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Our Universe: 
•  75% Dark energy 
•  21% Dark matter 
•    4% Normal/visible  

    matter 
• What makes up the mass of the visible universe? 

Atomic mass (visible matter): 99.9% from nuclear mass 
Nuclear Mass: all of it form nucleon mass 
Nucleon mass?  energy of massless gluons and almost massless  
up & down quarks  
è “Mass without mass” – John Wheeler 

Gluon & quark interactions & dynamics make up the entire mass of 
the visible universe!	
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What distinguishes QCD from QED? 
3 

QED is mediated by photons (γ)  which are charge-less 
QCD is mediated by gluons (g), also chargeless  but are colored!  

Only in QCD In QCD &  
 g  γ in QED 
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What distinguishes QCD from QED? 
4 

• QED is mediated by photons γ  which are charge-less 
• QCD is mediated by gluons g which ARE colored!  

–  Much richer dynamics…. 
–  QED:     F = k/r2      vs.     QCD: F = kr 
–  QCD: “confinement” …. No free quarks or gluons 

•  QCD asymptotic freedom: coupling αS strongly scale 
dependent 
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Generation of mass in QCD 
•  99% of the nucleon mass: self-generated gluon fields 
• Similarity between p, n mass indicates  gluon self 

interactions are identical & overwhelmingly important: 
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Bhagwat et al.  arXiv:0710.2059 [nucl-th] 

Success of QCD! 
 
 
Higgs boson  
plays no role here. 
 

 
Other successes of 

QCD: è 
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Jets (p. 4)

Introduction

Background Knowledge
Jets from scattering of partons

Jets are unavoidable at hadron
colliders, e.g. from parton scat-
tering
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RHIC

Inclusive jet pT spectrum  

Hard Probes 2010 Hermine K. Wöhri : CMS results in pp collisions 
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!! Extending the high pT limit beyond Tevatron reach 

!! Accessing the low pT part using different 
    jet reconstruction algorithms 

!! Good agreement with NLO predictions 
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Successes of 
QCD 
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QCD 
“Folks, we need to stop “testing” QCD 

and start understanding it” 
Yuri Dokshitzer 

1998, ICHEP Vancouver, CA in his Summary Talk 
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2004 For the discovery of asymptotic freedom in QCD 
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QCD is no doubt correct, but there remain 
many unsolved, compelling questions! 
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coherent contributions from many nucleons

effectively amplify the gluon density being

probed.

The EIC was designated in the 2007 Nu-

clear Physics Long Range Plan as “embody-

ing the vision for reaching the next QCD

frontier” [1]. It would extend the QCD sci-

ence programs in the U.S. established at both

the CEBAF accelerator at JLab and RHIC at

BNL in dramatic and fundamentally impor-

tant ways. The most intellectually pressing

questions that an EIC will address that relate

to our detailed and fundamental understand-

ing of QCD in this frontier environment are:

• How are the sea quarks and gluons, and their spins, distributed in space

and momentum inside the nucleon? How are these quark and gluon distributions

correlated with overall nucleon properties, such as spin direction? What is the role of

the orbital motion of sea quarks and gluons in building the nucleon spin?

• Where does the saturation of gluon densities set in? Is there a simple boundary

that separates this region from that of more dilute quark-gluon matter? If so, how

do the distributions of quarks and gluons change as one crosses the boundary? Does

this saturation produce matter of universal properties in the nucleon and all nuclei

viewed at nearly the speed of light?

• How does the nuclear environment affect the distribution of quarks and

gluons and their interactions in nuclei? How does the transverse spatial distri-

bution of gluons compare to that in the nucleon? How does nuclear matter respond

to a fast moving color charge passing through it? Is this response different for light

and heavy quarks?

Answers to these questions are essential for understanding the nature of visible matter.

An EIC is the ultimate machine to provide answers to these questions for the following

reasons:

• A collider is needed to provide kinematic reach well into the gluon-dominated regime;

• Electron beams are needed to bring to bear the unmatched precision of the electro-

magnetic interaction as a probe;

• Polarized nucleon beams are needed to determine the correlations of sea quark and

gluon distributions with the nucleon spin;

• Heavy ion beams are needed to provide precocious access to the regime of saturated

gluon densities and offer a precise dial in the study of propagation-length for color

charges in nuclear matter.

