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Outline of Lectures

◮ Lecture I: Basics of Monte Carlo methods, the event

generator strategy, matrix elements, LO/NLO, . . .

◮ Lecture II: Parton showers, initial/final state,

matching/merging, . . .

◮ Lecture III: Underlying events, multiple interactions,

minimum bias, pile-up, hadronization, decays, . . .

◮ Lecture IV: Correlations between partons in nucleons,

summary, . . .

Buckley et al. (MCnet collaboration), Phys. Rep. 504 (2011) 145.
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The purpose of parton showers is to generate real exclusive

events on parton level down to a very low (almost

non-perutbative) jet resolution scale µ.

Starting from an initial hard scattering eg. e+e− → qq̄ or

qq̄ → Z 0, we basically need

σ+0 = σ0(1 + C01αs + C02α
2
s + C03α

3
s + . . .)

σ+1 = σ0(C11αs + C12α
2
s + C13α

3
s + . . .)

σ+2 = σ0(C22α
2
s + C23α

3
s + C24α

4
s + . . .)

...

Tree-level generators only gives us inclusive events.

NLO generators only gives us one extra parton.
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Final-State Showers

The tree-level matrix element for

an n-parton state can be

approximated by a product of

splitting functions corresponding to

a sequence of one-parton

emissions from the zeroth order

state.

e−

e+

_
q

q
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Final-State Showers

The tree-level matrix element for

an n-parton state can be

approximated by a product of

splitting functions corresponding to

a sequence of one-parton

emissions from the zeroth order

state.

e−

e+

_
q

q

e−

e+

_
q

q

1

52

3

4

We can then order the emissions acording to some resolution

scale, ρ, so that ρ1 ≫ ρ2 ≫ ρ3 ≫ . . .
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We have the standard DGLAP splitting kernels

Pq→qg(ρ, z)dρdz =
αs

2π
dz

dρ

ρ
CF

1 + z2

1 − z

Pg→gg(ρ, z)dρdz =
αs

2π
dz

dρ

ρ
NC

(1 − z(1 − z))2

z(1 − z)

Pg→qq̄(ρ, z)dρdz =
αs

2π
dz

dρ

ρ
TR (z2 + (1 − z)2)

where ρ is the squared invariant mass or transverse

momentum, and z is the energy (or light-cone) fraction taken by

one of the daugthers. (We ignore the φ-dependence here).
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We now to make the events exclusive. This is done by saying

that the first emission at some ρ1 is given by the splitting kernel

multiplied by the probability that there has been no emission

above that scale.

In a given interval dρ we have the no-emission probability

1 − dρ
∑

bc

∫

dz Pa→bc(z, ρ)

Integrating from ρ1 up to some maximum scale, ρ0 we get

∆(ρ0, ρ1) = exp

(

−
∑

bc

∫

ρ0

ρ1

dρ

∫

dz Pa→bc(z, ρ)

)
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In the same way we get the probability to have the nth emission

at some scale ρn

P(ρn) =
∑

abc

∫

dz Pa→bc(ρn, z)×

exp

(

−
∑

abc

∫

ρn−1

ρn

dρ′
∫

dz ′ Pa→bc(z
′, ρ′)

)
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Integrating we get schematically

σ+0 = σ0∆S0 = σ0(1 + CPS
01αs + CPS

02α
2
s + . . .)

σ+1 = σ0CPS
11αs∆S1 = σ0(C

PS
11αs + CPS

12α
2
s + CPS

13α
3
s + . . .)

σ+2 = σ0CPS
22α

2
s ∆S2 = σ0(C

PS
22α

2
s + CPS

23α
3
s + CPS

24α
4
s + . . .)

...

We still need a cutoff, ρcut, and the coefficients CPS
nn diverges as

log2n ρmax/ρcut

but the Sudakovs corresponds to the an approximate

resummation of all virtual terms and makes things finite, and

we can use ρcut ∼ 1 GeV.
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The divergencies comes from the soft and collinear poles in the

splitting kernels, eg.

