Introduction to
On-Shell Methods
in Quantum Field Theory

David A. Kosower
Institut de Physique Theorique, CEA-Saclay

Orsay Summer School, Correlations Between Partons in Nucleons

Orsay, France
July 2, 2014



Tools for Computing Amplitudes

* New tools for computing in gauge theories — the core of
the Standard Model

* Motivations and connections
— Particle physics: SU(3) x SU(2) x U(1)
— N=4 supersymmetric gauge theories and strong
coupling (AdS/CFT)
— Witten’s twistor string
— Grassmanians

— N=8 supergravity



Amplitudes

Scattering matrix elements: basic quantities in field theory
Basic building blocks for computing scattering cross

sections
A(fgg 9797 g)-97)

Using crossing

A® ¢ 979" g)-97) MHV

Primary interest: in gauge theories; can derive all other
physical quantities (e.¢g. anomalous dimensions) from them

In gravity, they are the only physical observables



* Feynman Diagrams
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A Difficulty

* Huge number of diagrams in calculations of interest —
factorial growth with number of legs or loops

* 2 — 6jets: 34300 tree diagrams, ~ 2.5 - 107 terms
~2.9 - 10° 1-loop diagrams, ~ 1.9 - 10!V terms
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* In gravity, it's even worse

5 loops % ~10°1
TERMS



Results Are Simple!

 Parke-Taylor formula for AMHY

. _(m ma)* 54 (2, ki)
12)(23)---{((n—1)n) (nl)

Parke & Taylor; Mangano, Parke, & Xu
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Even Simpler in V=4 Supersymmetric Theory

* Nair-Parke-Taylor formula for MHV-class amplitudes

BN A
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Answers Are Simple At Loop Level Too

One-loop in V= 4:
— A" (1T, i, ..., nT)

X Z Box - 1 (its denominator)

easy 2 mass

* All-n QCD amplitudes for MHV configuration on a few
Phys Rev D pages



On-Shell Methods

All physical quantities computed
— From basic interaction amplitude: 443 Ttree
— Using only information from physical on-shell states
— Avoid size explosion of intermediate terms due to unphysical states
— Without need for a Lagrangian

Properties of amplitudes become tools for calculating
— Kinematics
» Spinor variables
— Underlying field theory
> Integral basis
— Factorization
» On-shell recursion relations (BCFW) for tree-level amplitudes

» Control infrared divergences in real-emission contributions to higher-
order calculations

— Unitarity
» Unitarity and generalized unitarity for loop calculations



Wecan now calculdte large classes of atnplitudes in gauge

eories :
Gauge String

onq;hgigg Yo infinite numbers of legs Theory
Amphtudes

A wealtiréf data for furtire:

A foundation for a new subfield

Integrability




Spinor Variables

From Lorentz vectors to bi-spinors .
g " pt —ip® p’—p’
p° — det(p)

p'=Ap < p' = upu’, u e SL(2,C)
2x2 complex matrices
with det=1



Spinor Products

Spinor variables |j+> = 1j) = A, ‘j_> = U].Z j
(G710 e Xjs, (57| 0 N,
Introduce spinor products
<Z]> — <Z_ ]+> = SQB)\ia)\jB,
i) = GF)5T) =P
Explicit representation
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Properties of the Spinor Product

Antisymmetry {ji) = — (i ]), ji] = —Tij]
Gordon identity (i*|o* |i¥) = 2k

Charge conjugation (i~ | |j ™) = (| [i)
Fierz identity (¢~ |0" |77) (r"|ou|q™) =2 (iq) [r ]
Projector representation |i=)(i™| = %(1 + 5) ki

Schouten identity (i j) (pq) = (1q) (pJ) + (ip) (Jq) -



Spinor Helicity

Gauge bosons also have only * physical polarizations

Elegant — and covariant — generalization of circular polarization
- -~ - -

€+(k C]): <q ‘0M|k > 6_(/€ C]): <q |Uﬂlk >

i V2 {(qk) g V2 [k g]

