Multiparton interactions Part 3

M. Diehl

Deutsches Elektronen-Synchroton DESY

Correlations between Partons in Nucleons Summer School, Orsay, June 30 to July 4, 2014

Approximating DPDs by single-parton distributions

if neglect correlations between two partons

$$F(x_1, x_2, \boldsymbol{y}) \approx \int d^2 \boldsymbol{b} f(x_2, \boldsymbol{b}) f(x_1, \boldsymbol{b} + \boldsymbol{y})$$

where $f(x_i, b) = \text{impact parameter dependent single-parton density}$

 \blacktriangleright if neglect correlations between x and \pmb{b} of single parton

$$f(x_i, \boldsymbol{b}) = f(x_i)F(\boldsymbol{b})$$

with same $F(\mathbf{b})$ for all partons

- then $G(\boldsymbol{y}) = \int d^2 \boldsymbol{b} F(\boldsymbol{b}) F(\boldsymbol{b} + \boldsymbol{y})$
- for Gaussian $F(m{b})$ with average $\langle m{b}^2
 angle$

 $\sigma_{\rm eff} = 4\pi \langle {m b}^2
angle = 41 \, {\rm mb} \ imes \langle {m b}^2
angle / (0.57 \, {\rm fm})^2$

determinations of $\langle {m b}^2
angle$ range from $\sim (0.57\,{
m fm}-0.67\,{
m fm})^2$

is $\gg \sigma_{\rm eff} \sim 10$ to $20\,\rm mb$ from experimental extractions

if $F(\mathbf{b})$ is Fourier trf. of dipole then $41 \text{ mb} \rightarrow 36 \text{ mb}$

complete independence between two partons is disfavored or something is systematically wrong with $\sigma_{\rm eff}$ extractions

cf. Calucci, Treleani 1999; Frankfurt, Strikman, Weiss 2003, 2004

Spin

Correlations involving \boldsymbol{x}

- ▶ $F(x_1, x_2, \boldsymbol{b}) = f(x_1) f(x_2) G(\boldsymbol{b})$ cannot hold for all x_1, x_2
- ▶ most obvious: energy conservation $\Rightarrow x_1 + x_2 \leq 1$ often used: $F(x_1, x_2, \mathbf{b}) = f(x_1) f(x_2) (1 - x_1 - x_2)^n G(\mathbf{b})$ to suppress region of large $x_1 + x_2$
- ▶ significant $x_1 x_2$ correlations found in constituent quark model

Rinaldi, Scopetta, Vento: arXiv:1302.6462

blot shows
$$\int d^2 \boldsymbol{y} \; F_{uu}(x_1, x_2, \boldsymbol{y}) / f_u(x_2)$$

s x_2 independent if factorization holds

• unknown: size of correlations when one or both of x_1, x_2 small

Correlations involving x and b

- have some knowledge of single-parton distribution f(x, b) from studies of parton distributions (exclusive processes, lattice, theory)
 - HERA results on $\gamma p \rightarrow J/\Psi p$ give

 $\langle {m b}^2
angle \propto {
m const} + 4 lpha' \log(1/x)$

with $\alpha' \approx 0.15 \,\mathrm{GeV}^{-2} = (0.08 \,\mathrm{fm})^2$ for gluons at $x \sim 10^{-3}$ \rightarrow weak but nonzero correlation between x and b

Iattice simulations → strong decrease of ⟨b²⟩ with x above ~ 0.1 seen by comparing moments A_{n0}(t) = ∫ dx xⁿ⁻¹H(x, ξ, t)

LHCP Collaboration, in Ph. Hägler, arXiv:0912.4583

Correlations involving x and b

- have some knowledge of single-parton distribution f(x, b) from studies of parton distributions (exclusive processes, lattice, theory)
 - HERA results on $\gamma p \rightarrow J/\Psi p$ give

 $\langle \boldsymbol{b}^2 \rangle \propto \mathrm{const} + 4 \alpha' \log(1/x)$

with $\alpha' \approx 0.15 \,\mathrm{GeV}^{-2} = (0.08 \,\mathrm{fm})^2$ for gluons at $x \sim 10^{-3}$ \rightarrow weak but nonzero correlation between x and b