∫

ρ0

ρc

dρ

∫

dz Pq→qg(ρ, z) ∼

∫

ρ0

ρc

αsdρ

ρ
ln(ρ0/ρ) ∼ αs ln2(ρ0/ρc)

Parton showers systematically resums all orders of

αn
s ln2n(ρ0/ρc) which is the main part of the higher order

corrections.

(Also important terms ∼ αn
s ln2n−1(ρ0/ρc) are resummed.)
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The divergencies comes from the soft and collinear poles in the

splitting kernels, eg.

∫

ρ0

ρc

dρ

∫

dz Pq→qg(ρ, z) ∼

∫

ρ0

ρc

αsdρ

ρ
ln(ρ0/ρ) ∼ αs ln2(ρ0/ρc)

Parton showers systematically resums all orders of

αn
s ln2n(ρ0/ρc) which is the main part of the higher order

corrections.

(Also important terms ∼ αn
s ln2n−1(ρ0/ρc) are resummed.)

However if there is no strong ordering, ρ1 ≫ ρ2 ≫ ρ3 ≫ . . ., the

PS approximation breaks down

Parton showers cannot model several hard jets very well.

Especially the correlations between hard jets are poorly

described.
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Angular Ordering

The splitting probabilities means that coherence effects are not

taken into account

2

+
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The splitting probabilities means that coherence effects are not

taken into account

2

++

22

Most coherence effects can be taken into account by

angular ordering.
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Angular Ordering

The splitting probabilities means that coherence effects are not

taken into account

2

++

22

Most coherence effects can be taken into account by

angular ordering.

Some angular correlations can also be taken into account by

adjusting the azimuthal angles after a shower is generated.
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Coherence effects can be included directly, by considering

gluon radiation from colour dipoles between colour-connected

partons.

=

2

+

2
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Coherence effects can be included directly, by considering

gluon radiation from colour dipoles between colour-connected

partons.

=

2

+

2

=

2

+

2

Rather than iterating 1 → 2 parton splitting we iterate 2 → 3

splittings. Each emission from a dipole will create two new

dipoles which can continue radiating.

This was first implemented in the ARIADNE generator.

Recently similar schemes have been implemented in

PYTHIA, HERWIG++, SHERPA and VINCIA.
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Evolution Variables

How do we choose the evolution variable, ρ?

The most natural choice is to choose a variable which isolates

both the soft and collinear poles in the splitting kernel. This is

the case for ρ = p2
⊥

as used in eg. ARIADNE.

In old versions of PYTHIA and SHERPA the evolution variable is

the virtuality Q2 which in principle is fine except that αs(p
2
⊥
)

may diverge for any given Q2. Also angular ordering needs to

be imposed in separately.

In HERWIG the ordering is in angle, which ensures angular

ordering, but does not isolate the soft pole, and an additional

cutoff is needed.
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ln p⊥

y

Transverse momentum

ρ = p2
⊥

ln p⊥

y

Virtuality

ρ = Q2 ∼
p2
⊥

z(1−z)

ln p⊥

y

Angle

ρ ∼ E2θ2 ∼
p2
⊥

z2(1−z)2
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The Sixth Commandment of Event Generation

Thou shalt always be

independent of Lorentz

frame
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Final-state parton showers did really well at LEP
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How do we generate a parton shower emission?

P(t) = P(t) exp

(

−

∫ tmax

t

dt ′P(t ′)

)

P(t) is a probability distribiution, so we can do the standard

transformation method

1 − r =

∫ 1

r

dt pR(t) =

∫ tmax

t

dtP(t) = 1 − exp

(

−

∫ tmax

t

dt ′P(t ′)

)

So if P has a simple primitive function F we get

t = F−1(F (tmax)− ln r)

but P is never simple. . .

Event Generators II 17 Leif Lönnblad Lund University
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Assume g is a simple function with a simple primitive function G

such that g(t) ≥ P(t), ∀t . Then we can use the following

algorithm

◮ start with t0 = tmax;

◮ select ti = G−1(G(ti−1)− ln R),

◮ compare a (new) R with the ratio P(ti)/g(ti); if

P(ti)/g(ti) ≤ R, then return to point 2 for a new try,

i → i + 1;

◮ otherwise ti is retained as final answer.