‘Chinese Magic’
Xu, Zhang, Chang (1984)

reference momentumg ¢ -k # 0
Transverse k&= (k,q) =0

Normalized €7 -&~ = —1, et . et =0



Color Decomposition

With spinors in hand, we can write a color decomposition
formula
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Integral Basis

* At one loop
— Tensor reductions Brown-Feynman, Passarino—Veltman
— Gram determinant identities

— _Boxes triangles bubbles, tadpoles

« At hlgher loops

— Tensor reductions & Gram determinant identities

— Irreducible numerators: Integration by parts Chetyrkin—-Tkachov
— Laporta algorithm

— AIR (Anastasiou,Lazopoulos), FIRE (Smirnov,Smirnov), Reduze
(Manteuffel, Studerus), LiteRed (Lee)

— Four-dimensional basis’: integrals with up to 4 L propagators



BCFW On-Shell Recursion Relations

Britto, Cachazo, Feng, Witten (2005)

Define a shift [j, () of spinors by a complex parameter z

gl = 1l ==l
) = 1)+ 25

which induces a shift of the external momenta

<y
K REG2) = B = 2 Gl I,

.
B () = K+ 2 Gl

and defines a z-dependent continuation of the amplitude A(z)
Assume that A(z) — 0 as z —



e Momenta are still on shell

e Momentum is still conserved



A Contour Integral

Consider the contour integral

b L A)

27T7: CZ

Determine A(0) in terms of other residues

A(2)

Z

A(0) = — Z Zfie;s

poles «



Using Factorization

Other poles in z come from zeros of z-shifted propagator
denominators

J

Splits diagram into two parts with z-dependent momentum

tlow Z shifted legs on
—

opposite sides
partitions 21



Exactly factorization limit of z-dependent amplitude
poles from zeros of

KCQij(Z) = Kgb — 2 (J| Ka-p |1]

That is, a pole at K 3...5

Residue
f(2) ’
= A7 (z, Ap(z,
Res Tk2 () - AplFa) X g X Ar(za)

Notation £ =4i(zlab)



On-Shell Recursion Relation




 Partition P: two or more cyclicly-consecutive momenta containing j,
such that complementary set P contains |/,

P = {P,P,...,j...,P_1},
2= {Pl,PQ, ,l, —1}7
PUF — {1727° 7n}
On shell

* The recursion relations are then

An(l,...,n) = Z A#p+1(kpl,...
partlrilticils P
(
X— X A (k5.

P2 #P+1



Unitarity

 Basic property of any quantum field theory: conservation
of probability. In terms of the scattering matrix,

Sts =1
In terms of the transfer matrix we get,
I'=5—1
- —i(T—T" =T'T

with the Feynmgnqﬁn” Tys = (T7T) fi

DiscT =TT



Diagrammatically, cut into two parts using Cutkosky rule

1
2 —m?2 + 45

—  —2mis P (02 — m?)

= —2mi6 (02 — m?)O (1)
Gedanken calculation
Disc One-Loop Amplitude = Dlgsc F
K?2 2

One-Loop
Diagrams

Some diagrams are missing one or both propagators
surrounding K% (2 —m?2 4+ i
02 —m? 419
— (02 —m? +i6)6(£* — m?)
=0
— no contribution
Also fate of “off-shell” terms




Disc One-Loop Amplitude =

K2
Z D}}gc F

One-Loop
Diagrams F
with both propagators

/ dPhase Space Z L Z

Left Tree Right Tree R
Diagrams Diagrams

/ dPhase Space (Left Tree Amplitude)
X (Right Tree Amplitude)



Basic Unitarity

* Can reverse this approach to reconstruct amplitude from
its discontinuities

 Look at all channels

* At one loop, each discontinuity comes from putting two
propagators on shell, that is looking for all contributions
with two specified propagators



Unitarity Method

Formalism

e

Rational function of spinors Known integral basis:

Amplitude = g ¢, Int; H Rational
j€E€Basis On-shell Recursion;
Unitarity in ) =4 D-dimensional unitarity
via [ mass



