Multiparton interactions Part 1

M. Diehl

Deutsches Elektronen-Synchroton DESY

Correlations between Partons in Nucleons Summer School, Orsay, June 30 to July 4, 2014

Some literature an entirely incomplete list

- two "classics"
 - A. Del Fabbro and D. Treleani, A Double parton scattering background to Higgs boson production at the LHC, Phys. Rev. D **61** (2000) 077502 [hep-ph/9911358]
 - T. Sjöstrand and M. van Zijl, Multiple Parton-parton Interactions in an Impact Parameter Picture, Phys. Lett. B **188** (1987) 149
- recent overviews (proceedings):
 - P. Bartalini et al., Multi-Parton Interactions at the LHC, arXiv:1111.0469
 - S. Plätzer and M. D., Proceedings of MPI@LHC 2011, DESY-PROC-2012-03

phenomenological mini-review in:

- T. Sjöstrand and P. Z. Skands, Multiple interactions and the structure of beam remnants, JHEP **0403** (2004) 053 [hep-ph/0402078].
- theoretical approach followed in these lectures (short):
 M. D. and A. Schäfer, Theoretical considerations on multiparton interactions in QCD, Phys. Lett. B 698 (2011) 389 [arXiv:1102.3081]
 (not so short):
 - M. D., D. Ostermeier and A. Schäfer, Elements of a theory for multiparton interactions in QCD, JHEP 1203 (2012) 089 [arXiv:1111.0910].

Starting from basics: single and multiple hard scattering

Factorization formulae: single hard scattering

▶ standard description for hard processes in pp collisions example: Z production (followed by decay $Z \to \ell^+ \ell^-$)

$$\frac{d\sigma(pp\to Z+X)}{dx\,d\bar{x}} = f_q(x)\,f_{\bar{q}}(\bar{x})\,\hat{\sigma}(q\bar{q}\to Z)$$

x and \bar{x} measurable, related to Z rapidity, $\hat{\sigma}$ includes $\delta(sx\bar{x}-m_Z^2)$

- factorization formulae are for inclusive cross sections $pp \to Y + X$ where Y = produced in parton-level scattering, can specify in detail X = summed over, no details
- above formula is just tree level, usually not precise enough

Factorization formulae: single hard scattering

standard description for hard processes in pp collisions include radiation:

$$\begin{split} \frac{d\sigma(pp\to Z+X)}{dx\,d\bar{x}} &= f_q(x)\,f_{\bar{q}}(\bar{x})\,\hat{\sigma}(q\bar{q}\to Z) \\ &+ \int\limits_x^1 dz\,\int\limits_{\bar{x}}^1 d\bar{z}\,f_q(z)\,f_{\bar{q}}(\bar{z})\,\hat{\sigma}(q\bar{q}\to Z+g) + \text{further terms} \\ &\hat{\sigma}(q\bar{q}\to Z) \text{ now includes one-loop corrections} \end{split}$$

- ightharpoonup extra radiation part of unobserved system X
- but this is still oversimplified: "spectator partons" interact as well

Factorization formulae: single hard scattering

standard description for hard processes in pp collisions inclusive cross section:

$$\begin{split} \frac{d\sigma(pp\to Z+X)}{dx\,d\bar{x}} &= f_q(x)\,f_{\bar{q}}(\bar{x})\,\hat{\sigma}(q\bar{q}\to Z) \\ &+ \int\limits_x^1 dz\int\limits_{\bar{x}}^1 d\bar{z}\,f_q(z)\,f_{\bar{q}}(\bar{z})\,\hat{\sigma}(q\bar{q}\to Z+g) + \text{further terms} \end{split}$$

- "spectator" interactions produce additional particles which are also part of unobserved system X ("underlying event")
- need not calculate this thanks to unitarity as long as cross section/observable sufficiently inclusive

Multiparton interactions (MPI)

- generically take place in hadron-hadron collisions
- ▶ prodominantly low- p_T scattering \rightsquigarrow underlying event (UE)
- effects cancel or are suppressed in sufficiently inclusive quantities but do affect final state properties
- these lectures: work within hard-scattering factorization focus on double parton scattering (DPS) alternative approach: small-x factorization ("BFKL ladders")