If ti < tcut, there is no emission and the shower is done.
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Consider the various ways in which one can select a specific
scale t . The probability that the first try works, t = t1, i.e. that no
intermediate t values need be rejected, is given by

p0(t) = e−
∫ tmax

t g(t′) dt′ g(t)
P(t)

g(t)
= P(t)e−

∫ tmax
t g(t′) dt′

The probability that we have thrown away one intermediate
value t1

p1(t) =

∫ tmax

t

dt1e
−

∫ tmax
t1

g(t′) dt′
g(t1)

[

1 −
P(t1)

g(t1)

]

×

×e−
∫ t1

t g(t′) dt′g(t)
P(t)

g(t)
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p1(t) = p0(t)

∫ tmax

t

dt1 [g(t1)− P(t1)]

Similarly we get

p2(t) = p0(t)

∫ tmax

t

dt1 [g(t1)− P(t1)]

∫ t1

t

dt2 [g(t2)− P(t2)]

= p0(t)
1

2

(

∫ tmax

t

[g(t ′)− P(t ′)] dt ′

)2

ptot(t) =

∞
∑

n=0

pn(t) = p0(t)

∞
∑

n=0

1

n!

(

∫ tmax

t

[g(t ′)− P(t ′)] dt ′

)n

= P(t)e−
∫ tmax

t g(t′) dt′e
∫ tmax

t [g(t′)−P(t′)]dt′

= P(t)e−
∫ tmax

t P(t′) dt′
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Also if several things may happen, P1(t), P2(t), P3(t), . . . the

probability of i happening first is

Pi(t)×
∏

j

e−
∫ tmax

t
Pj (t

′) dt ′

Simply generate a scale for each i according to

Pi(t)× e−
∫ tmax

t
Pi (t

′) dt ′

and pick the process with the largest scale.

Event Generators II 21 Leif Lönnblad Lund University
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Initial-State Showers

For incoming hadrons, we need to consider the evolution of the

parton densities. Using collinear factorization and DGLAP

evolution we have (with t = log k2
⊥
/Λ2)

dfb(x , t)

dt
=
∑

a

∫

dx ′

x ′
fa(x

′, t)
αs

2π
Pa→b

( x

x ′

)

We can interpret this as during a small increase dt there is a

probability for parton a with momentum fraction x ′ to become

resolved into parton b at x = zx ′ and another parton c at

x ′ − x = (1 − z)x ′.

Event Generators II 22 Leif Lönnblad Lund University
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p

p/p̄

uu

g

W+

d

c s̄

Event Generators II 23 Leif Lönnblad Lund University



Final-State Showers

Initial-State Showers

Matching and Merging

Backwards Evolution

k⊥-Factorization

In a backward evolution scenario we start out with the hard

sub-process at some scale tmax

σ0 ∝ σ̂ab→X fa(xa, tmax)fb(xb, tmax)

and we get the relative probability for the parton a to be

unresolved into parton c during a decrease in scale dt

dPa =
dfa(xa, t)

fa(xa, t)
= |dt |

∑

c

∫

dx ′

x ′

fc(x
′, t)

fa(xa, t)

αs

2π
Pc→a

(xa

x ′

)

Summing up the cumulative effect of many small changes dt ,
the probability for no radiation exponentiates and we get a
Sudakov

∆S+a
(xa, tmax, t) = exp

{

−

∫ tmax

t

dt ′
∑

c

∫

dx ′

x ′

fc(x
′, t ′)

fa(xa, t ′)

αs(t
′)

2π
Pc→a

(xa

x ′

)

}
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k⊥-Factorization

This now gives us the probability for the first backwards

initial-state splitting

dPca =
αs

2π
Pac(z)

fc(xa/z, t)

fa(xa, t)
dt

dz

z
×∆S+a

(xa, tmax, t)

In a hadronic collision we first generate the hard scattering,

then evolve the incoming partons backward to lower scales,

and then alow for a final-state shower from all partons from the

hard scattering and the initial-state shower.

