 \rangle \cdots \langle (n-1) \, n \rangle \, \langle n \, 1 \rangle}$$

Answers Are Simple At Loop Level Too

One-loop in $\mathcal{N}=4$:

$$-A^{\text{tree}}(1^+, \dots, i^-, \dots, j^-, \dots, n^+)$$

$$\times \sum_{\text{easy 2 mass}} \text{Box} \cdot \frac{1}{2} (\text{its denominator}) \quad c_{1^-}$$



 All-n QCD amplitudes for MHV configuration on a few Phys Rev D pages

On-Shell Methods

- All physical quantities computed
 - From basic interaction amplitude: A↓3 1tree
 - Using only information from physical on-shell states
 - Avoid size explosion of intermediate terms due to unphysical states
 - Without need for a Lagrangian
- Properties of amplitudes become tools for calculating
 - Kinematics
 - Spinor variables
 - Underlying field theory
 - Integral basis
 - Factorization
 - On-shell recursion relations (BCFW) for tree-level amplitudes
 - Control infrared divergences in real-emission contributions to higherorder calculations
 - Unitarity
 - Unitarity and generalized unitarity for loop calculations

We can now calculate large classes of amplitudes in gauge

theories

Gauge

Sometimes to infinite numbers of legs

String Theory

Amplitudes

A wealth of data for further study

A four dation for a new subfield Integrability

Spinor Variables

From Lorentz vectors to bi-spinors

$$p_{\mu}$$
 \longleftrightarrow $p_{a\dot{a}} \equiv p \cdot \sigma = \begin{pmatrix} p^0 + p^3 & p^1 + ip^2 \\ p^1 - ip^2 & p^0 - p^3 \end{pmatrix}$ p^2 \longleftrightarrow $\det(p)$ $p' = \Lambda p$ \longleftrightarrow $p' = upu^{\dagger}, \quad u \in SL(2,C)$ $2 \times 2 \text{ complex matrices}$ with $\det = 1$

$$p^2 = 0 \implies p = \lambda_a \tilde{\lambda}_{\dot{a}}$$

Spinor Products

Spinor variables
$$|j^{+}\rangle = |j\rangle \equiv \lambda_{j}, \quad |j^{-}\rangle = |j| \equiv \tilde{\lambda}_{j}$$

 $\langle j^{-}| \leftrightarrow \varepsilon^{\alpha\beta} \lambda_{j\beta}, \quad \langle j^{+}| \leftrightarrow \varepsilon^{\dot{\alpha}\dot{\beta}} \lambda_{j\dot{\beta}}$

Introduce spinor products

$$\langle i'j \rangle \equiv \langle i^-|j^+ \rangle = \varepsilon^{\alpha\beta} \lambda_{i\alpha} \lambda_{j\beta} ,$$

$$[ij] \equiv \langle i^+|j^- \rangle = \varepsilon^{\dot{\alpha}\dot{\beta}} \tilde{\lambda}_{j\dot{\alpha}} \tilde{\lambda}_{i\dot{\beta}} ,$$

Explicit representation

where

$$\lambda^{a} = \begin{pmatrix} \sqrt{k_{-}}e^{i\phi_{k}} \\ -\sqrt{k_{+}} \end{pmatrix}, \quad \tilde{\lambda}^{\dot{a}} = \begin{pmatrix} \sqrt{k_{-}}e^{-i\phi_{k}} \\ -\sqrt{k_{+}} \end{pmatrix}$$

$$e^{\pm i\phi_{k}} = \frac{k^{1} \pm ik^{2}}{\sqrt{k_{+}k_{-}}}, \qquad k_{\pm} = k^{0} \pm k^{3}$$

Properties of the Spinor Product

- Antisymmetry $\langle j i \rangle = \langle i j \rangle$, [j i] = [i j]
- Gordon identity $\langle i^{\pm} | \sigma^{\mu} | i^{\pm} \rangle = 2k_i^{\mu}$
- Charge conjugation $\langle i^- | \sigma^{\mu} | j^- \rangle = \langle j^+ | \sigma^{\mu} | i^+ \rangle$
- Fierz identity $\langle i^- | \sigma^{\mu} | j^- \rangle \langle r^+ | \sigma_{\mu} | q^+ \rangle = 2 \langle i q \rangle [r j]$
- Projector representation $|i^{\pm}\rangle\langle i^{\pm}|=rac{1}{2}(1\pm\gamma_5)k_i$
- Schouten identity $\langle i j \rangle \langle p q \rangle = \langle i q \rangle \langle p j \rangle + \langle i p \rangle \langle j q \rangle$.