► indirect determination M.D., P. Kroll 2013 fit ansatz $H^{q-\bar{q}}(x, \xi = 0, t) = q_{val}(x) \exp[tf_q(x)]$ to e.m. form factors of proton and neutron

Correlations involving x and b

• have some knowledge of single-parton distribution f(x, b) from studies of parton distributions (exclusive processes, lattice, theory)

• HERA results on
$$\gamma p \rightarrow J/\Psi p$$
 give

 $\langle \boldsymbol{b}^2 \rangle \propto \operatorname{const} + 4\alpha' \log(1/x)$

with $\alpha' \approx 0.15 \,\text{GeV}^{-2} = (0.08 \,\text{fm})^2$ for gluons at $x \sim 10^{-3}$ \rightarrow weak but nonzero correlation between x and b

- expect similar correlations between x_i and b in two-parton dist's even if $F(x_1, x_2, y) \approx \int d^2 b f(x_2, b) f(x_1, b + y)$ does not hold
- ▶ if interaction 2 produces high-mass system → have large x_2, \bar{x}_2 → smaller $b, \bar{b} \rightarrow$ more central collision → secondary interactions enhanced Frankfurt, Strikman, Weiss 2003

study in Pythia 8: Corke, Sjöstrand 2011 \rightarrow tunes 4C, 4C*

Interlude: first look at scale evolution for collinear distributions

▶ if define DPD from renormalized twist-two operators O in analogy with usual PDFs

 $F(x_1, x_2, \boldsymbol{y}; \mu) \sim \langle p | \mathcal{O}_1(\boldsymbol{0}; \mu) \mathcal{O}_2(\boldsymbol{y}; \mu) | p \rangle \quad f(x; \mu) \sim \langle p | \mathcal{O}(\boldsymbol{0}; \mu) | p \rangle$

 \Rightarrow have

separate DGLAP evolution for partons 1 and 2 $\,$

$$\frac{d}{d\log\mu}F(x_i,\boldsymbol{y}) = P \otimes_{x_1} F + P \otimes_{x_2} F$$

 μ dep'ce of DPD $\ \leftrightarrow \ \mu$ dep'ce of hard-scattering procs. at higher order

- $\rightarrow F(x_i, \boldsymbol{y}; \mu)$ has different shape in x_1, x_2 for each \boldsymbol{y}
 - \rightarrow nontrivial behavior under evolution
- \blacktriangleright if DPDs for q and g have different ${\boldsymbol y}$ dependence
 - \rightarrow amount of quark-gluon mixing depends on ${\boldsymbol y}$
 - \rightarrow nontrivial behavior under evolution

Interlude: first look at scale evolution

model study of evolution effects

M.D., T. Kasemets, S. Keane 2014

Spin •000

Spin correlations

$$F(x_i, \boldsymbol{k}_i, \boldsymbol{y}) = \mathcal{FT}_{z_i \to (x_i, \boldsymbol{k}_i)} \langle p | \bar{q} \left(-\frac{1}{2} z_2 \right) \Gamma_2 q \left(\frac{1}{2} z_2 \right) \bar{q} \left(y - \frac{1}{2} z_1 \right) \Gamma_1 q \left(y + \frac{1}{2} z_1 \right) | p \rangle$$

- polarizations of two partons can be correlated even in unpolarized target already pointed out by Mekhfi (1985)
 - quarks: longitudinal and transverse pol., e.g.

$$F_{\Delta q \Delta q} : \Gamma_1 = \Gamma_2 = \frac{1}{2} \gamma^+ \gamma_5 \quad \Leftrightarrow \ q_1^{\uparrow} q_2^{\uparrow} + q_1^{\downarrow} q_2^{\downarrow} - q_1^{\uparrow} q_2^{\downarrow} - q_1^{\downarrow} q_2^{\uparrow}$$