This is like undoing the evolution of the PDFs
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The small-x problem

DGLAP evolution is not applicable if the hard scale is much

smaller than the total energy and the virtuality of the incoming

partons are not much smaller than the hard scale. (small x)

Collinear factorization =⇒ k⊥-factorization

∫

dxadxbσ̂ab→X fa(xa,Q
2)fb(xb,Q

2) =⇒

∫

dxadxbdk⊥adk⊥bσ̂
⋆

ab→XFa(xa, k⊥a,Q
2)Fb(xb, k⊥b,Q

2)

F an unintegrated parton density.

σ̂⋆ is the off-shell matrix element

Event Generators II 26 Leif Lönnblad Lund University
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proton

P

k0
q1

k1

q2

k2

q3

qn+1

kn

lepton

qγ

In DIS, the cross section is

dominated by events with small

Q2 = −q2
γ and small x .

The available phase space for

emitting partons is not limited by

Q2, but rather by the total hadronic

energy, W 2 ≈ Q2/x .

The 1/z pole in the gluon splitting

function makes it possible to emit

many initial-state gluons even for

small Q2.

We need to take into account

unordered evolution.
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In DIS, the cross section is

dominated by events with small

Q2 = −q2
γ and small x .

The available phase space for

emitting partons is not limited by

Q2, but rather by the total hadronic

energy, W 2 ≈ Q2/x .

The 1/z pole in the gluon splitting

function makes it possible to emit

many initial-state gluons even for

small Q2.

We need to take into account

unordered evolution.

Forward jets at HERA cannot be reproduced by DGLAP based

initial-state parton showers. We need BFKL or CCFM.
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However, at the LHC . . .
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Tree-level matching

ˇ
NLO Matching

proton

P

k0
q1

k1

q2

k2

q3

qn+1

kn

lepton

qγ

The power of k⊥-factorization is the

resummation of un-ordered

emissions, which cannot be done

by DGLAP-based showers.

BFKL- or CCFM-based showers do

not yet describe data.

But we now have matrix element

generators which can produce

many un-ordered emissions.

But to get the complete picture we

need to combine many

multiplicities, and we still need

parton showers.
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The Basic Idea

Tree-level matching

ˇ
NLO Matching

Tree-level matrix element generators and are good for a handful

hard, well separated partons, but bad for many soft and

collinear partons.

Parton shower generators are not good for a handful hard, well

separated partons, but good for many soft and collinear

partons.

Let’s try to get the best of both.
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The Basic Idea

Tree-level matching

ˇ
NLO Matching

Fixed-order expansion of a parton shower

(using Pi =
Fi

Fi−1
Pi )

dσex
0

dφ0
= F0 |M0|

2

[

1 − αS

∫

ρ0

ρMS

dρdz P1 +
α2

S

2

(
∫

ρ0

ρMS

dρdz P1

)2
]

dσex
1

dφ0
= F0 |M0|

2 αSP1dρ1dz1

×

[

1 − αS

∫

ρ0

ρ1

dρdz P1 − αS

∫

ρ1

ρMS

dρdz P2

]

dσ2

dφ0
= F0 |M0|

2 α2
SP1dρ1dz1P2dρ2dz2Θ(ρ1 − ρ2)

Unitary to all orders in αS — total cross section is F0 |M0|
2.

1-jet cross section will not even be correct to LO.
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Tree-level matching

ˇ
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ME reweighting

We really want to improve our parton shower.

The easiest thing is

Pi → PME
i ≡

|Mi |
2 dφi

|Mi−1|
2 dφi−1dρdz

This has been around quite a while in PYTHIA for the first

splitting in some processes. Preserves the unitarity of the

shower
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ˇ
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dσex
0

dφ0
= F0 |M0|

2

[

1 − αS

∫

ρ0

ρMS

dρdz PME
1 +

α2
S

2

(
∫

ρ0

ρMS

dρdz PME
1

)2
]

dσex
1

dφ0
= F0 |M0|

2 αSP
ME
1 dρ1dz1

×

[

1 − αS

∫

ρ0

ρ1

dρdz PME
1 − αS

∫

ρ1

ρMS

dρdz P2

]

dσ2

dφ0
= F0 |M0|

2 α2
SP

ME
1 dρ1dz1P2dρ2dz2Θ(ρ1 − ρ2)

Still unitary to all orders of αS. We can decrease ρMS to the

non-perturbative boundary ρcut .