Spinor Helicity

Gauge bosons also have only ± physical polarizations

Elegant — and covariant — generalization of circular polarization

$$\varepsilon_{\mu}^{+}(k,q) = \frac{\langle q^{-} | \sigma_{\mu} | k^{-} \rangle}{\sqrt{2} \langle q k \rangle}, \qquad \varepsilon_{\mu}^{-}(k,q) = \frac{\langle q^{+} | \sigma_{\mu} | k^{+} \rangle}{\sqrt{2} [k q]},$$

'Chinese Magic'

Xu, Zhang, Chang (1984)

reference momentum $q \quad q \cdot k \neq 0$

Transverse
$$k \cdot \varepsilon^{\pm}(k,q) = 0$$

Normalized
$$\varepsilon^+ \cdot \varepsilon^- = -1, \qquad \varepsilon^+ \cdot \varepsilon^+ = 0$$

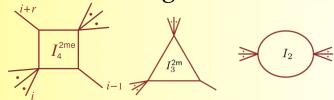
Color Decomposition

With spinors in hand, we can write a color decomposition formula

$$\mathcal{A}_{n}^{\text{tree}}(\{\lambda_{i}, \tilde{\lambda}_{i}, h_{i}(\pm), a_{i}\}) = g^{n-2} \sum_{\sigma \in S_{n}/Z_{n}} \text{Tr}(T^{a_{\sigma(1)}}T^{a_{\sigma(2)}} \cdots T^{a_{\sigma(n)}}) \times A_{n}^{\text{tree}}(\{\lambda_{\sigma(1)}, \tilde{\lambda}_{\sigma(1)}\}^{h_{\sigma(1)}}; \{\lambda_{\sigma(2)}, \tilde{\lambda}_{\sigma(2)}\}^{h_{\sigma(2)}}; \dots \{\lambda_{\sigma(n)}, \tilde{\lambda}_{\sigma(n)}\}^{h_{\sigma(n)}})$$

Integral Basis

- At one loop
 - Tensor reductions
 Brown–Feynman, Passarino–Veltman
 - Gram determinant identities
 - Boxes, triangles, bubbles, tadpoles



- At higher loops
 - Tensor reductions & Gram determinant identities
 - Irreducible numerators: Integration by parts
 Chetyrkin–Tkachov
 - Laporta algorithm
 - AIR (Anastasiou, Lazopoulos), FIRE (Smirnov, Smirnov), Reduze (Manteuffel, Studerus), LiteRed (Lee)
 - `Four-dimensional basis': integrals with up to 4 *L* propagators

BCFW On-Shell Recursion Relations

Britto, Cachazo, Feng, Witten (2005)

• Define a shift $[j,l\rangle$ of spinors by a complex parameter z

$$\begin{array}{c|c} |j] & \to & |j] - z|l], \\ |l\rangle & \to & |l\rangle + z|j\rangle \end{array}$$

which induces a shift of the external momenta

$$k_j^{\mu}$$
 \rightarrow $k_j^{\mu}(z) = k_j^{\mu} - \frac{z}{2} \langle j | \gamma^{\mu} | l \rangle$, k_l^{μ} \rightarrow $k_l^{\mu}(z) = k_l^{\mu} + \frac{z}{2} \langle j | \gamma^{\mu} | l \rangle$

and defines a z-dependent continuation of the amplitude A(z)

• Assume that $A(z) \to 0$ as $z \to \infty$

Momenta are still on shell

Momentum is still conserved

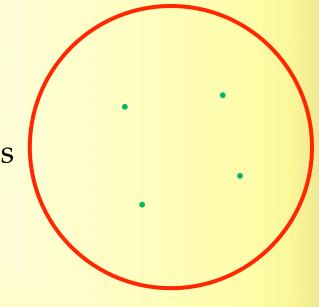
A Contour Integral

Consider the contour integral

$$\frac{1}{2\pi i} \oint_C \frac{dz}{z} A(z)$$

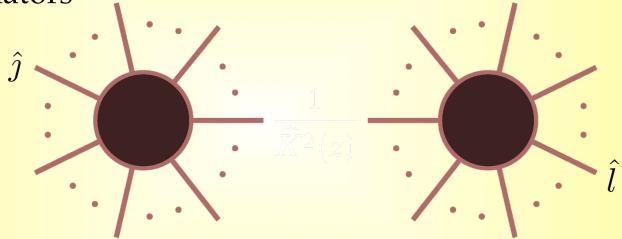
Determine A(0) in terms of other residues

$$A(0) = -\sum_{\text{poles }\alpha} \operatorname{Res}_{z=z_{\alpha}} \frac{A(z)}{z}$$