- gluons: longitudinal and linear pol.
- can be included in factorization formula

e.g.
$$F_{\bar{q}g} F_{qg} \sigma(q\bar{q} \to Z) \sigma(gg \to 2 \text{ jets})$$

+ $F_{\Delta \bar{q} \Delta g} F_{\Delta q \Delta g} \Delta \sigma(q\bar{q} \to Z) \Delta \sigma(gg \to 2 \text{ jets})$

▶ if spin correlations are large → large effects for rate and final state distributions of double hard scattering

Spin correlations

 detailed calc'n for gauge boson pair production followed by leptonic decay

T. Kasemets, MD 2012; see also A. Manohar, W. Waalewijn 2011

- Iongitudinal quark spin correlations
 - \rightsquigarrow overall rate and distribution of lepton rapidities and p_T
- transverse quark spin correlations
 - → azimuthal correlation between lepton planes
 - → two hard scatters are not independent
- expect similar effects for other processes (esp. for jets)
- note: independent scattering planes sometimes assumed as criterion to characterize double parton scattering

How large are spin correlations in the proton?

 polarized DPDs fulfil positivity constraints analogous to Soffer bound for usual PDFs, e.g.

> $F_{qq} - F_{\Delta q \Delta q} \ge 2|F_{\delta q \delta q}|$ q =unpol., $\Delta q =$ long., $\delta q =$ transv.; schematic notation

large effects expected in valence quark region toy model: SU(6) symmetric proton wave function

spin-flavor part: $\frac{1}{\sqrt{6}}\left(|u^+u^-d^+\rangle+|u^-u^+d^+\rangle-2|u^+u^+d^-\rangle\right)$ gives

Multiparton interactions Part 3

$$\Delta u/u = 2/3 \qquad \qquad \Delta d/d = -1/3$$

$$F_{\Delta u \Delta u}/F_{uu} = 1/3 \qquad \qquad F_{\Delta u \Delta d}/F_{ud} = -2/3$$

How large are spin correlations in the proton?

 polarized DPDs fulfil positivity constraints analogous to Soffer bound for usual PDFs, e.g.

 $F_{qq} - F_{\Delta q \Delta q} \ge 2|F_{\delta q \delta q}|$

q =unpol., $\Delta q =$ long., $\delta q =$ transv.; schematic notation

large effects expected in valence quark region toy model: study in bag model Chang, Manohar, Waalewijn: arXiv:1211:3132

plots show $F(x_1,x_2=0.4,k_\perp)$ for different pol. combinations $k_\perp=\pmb{r}=$ Fourier conjugate to \pmb{y}

• unknown: size of correlations when one or both of x_1, x_2 small

How large are spin correlations in the proton?

 assume maximal polarization at starting scale, see how quickly evolution decreases spin correlations M.D., T. Kasemets, S. Keane 2014

 $Q^2=1\,{\rm GeV^2},\,16\,{\rm GeV^2},\,10^4\,{\rm GeV^2}$

▶ at $Q^2 = 1$ take unpol. DPD as product of two PDFs

10 10 10^{-2} 101 10-

How large are spin correlations in the proton?

assume maximal polarization at starting scale, see how quickly evolution decreases spin correlations M.D., T. Kasemets, S. Keane 2014

- at $Q^2 = 1$ take unpol. DPD as product of two PDFs
- results for gluons strongly depend on chosen PDF

 10^{-1} 10^{-4} x_1

• at $Q^2 = 1$ take unpol. DPD as product of two PDFs

results for gluons strongly depend on chosen PDF

How large are spin correlations in the proton?

- assume maximal polarization at starting scale, see how quickly evolution decreases spin correlations M.D., T. Kasemets, S. Keane 2014
 - $x_1x_2f_{\Delta g\Delta g}$ $x_1x_2f_{\delta g \delta g}$ 10 10 10^{-} 10 10^{-2} 10^{-2} 101 10^{-} 10^{-4} s^{0.8} $\frac{2}{2} \frac{2}{2} \frac{2}$ $f_{\delta g \delta g} f_g$ $x_2 = x_1$ 10^{-1} x_1