 \rightarrow lectures by Raju Venugopalan

Relevance for LHC

example:
$$pp \to H + Z \to b\bar{b} + Z$$

Del Fabbro, Treleani 1999

multiple interactions contribute to signal and background

same for $pp \to H + W \to b\bar{b} + W$

study for Tevatron: Bandurin et al, 2010

Double parton scattering

ightharpoonup assumed factorization formula, example: production of Z+ 2 jets

$$\begin{split} \frac{d\sigma(pp\to Z+2\;\text{jets}+X)}{dx_1\,d\bar{x}_1\,dx_2\,d\bar{x}_2} &= \text{single hard scattering} \\ &+ \frac{1}{C}\int d^2\pmb{y}\,F_{qg}(x_1,x_2,\pmb{y})\,F_{\bar{q}g}(\bar{x}_1,\bar{x}_2,\pmb{y})\,\hat{\sigma}(q\bar{q}\to Z)\,\hat{\sigma}(gg\to 2\;\text{jets}) \end{split}$$

+ other subprocesses + higher orders $+ \dots$

$$F_{qg}=$$
 double parton distribution (DPD) $m{y}=$ transverse distance between two partons $C=$ combinatorial factor, here $C=1$

- X includes further radiation from each hard scattering at higher orders and particles from further "spectator" interactions
- ▶ also have contribution from triple hard scattering e.g. $q\bar{q} \rightarrow Z$, $qq \rightarrow \text{jet} + X$, $qq \rightarrow \text{jet} + X$

Inclusive and "exclusive" cross sections

- standard factorization formulae are for inclusive cross sections
- computation of "exclusive" cross sections in general more complicated

$$\begin{split} \text{example:} \quad & pp \to Z + \text{exactly } 2 \text{ jets} + X \quad \text{with no further jet above } p_{T\text{cut}} \\ \sigma &= \sigma_{\text{single hard}}(pp \to Z + 2 \text{ jets} + X) - \sigma_{\text{single hard}}(pp \to Z + 3 \text{ jets} + X) \\ &+ \sigma_{\text{double hard}}(pp \to Z + 2 \text{ jets} + X) - \sigma_{\text{double hard}}(pp \to Z + 3 \text{ jets} + X) \\ &- \sigma_{\text{triple hard}}(pp \to Z + 2 \text{ jets} + 2 \text{ jets} + X) - \dots \end{split}$$

where "jets" are required to have $p_T > p_{T \text{cut}}$

- if $p_{T\text{cut}} \ll$ other hard scales (e.g. m_Z) then
 - hardest scale for approximations is p_{Tcut} , not m_Z
 - ullet must resum Sudakov logarithms $\ln(p_{T\mathrm{cut}}/m_Z)$ to all orders

Cross sections for definite transverse momenta

- \blacktriangleright standard factorization formulae have \int over total transv. momentum produced in hard scattering
- example: Z production

• two possibilities to compute for measured q_T of Z both can be extended to double hard scattering needed for $d\sigma/dq_T$ and for $\sigma(q_T>q_{T{\rm cut}})$

Cross sections for definite transverse momenta

- \blacktriangleright standard factorization formulae have \int over total transv. momentum produced in hard scattering
- ▶ example: Z production

- collinear factorization: compute emission of recoiling parton(s)
 - need $q_T \gg \Lambda$ since q_T is now a hard scale
 - for $q_T \ll m_Z$ find large Sudakov logs in $q_T/m_Z \ \leadsto \$ must resum

Cross sections for definite transverse momenta

- \blacktriangleright standard factorization formulae have \int over total transv. momentum produced in hard scattering
- ▶ example: Z production