Using Factorization

Other poles in z come from zeros of z-shifted propagator denominators



Splits diagram into two parts with z-dependent momentum flow

 $\longrightarrow \sum_{\text{partitions}} \frac{\text{shifted legs on}}{\text{opposite sides}}$

Exactly factorization limit of z-dependent amplitude poles from zeros of

$$K_{a\cdots j\cdots b}^{2}(z)=K_{a\cdots b}^{2}-z\left\langle j\right|K_{a\cdots b}\left|l\right]$$

That is, a pole at

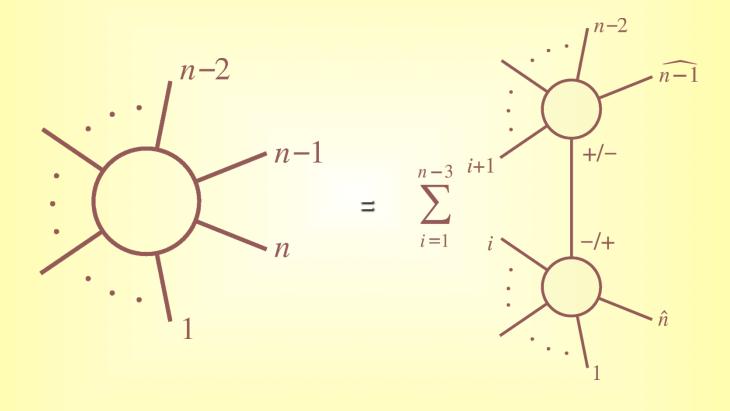
$$z_{ab} = \frac{K_{a\cdots b}^2}{\langle j| \not K_{a\cdots b} | l]}$$

Residue

$$\operatorname{Res}_{z=z_{ab}} \frac{f(z)}{z K_{a\cdots b}^{2}(z)} = A_{L}(z_{ab}) \times \frac{i}{K_{a\cdots b}^{2}} \times A_{R}(z_{ab})$$

Notation $k = k(z \downarrow ab)$

On-Shell Recursion Relation



Partition P: two or more cyclicly-consecutive momenta containing j, such that complementary set P contains l,

$$P \equiv \{P_1, P_2, \dots, j, \dots, P_{-1}\},$$

$$\overline{P} \equiv \{\overline{P}_1, \overline{P}_2, \dots, l, \dots, \overline{P}_{-1}\},$$

$$P \cup \overline{P} = \{1, 2, \dots, n\}$$

• The recursion relations are then
$$A_n(1,\ldots,n) = \sum_{\substack{\text{partitions P} \\ \text{h}=\pm}} A_{\#P+1}(k_{P_1},\ldots \hat{\jmath},\ldots,k_{P_{-1}},-\widehat{P}^{l_p})$$

$$\times \frac{i}{P^2} \times A_{\#\bar{P}+1}(k_{\bar{P}_1},\ldots \hat{l},\ldots,k_{\bar{P}_{-1}},\widehat{P}^{-h})$$

Unitarity

 Basic property of any quantum field theory: conservation of probability. In terms of the scattering matrix,

$$S^{\dagger}S = 1$$

In terms of the transfer matrix

or

we get,

$$iT = S - 1$$
$$-i(T - T^{\dagger}) = T^{\dagger}T$$

with the Feynman" $T_{fi} = (T^{\dagger}T)_{fi}$

$$\operatorname{Disc} T = T^{\dagger} T$$

Diagrammatically, cut into two parts using Cutkosky rule

$$\frac{1}{\ell^2 - m^2 + i\delta} \longrightarrow -2\pi i \delta^{(+)} (\ell^2 - m^2)$$
$$= -2\pi i \delta(\ell^2 - m^2) \Theta(\ell^0)$$

Gedanken calculation

$$\frac{\text{Disc One-Loop Amplitude}}{\text{Disc One-Loop}} = \sum_{\substack{\text{One-Loop} \\ \text{Diagrams}}} \frac{\text{Disc } F}{K^2}$$