Going to higher multiplicities turns out to be difficult.
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The Basic Idea

Tree-level matching

ˇ
NLO Matching

Matching: The Basic Idea

A fixed-order ME-generator gives the first few orders in αs

exactly.

The parton shower gives approximate (N)LL terms to all orders

in αs through the Sudakov form factors.

◮ Take a parton shower and correct the first few terms in the

resummation with (N)LO ME.

◮ Take events generated with (N)LO ME with subtracted

Parton Shower terms. Add parton shower.

◮ Take events samples generated with (N)LO ME,

reweight and combine with Parton showers:
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The Basic Idea

Tree-level matching

ˇ
NLO Matching

Tree-level Merging

Has been around the whole millennium: CKKW(-L), MLM, . . .

Combines samples of tree-level (LO) ME-generated events for

different jet multiplicities. Reweight with proper Sudakov form

factors (or approximations thereof).

Needs a merging scales to separate ME and shower region

and avoid double counting. Only observables involving jets

above that scale will be correct to LO.

Typically the merging scale dependence is beyond the

precision of the shower: ∼ O(L3α2
s )

1
N2

c
+O(L2α2

s ).
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The Basic Idea

Tree-level matching

ˇ
NLO Matching

CKKW(-L)

Generate inclusive few-jet samples according to exact tree-level

|Mn|
2 using some merging scale ρMS.

These are then made exclusive by reweighting no-emission

probabilities (in CKKW-L generated by the shower itself)

Add normal shower emissions below ρMS.

Add all samples together.

◮ Dependence on the merging scale cancels to the precision

of the shower.

◮ If the merging scale is not defined in terms of the shower

ordering variable, we need vetoed and truncated showers.

◮ Breaks the unitarity of the shower.
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The Second Commandment of Event Generation

Thou shalt always cover

the whole of phase space

exactly once.
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The Basic Idea

Tree-level matching

ˇ
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Multi-jet tree-level matching

dσex
0

dφ0
= F0 |M0|

2

[

1 − αS

∫

ρ0

ρMS

dρdz P1 +
α2

S

2

(
∫

ρ0

ρMS

dρdz P1

)2
]

dσex
1

dφ0
= F0 |M0|

2 αSP
ME
1 dρ1dz1

×

[

1 − αS

∫

ρ0

ρ1

dρdz P1 − αS

∫

ρ1

ρMS

dρdz P2

]

dσ2

dφ0
= F0 |M0|

2 α2
SP

ME
1 dρ1dz1P

ME
2 dρ2dz2Θ(ρ1 − ρ2)

NOT unitary. Gives artificial dependence of ρMS.

e.g. extra contribution to
∫

αSP
ME
1 is ∼ α2

SL3.
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The Basic Idea

Tree-level matching

ˇ
NLO Matching

Mature procedure. Available in HERWIG++, SHERPA, PYTHIA8.

The MLM-procedure (ALPGEN + HERWIG/PYTHIA) is similar, but

even less control over the perturbative expansion.

There are recent procedures to restore unitarity:

◮ Vincia exponentiates the full n-parton matrix elements.

◮ UMEPS uses a add/subtract procedure combined with a

re-clustering algorithm.
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Tree-level matching

ˇ
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UMEPS – Restoring unitarity

dσex
0

dφ0
= F0 |M0|

2

[

1 − αS

∫

ρ0

ρMS

dρdz P1 +
α2

S

2

(
∫

ρ0

ρMS

dρdz P1

)2
]

dσex
1

dφ0
= F0 |M0|

2 αSP
ME
1 dρ1dz1

[

1 − αS

∫

ρ0

ρ1

dρdz P1 − αS

∫

ρ1

ρMS

dρdz P2

]

dσ2

dφ0
= F0 |M0|

2 α2
SP

ME
1 dρ1dz1P

ME
2 dρ2dz2Θ(ρ1 − ρ2)
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dσfx
0
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2
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∫