The EIC would be distinguished from

all past, current, and contemplated facili-

ties around the world by being at the inten-

sity frontier with a versatile range of kine-

matics and beam polarizations, as well as

beam species, allowing the above questions

to be tackled at one facility. In particu-

lar, the EIC design exceeds the capabilities

of HERA, the only electron-proton collider

to date, by adding a) polarized proton and

light-ion beams; b) a wide variety of heavy-

ion beams; c) two to three orders of mag-

nitude increase in luminosity to facilitate to-

mographic imaging; and d) wide energy vari-

ability to enhance the sensitivity to gluon

distributions. Achieving these challenging

technical improvements in a single facility

will extend U.S. leadership in accelerator sci-

2
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Lets focus on: 
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“Spin, rotation…” always make us think! 
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Levitating top 
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1955 
Bohr & Pauli 
Trying to understand 
The tippy top toy 
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Spin surprises in the last century…. 
• Stern and Gehrlach (1921)  

Space quantization associated with the direction 

• Goudschmidt & Uhlenbeck (1926)  
Atomic fine structure & electron spin magnetic moment 

• Stern (1933)  
Proton anomalous magnetic moment µN = 2.79 

• Kusch (1947) 
Electron anomalous magnetic moment m0= 1.00119  

• Yale-SLAC Collaboration (Prescott et al.) 
Electro-Weak interference in polarized e-D DIS: parity non-conservation 

• European Muon Collaboration (EMC) (1989) 
The Spin Crisis/Puzzle 
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•  It can be argued that indeed the 20th century was a  

Century of Spin Surprises 

•  In fact, it has been noted: 
“Experiments with “spin” have killed more theories than any other 
single physical property”                                                 E. Leader 
 
“If theorists had their way, they would ban all experiments with spin”                                                                                  
J. D. Bjorken 
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Brief history of spin: 

7/03/2014 Questions in Hadron Physics 

• Measurement by Stern and Gerhlach (1922) 
“How a bad cigar helped reorient atomic physics” 
Physics Today,  
http://www.chem.harvard.edu/herschbach/How_a_bad_cigar.pdf 

 
•  Introduced as a fundamental observable of sub-atomic 

physics by Goudshmidt and Uhlenbeck (1926) 
P. Ehrenfest (reviewed the paper):  
“This is a good idea. Your idea may be wrong, but since both of you 
are so young without any reputation, you would not loose anything 
making a stupid mistake” 
 

• Other principle players in this drama:  
Bohr-Sommerfield, Pauli, Dirac…. All in the 1920’s 

15 
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Story of Proton spin: 
• Begins in 1927:  

•  Hund, rotational part of specific heat of H2 molecule 
•  Hori: observed the band spectrum of H2  
•  Dennison: resolves the discrepancy between their results and 

concludes in a paper June 16, 1927 that: 
Proton is a fermion of spin ½ 

 
Today we know proton is a very complicated object:  

Composite of quarks, gluons 
It’s spin (= ½)  could get contributions from quarks, gluons and their 
possible orbital motion  

Would it not be cool to look inside the Proton?  
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Spin… not just a discovery tool… but also 
a “precision” tool 
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Sin2ΘW: Weak mixing angle (Weinberg) 
• Angle by which spontaneous symmetry breaking rotates the 

original W0 and B0 vector bosons in the theory to the 
observed Z0 and γ	


	

•  It also gives the relation between the masses of W and Z 

bosons: 

•  The value varies as a function of momentum transfer Q, a 
key prediction of electroweak theory. It was important that it 
be measured at different scales directly, and has been 
measured….. Very precisely, using polarized electron 
beams. 
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“Spin” a precision tool… 

•  In the 1990’s the world’s most precise measurement of 
Weinberg angle: 

SLD detector at SLAC with polarized electron beams, a factor 25 
improvement compared to un-polarized beams 

•  In e+e- Colliders (e.g. LEP) the most precise beam-energy 
calibration comes from resonant depolarization of beams 

• Spin played a crucial role in understanding the V-A nature 
of the Electro-Weak Lagrangian; demonstrated by the 
parity violation experiments  
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sin2 θeff
W = 0.23061± 0.00047

High discovery potential !!
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Spin is useful, not just in particle, nuclear 
physics… but also in your day to day 
life…. 
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Applications of Spin ½ … MRIs 

Prof. Werner Heil, Institute of Physics, Johannes Gutenberg University 

H-MRI of the chest, black area: Lungs 3He-MRI Lung is visible in detail 

Non 
Smoker 

Smoker 
Arrows: ventilation  
defects 

Tuesday, June 17, 2014 Nucleon Spin Structure Workshop, RHIC Users Meeting 
2014 21 
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In these lectures we will go essentially along the time line… 
 
… explore how we thought of looking inside the proton 
 
… how we learnt to explore the internal spin dynamics 
 
… what is being done to understand the proton spin now 
 
… what needs to be done in the future 
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Evolution: Our Understanding of Nucleon Spin 

? 
1980s 1990/2000s 

We have come a long way, but do we understand nucleon spin? 

7/03/2014 23 Questions in Hadron Physics 