Some diagrams are missing one or both propagators

surrounding
$$K^2$$
:
$$\frac{\ell^2 - m^2 + i\delta}{\ell^2 - m^2 + i\delta}$$
$$\mapsto (\ell^2 - m^2 + i\delta)\delta(\ell^2 - m^2)$$
$$= 0$$

→ no contribution

Also fate of "off-shell" terms

Disc One-Loop Amplitude =

$$\sum_{\substack{\text{One-Loop}\\ \text{Diagrams}\\ \text{with both propagators}}} \prod_{K^2} F$$

$$= \int d \text{Phase Space} \left(\sum_{\substack{\text{Left Tree}\\ \text{Diagrams}}} L\right) \left(\sum_{\substack{\text{Right Tree}\\ \text{Diagrams}}} R\right)$$

$$= \int d \text{Phase Space (Left Tree Amplitude)}$$

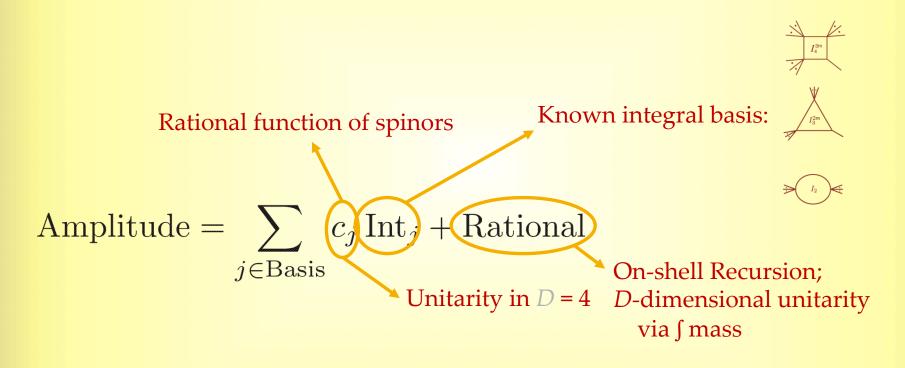
$$\times \text{(Right Tree Amplitude)}$$

Basic Unitarity

- Can reverse this approach to reconstruct amplitude from its discontinuities
- Look at all channels
- At one loop, each discontinuity comes from putting two propagators on shell, that is looking for all contributions with two specified propagators

Unitarity Method

Formalism



Generalized Unitarity

Unitarity picks out contributions with two specified propagators

Can we pick out contributions with more than two specified

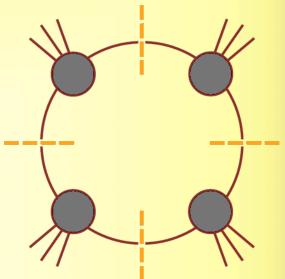
propagators?

Yes — cut more lines

- Isolates smaller set of integrals: only integrals with propagators corresponding to cuts will show up
- Triple cut no bubbles, one triangle, smaller set of boxes

- Can we isolate a single integral?
- D = 4 → loop momentum has four components





Quadruple Cuts

Work in D=4 for the algebra

$$\int \frac{d^4\ell}{(2\pi)^4} \, \delta^{(+)} \!\! \int \!\! \left(\ell^2 \! \int_{\delta(+)}^{4\ell} \! \ell^2 (\ell - k_1)^2 \right) \! \delta^{(+)} \! \left(\ell \! - \! K_{12} \right)^2 \! \delta^{(+)} \! \left(\ell \! - \! K_{123} \right)^2 \right) \! d^{(+)} \! \left(\ell \! - \! K_{123} \right)^2 \! \left(\ell \! - \! K_{123} \right)^2 \! d^{(+)} \! \left(\ell \! - \! K_{123} \right)^2 \right) d^{(+)} \! d^{(+)} \! \left(\ell \! - \! K_{123} \right)^2 \! d^{(+)} \! \left(\ell \! - \! K_{123} \right)^2 \! d^{(+)} \! d^{(+)}$$

Four degrees of freedom & four delta functions

... but are there any solutions?