ρ0

ρMS

dρdz P1 +
α2

S

2

(
∫

ρ0

ρMS

dρdz P1

)2
]

dσfx
1

dφ0
= F0 |M0|

2 αSP
ME
1 dρ1dz1

[

1 − αS

∫

ρ0

ρ1

dρdz P1 − αS

∫

ρ1

ρMS

dρdz P2

]

dσ2

dφ0
= F0 |M0|

2 α2
SP

ME
1 dρ1dz1P

ME
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UMEPS – Restoring unitarity

dσfx
0

dφ0
= F0 |M0|

2

[

1 − αS

∫

ρ0

ρMS

dρdz P1 +
α2

S

2

(
∫

ρ0

ρMS

dρdz P1

)2
]

−

∫

dρ1dz1

dσfx
1

dφ0dρ1dz1

dσfx
1

dφ0
= F0 |M0|

2 αSP
ME
1 dρ1dz1

[

1 − αS

∫

ρ0

ρ1

dρdz P1 − αS

∫

ρ1

ρMS

dρdz P2

]

−

∫

dρ2dz2

dσfx
2

dφ0dρ1dz1dρ2dz2

dσ2

dφ0
= F0 |M0|

2 α2
SP

ME
1 dρ1dz1P

ME
2 dρ2dz2Θ(ρ1 − ρ2)
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The Basic Idea

Tree-level matching

ˇ
NLO Matching

In CCKW we need to recreate the sequence of emissions.

In CKKW-L this is done by selecting a full parton shower history

of an n-parton state.

In UMEPS performing the integration is simply to replace the

n-jet the state with the one with one jet less in the history.
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Tree-level matching

ˇ
NLO Matching

But why worry about unitarity, the cross sections are never

better than LO anyway, so scale uncertainties are huge.
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ˆ Tree-level matching

NLO Matching

Multi-leg NLO Matching

NLO

The anatomy of NLO calculations.

〈O〉 =

∫

dφn (Bn + Vn)On(φn) +

∫

dφn+1Bn+1On+1(φn+1).

Not practical, since Vn and Bn+1 are separately divergent,

although their sum is finite.

The standard subtraction method:

〈O〉 =

∫

dφn

(

Bn + Vn +
∑

p

∫

dψ
(a)
n,pS

(a)
n,p

)

On(φn)

+

∫

dφn+1

(

Bn+1On+1(φn+1)−
∑

p

S
(a)
n,pOn(

φn+1

ψ
(a)
n,p

)

)

,
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Multi-leg NLO Matching

MC@NLO

(Frixione et al.)

The subtraction terms must contain all divergencies of the

real-emission matrix element. A parton shower splitting kernel

does exactly that.

Generating two samples, one according to Bn + Vn +
∫

SPS
n ,

and one according to Bn+1 − SPS
n , and just add the parton

shower from which Sn is calculated.
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NLO Matching

Multi-leg NLO Matching

POWHEG

(Nason et al.)

Calculate Bn = Bn + Vn +
∫

Bn+1 and generate n-parton states

according to that.

Generate a first emission according to Bn+1/Bn, and then add

any1 parton shower for subsequent emissions.

1As long as it is transverse-momentum ordered in the same way as in

POWHEG or properly truncated
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ˆ Tree-level matching

NLO Matching

Multi-leg NLO Matching

POWHEG and MC@NLO are very similar. They are both

correct to NLO, but differ at higher orders

◮ POWHEG exponentiates also non singular pieces of the

n + 1 parton cross section

◮ POWHEG multiplies the n + 1 parton cross section with

Bn/Bn (the phase-space dependent K -factor).

POWHEG may also resum k⊥ > µR , and will then generate

additional logarithms, log(S/µR) ∼ log(1/x).
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NLO Matching

Multi-leg NLO Matching

The Fifth Commandment of Event Generation

Thou shalt always

remember that a NLO

generator does not always

produce NLO results
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NLO Matching

Multi-leg NLO Matching

Really NLO?

Do NLO-generators always give NLO-predictions?