Generalized Unitarity

Unitarity picks out contributions with two specified
propagators

Can we pick out contributions with more than two specified

propagators?
Yes — cut more lines

Isolates smaller set of integrals: only
integrals with propagators corresponding to cuts will show up

Triple cut — no bubbles, one triangle, smaller set of boxes



* D=4 — loop momentum has four
components

» Can we isolate a single integral? >/ \«

» Cut four specified propagators
(quadruple cut) would isolate a single box



Quadruple Cuts

Work in D=4 for the algebra

ﬂ (+) 26%%—%){ (+)/], 2\ (+) .
[ @ 5D S I N~ Koras)?)

Four degrees of freedom & four delta functions

.. but are there any solutions?



A Subtlety

The delta functions instruct us to solve

2 =8,= 020 (f + k)2 65 0 - 20(lhr HEDE D= 0 (£ 2 k) H=+D= 0.

1 quadratic, 3 linear equations = 2 solutions

If k; and k, are massless, we can write down the solutions
explicitly

H = g <1_‘ L4 ‘4_> solves eqs 1,2,4;



* Solutions are complex
* The delta functions would actually give zero!

Need to reinterpret delta functions as contour integrals around a
global pole [other contexts: Vergu; Roiban, Spradlin, Volovich; Mason & Skinner]

Reinterpret cutting as contour modification

Polv,(z Polv.(z
§ e ool SOV (o) = )
C(z) PoOlya(z) —a  Polys(2o)

Poly, (2)
dz Poly1(z)d(Poly,(z) — a E]{ dz
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Global poles: simultaneous on-shell solutions of all
propagators & perhaps additional equations

Multivariate complex contour integration: in general,
contours are tori

For one-loop box, contours are T* encircling global poles



Two Problems

* Too many contours (2) for one integral: how should we
choose the contour we use?

« Changing the contour can break equations:
0= I4[e(l, k1, ko, ka)]

is no longer true if we modify the real contour to circle
only one of the poles

Remarkably, these two problems cancel each other out



* Require vanishing Feynman integrals to continue
vanishing on cuts

e General contour C = a1C1 + a2Cs

4 5(67 klak27k4) i .
Ld 4 (2(€— k1)2<€— K12)2(€—|—k’4)2 — (al a2)f(klak27k4)

= all =al?



Box Coefficient y\&
Go back to master equation %\ /<

Amplitude = Z c¢; Int; + Rational

j€Basis
Apply quadruple cuts to both sides
LHS = Jacobian X Z Z Atfee gtree gtree ftree

solutions Species
helicities

RHS = coefficient x Jacobian x #solutions

- 1 le v tree
Solve: Box coefficient = T Sion 4_421—[ AE H Aj

solutions SPe@&Butiods sSpecies
helicities helicities

Britto, Cachazo, Feng
No algebraic reductions needed: suitable for pure numerics



Planar Double Box

Take a heptacut — freeze seven of eight degrees of freedom

One remaining integration variable z
S12<%

Six solutions, 0 = k+ (1] o* 2],

2(14)|42
for example S,: (3.4) 14142

g
Performing the contour integrals enforcing the heptacut =
Jacobian 1 .
Sy : =1
: 1653, 2(z + X) X =t/3)

Localizes z = global pole = need contour for z within S,



e But:

> Solutions intersect at 6
poles

> 6 other poles are S
redundant by Cauchy oo .y
theorem el W
(0. residues = 0)

* QOverall, we are left with 8 %3
global poles (massive legs: S
none; 1; 1 & 3; 1 & 4)

* Connections to algebraic
geometry




* Two master integrals

* 4 ¢ constraint equations

* 2 IBP constraint equations

= Two master contours — one for each integral



* Master formulee for coefficients of basis integrals to O (¢')
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Summary

* Natural variables for kinematics: spinors

 Factorization can be exploited to obtain on-shell
recursion relations

* Unitarity can be generalized to analytic structure, and
exploited to compute loop amplitudes

Beyond the basics:

 Differential equation and symbol techniques for higher-
loop integrals