A Subtlety

The delta functions instruct us to solve

$$\ell^2 = \ell \partial_{\cdot} = 0.2\ell \cdot (k_1 + k_1^2)^2 \oplus_{\cdot} 0, -2\ell (\ell k_2 + k_1^2)^2 - k_1^2 0 = 0, (\ell + k_1^2)^2 + k_1^2 0 = 0$$

1 quadratic, 3 linear equations \Rightarrow 2 solutions

If k_1 and k_4 are massless, we can write down the solutions explicitly

$$\frac{\xi}{\ell^{\mu}} = \frac{\xi}{2} \langle 1^{-} | \mu | 4^{-} \rangle$$
 solves eqs 1,2,4;

Impose 3rd to find
$$s_{12} = \frac{\xi}{2} \langle 1^- | 2 | 4^- \rangle \stackrel{m_2^2 = 0}{=} \frac{\xi}{2} \langle 1 2 \rangle [2 4]$$

or
$$\ell^{\mu} = -\frac{[1\,2]}{2\,[2\,4]} \langle 1^{-}|\,\mu\,|4^{-}\rangle$$
 $\ell^{\mu} = \frac{\xi'}{2} \langle 4^{-}|\,\mu\,|1^{-}\rangle$

- Solutions are complex
- The delta functions would actually give zero!

Need to reinterpret delta functions as contour integrals around a global pole [other contexts: Vergu; Roiban, Spradlin, Volovich; Mason & Skinner]
Reinterpret cutting as contour modification

$$\oint_{C(z_0)} dz \frac{\operatorname{Poly}_1(z)}{\operatorname{Poly}_2(z) - a} = \frac{\operatorname{Poly}_1(z_0)}{\operatorname{Poly}_2'(z_0)} \qquad (\operatorname{Poly}_2(z_0) = a)$$

$$\int dz \operatorname{Poly}_1(z) \delta(\operatorname{Poly}_2(z) - a) \equiv \oint_{C(z_0)} dz \frac{\operatorname{Poly}_1(z)}{\operatorname{Poly}_2(z) - a}$$

$$\downarrow \ell^0$$

$$\times \times \times \times$$

$$\times \times \times$$

$$\times \times \times$$

$$\bullet$$

$$\bullet$$

$$\bullet$$

- Global poles: simultaneous on-shell solutions of all propagators & perhaps additional equations
- Multivariate complex contour integration: in general, contours are tori
- For one-loop box, contours are T^4 encircling global poles

Two Problems

- Too many contours (2) for one integral: how should we choose the contour we use?
- Changing the contour can break equations:

$$0 = I_4[\varepsilon(\ell, k_1, k_2, k_4)]$$

is no longer true if we modify the real contour to circle only one of the poles

Remarkably, these two problems cancel each other out

- Require vanishing Feynman integrals to continue vanishing on cuts
- General contour $C = a_1C_1 + a_2C_2$

$$\int_{\mathcal{C}} d^4 \ell \, \frac{\varepsilon(\ell, k_1, k_2, k_4)}{\ell^2 (\ell - k_1)^2 (\ell - K_{12})^2 (\ell + k_4)^2} = (a_1 - a_2) f(k_1, k_2, k_4)$$

$$\Rightarrow a \downarrow 1 = a \downarrow 2$$

Box Coefficient

Go back to master equation

$$Amplitude = \sum_{j \in Basis} c_j \operatorname{Int}_j + \operatorname{Rational}$$

Apply quadruple cuts to both sides

LHS = Jacobian
$$\times \sum_{\text{solutions}} \sum_{\substack{\text{species} \\ \text{helicities}}} A_A^{\text{tree}} A_B^{\text{tree}} A_C^{\text{tree}} A_D^{\text{tree}}$$

 $RHS = coefficient \times Jacobian \times #solutions$

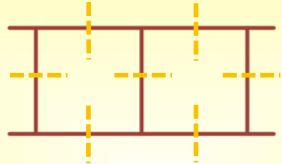
Solve: Box coefficient =
$$\frac{1}{\#_{\text{solutions}}} \sum_{\substack{\text{species} \\ \text{helicities}}} A^{\text{ree}} \prod_{\substack{\text{species} \\ \text{helicities}}} A^{\text{tree}}_{J}$$