For simple Born-level processes such as Z 0-production, all

inclusive Z 0 observables will be correct to NLO.

◮ yZ

◮ ye

◮ p⊥e

But note that for p⊥e > mZ/2 the prediction is only leading

order!
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NLO Matching

Multi-leg NLO Matching

Also p⊥Z is LO. To get NLO we need to start with Z+jet at

Born-level and calculate full α2
S.

But for small p⊥Z the NLO cross section diverges due to L2nαn
s ,

L = log(p⊥Z/µR).

If L2αs ∼ 1, the α2
s corrections are parametrically as large as

the NLO corrections.

Can be alleviated by clever choices for µR, but in general you

need to resum.
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NLO Matching

Multi-leg NLO Matching

The Seventh Commandment of Event Generation

Thou shalt always resum

when NLO corrections are

large
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Multi-leg NLO Matching

Multi-leg Matching

We need to be able to combine several NLO calculations and

add (parton shower) resummation in order to get reliable

predictions.

◮ No double (under) counting.
◮ No parton shower emissions which are already included in

(tree-level) ME states.
◮ No terms in the PS no-emission resummation which are

already in the NLO

◮ Dependence of any merging scale must not destroy NLO
accuracy.

◮ The NLO 0-jet cross section must not change too much

when adding NLO 1-jet.
◮ Dependence on logarithms of the merging scale should be

less than L3α2
s in order for predictions to be stable for small

scales.
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NLO Matching

Multi-leg NLO Matching

SHERPA

First working solution for hadronic collisions.

CKKW-like combining of (MC@)NLO-generated events, fixing

up double counting of NLO real and virtual terms.

Any jet multiplicity possible.

Dependence on merging scale canceled at NLO and

parton-shower precision.

Residual dependence: L3α2
s /N

2
C — can’t take merging scale

too low.
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MINLO

No merging scale!

◮ Take e.g. POWHEG Higgs+1-jet calculation down to very

low p⊥.

◮ Use clever (nodal) renormalization scales

◮ Multiply with (properly subtracted) Sudakov form factor

◮ Add non-leading terms to Sudakov form factor to get

correct NLO 0-jet cross section.

Possible to go to NNLO!

Not clear how to go to higher jet multiplicities.
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UNLOPS

Start from UMEPS (unitary version of CKKW-L).

Add (and subtract) n-jet NLO samples, fixing up double

counting of NLO real and virtual terms.

dσsub
1

dφ0
= αSP

ME
1 dρ1dz1

[

Π0(ρ0, ρ1)− 1 + αS

∫

ρ0

ρ1

dρdz P1

]

Note that PS uses αS(ρ) and f (x , ρ)
rather than αS(µR) and f (x , µF )
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NLO Matching

Multi-leg NLO Matching

Any jet multiplicity possible.

Although there is a merging scale, the dependence of an n-jet

cross section due to addition of higher multiplicities drops out

completely. Merging scale can be taken arbitrarily small.

— Lots of negative weights.

Possible to go to NNLO?

Available in PYTHIA8

(and HERWIG++ in Simon Plätzer’s incarnation)
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Multi-leg NLO Matching

GENEVA

◮ Analytic (SCET) resummation of NLO cross section to NLL

(or even NNLL!) in the merging scale variable.

◮ Only e+e− so far (W-production in pp on its way).

VINCIA

◮ Exponentiate NLO Matrix Elements in no-emission

probability — no merging scale.

◮ Only e+e− so far

FxFx

◮ MLM-like merging of different MC@NLO calculations.

◮ Difficult to understand merging scale dependence
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Les Houches comparison
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Outline of Lectures

◮ Lecture I: Basics of Monte Carlo methods, the event

generator strategy, matrix elements, LO/NLO, . . .

◮ Lecture II: Parton showers, initial/final state,

matching/merging, . . .

◮ Lecture III: Underlying events, multiple interactions,

minimum bias, pile-up, hadronization, decays, . . .

◮ Lecture IV: Correlations between partons in nucleons,

summary, . . .

Buckley et al. (MCnet collaboration), Phys. Rep. 504 (2011) 145.
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