Britto, Cachazo, Feng

No algebraic reductions needed: suitable for pure numerics

Planar Double Box

Take a heptacut — freeze seven of eight degrees of freedom

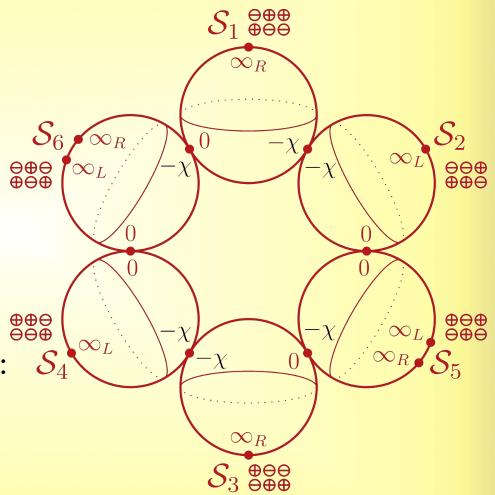


- One remaining integration variable z
- Six solutions, $\ell_1^{\mu} = k_1^{\mu} + \frac{s_{12}z}{2\langle 14\rangle [42]} \langle 1|\sigma^{\mu}|2],$ for example S₂: $\ell_2^{\mu} = \frac{\langle 34\rangle}{2\langle 31\rangle} \langle 1|\sigma^{\mu}|4]$
- Performing the contour integrals enforcing the heptacut \Rightarrow Jacobian $S_2: \frac{1}{16s_{12}^3 z(z+\gamma)} \quad (\chi \equiv t/s)$
- Localizes $z \Rightarrow$ global pole \Rightarrow need contour for z within S_i

- But:
- Solutions intersect at 6 poles
- 6 other poles are redundant by Cauchy theorem
 (∑ residues = 0)

Overall, we are left with 8 see global poles (massive legs: Some, 1; 1 & 3; 1 & 4)

Connections to algebraic geometry



- Two master integrals
- 4 ε constraint equations
- 2 IBP constraint equations
- ⇒ Two master contours one for each integral

• Master formulæ for coefficients of basis integrals to $O(\epsilon^0)$

$$c_1 = \frac{i\chi}{8w} \oint_{P_1} \frac{dz}{z(z+\chi)} \prod_{j=1}^6 A_j^{\text{tree}}(z), \quad c_2 = -\frac{i}{4s_{12}w} \oint_{P_2} \frac{dz}{z(z+\chi)} \prod_{j=1}^6 A_j^{\text{tree}}(z)$$

where $P_{1,2}$ are linear combinations of T^8 s around global poles

$$a_{1,1} = w\,, \qquad a_{1,1} = w\,, \ a_{2,1} = -w\,, \ a_{1,2} = 0\,, \qquad a_{1,2} = -2w\,, \ a_{1,3} = w\,, \ a_{2,3} = -w\,, \ a_{1,4} = 0\,, \qquad a_{1,4} = -2w\,, \ a_{3,5} = -w\,, \ a_{3,6} = -w\,.$$

More explicitly,

$$c_{1} = \frac{i}{8} \operatorname{Res} \frac{1}{z} \prod_{j=1}^{6} A_{j}^{\text{tree}}(z) \bigg|_{\mathcal{S}_{1} + \mathcal{S}_{3}} + \frac{i}{8} \operatorname{Res} \frac{1}{z - \chi} \prod_{j=1}^{6} A_{j}^{\text{tree}}(z) \bigg|_{\mathcal{S}_{1} + \mathcal{S}_{3}} - \frac{i\chi}{8(1 + \chi)} \operatorname{Res} \prod_{z=-\chi-1}^{6} \prod_{j=1}^{6} A_{j}^{\text{tree}}(z) \bigg|_{\mathcal{S}_{5} + \mathcal{S}_{6}},$$

$$c_{2} = \frac{i}{4s_{12}\chi} \operatorname{Res} \frac{1}{z = 0} \prod_{j=1}^{6} A_{j}^{\text{tree}}(z) \bigg|_{\mathcal{S}_{1} - 2\mathcal{S}_{2} + \mathcal{S}_{3} - 2\mathcal{S}_{4}} + \frac{i}{4s_{12}\chi} \operatorname{Res} \prod_{z=-\chi}^{2} \frac{1}{z + \chi} \prod_{j=1}^{6} A_{j}^{\text{tree}}(z) \bigg|_{\mathcal{S}_{1} + \mathcal{S}_{3}} - \frac{3i}{4s_{12}(1 + \chi)} \operatorname{Res} \prod_{z=-\chi-1}^{6} A_{j}^{\text{tree}}(z) \bigg|_{\mathcal{S}_{5} + \mathcal{S}_{6}}.$$

Summary

- Natural variables for kinematics: spinors
- Factorization can be exploited to obtain on-shell recursion relations
- Unitarity can be generalized to analytic structure, and exploited to compute loop amplitudes

Beyond the basics:

 Differential equation and symbol techniques for higherloop integrals