- for $q_T \ll m_Z$ have TMD factorization (only worked out for prod'n of color singlet particles: $Z, W, \gamma\gamma, H, \ldots$)
 - use TMD f(x, k) and $q\bar{q} \to Z$ without parton emission
 - for $q_T \gg \Lambda$ compute

$$f(x, \mathbf{k}) = \text{hard scattering } \otimes \text{ collinear dist'n}$$

resummation of Sudakov logs with Collins-Soper evolution equation

DPS: momentum and space-time structure

- large (plus or minus) momenta of partons $x_i p$, $\bar{x}_i \bar{p}$ fixed by final state exactly as for single hard scattering
- ▶ transverse parton momenta not the same in amplitude \mathcal{A} and in \mathcal{A}^* cross section $\propto \int d^2 \mathbf{r} \, F(x_i, \mathbf{k}_i, \mathbf{r}) \, F(\bar{x}_i, \bar{\mathbf{k}}_i, -\mathbf{r})$
- Fourier trf to impact parameter: $F(x_i, \mathbf{k}_i, \mathbf{r}) \to F(x_i, \mathbf{k}_i, \mathbf{y})$ cross section $\propto \int d^2 \mathbf{y} \, F(x_i, \mathbf{k}_i, \mathbf{y}) \, F(\bar{x}_i, \bar{\mathbf{k}}_i, \mathbf{y})$
- interpretation: y = transv. dist. between two scattering partons
 equal in both colliding protons

DPS cross section

q₁

get cross section formula

$$\frac{d\sigma}{dx_1 d\bar{x}_1 d^2 \boldsymbol{q}_1 dx_2 d\bar{x}_2 d^2 \boldsymbol{q}_2} = \frac{1}{C} \left[\prod_{i=1}^2 \hat{\sigma}_i (q_i^2 = x_i \bar{x}_i s) \right]
\times \left[\prod_{i=1}^2 \int d^2 \boldsymbol{k}_i d^2 \bar{\boldsymbol{k}}_i \delta^{(2)} (\boldsymbol{q}_i - \boldsymbol{k}_i - \bar{\boldsymbol{k}}_i) \right] \int d^2 \boldsymbol{y} F(x_i, \boldsymbol{k}_i, \boldsymbol{y}) F(\bar{x}_i, \bar{\boldsymbol{k}}_i, \boldsymbol{y})$$

 $\hat{\sigma}_i =$ parton-level cross section $F(x_i, m{k}_i, m{y}) = k_T$ dependent double parton distribution

- result follows from Feynman graphs and hard-scattering approximation no semi-classical approximation required
- lacksquare $\int d^2{m q}_1 \int d^2{m q}_2$ in cross sect. $o k_T$ integrated (= collinear) distributions

$$F(x_i, \boldsymbol{y}) = \int d^2 \boldsymbol{k}_1 \int d^2 \boldsymbol{k}_2 F(x_i, \boldsymbol{k}_i, \boldsymbol{y})$$

recover usual cross section formula

DPS cross section

\$\frac{q_1}{q_2}\$

get cross section formula

$$\frac{d\sigma}{dx_1 d\bar{x}_1 dx_2 d\bar{x}_2} = \frac{1}{C} \left[\prod_{i=1}^2 \hat{\sigma}_i (q_i^2 = x_i \bar{x}_i s) \right] \times \int d^2 \boldsymbol{y} \, F(x_i, \boldsymbol{y}) \, F(\bar{x}_i, \boldsymbol{y})$$

 $\hat{\sigma}_i = \text{ parton-level cross section}$ $F(x_i, \boldsymbol{y}) = k_T$ integrated double parton distribution

Double parton distributions

define as operator matrix element (like for TMDs)

$$F(x_i, \boldsymbol{k}_i, \boldsymbol{y}) = \underset{z_i \to (x_i, \boldsymbol{k}_i)}{\mathcal{FT}} \langle p | \bar{q} \left(-\frac{1}{2} z_2 \right) \Gamma_2 q \left(\frac{1}{2} z_2 \right) \bar{q} \left(y - \frac{1}{2} z_1 \right) \Gamma_1 q \left(y + \frac{1}{2} z_1 \right) | p \rangle$$

- essential for studying factorization, scale evolution, etc.
- possibility for lattice calculations
- in $F(x_i, y)$: bilinear op's $\bar{q} \Gamma_i q$ at different transv. positions
 - ⇒ not a twist-four operator but product of two twist-two operators

Double parton distributions

define as operator matrix element (like for TMDs)

$$F(x_i, \boldsymbol{k}_i, \boldsymbol{y}) = \underset{z_i \to (x_i, \boldsymbol{k}_i)}{\mathcal{FT}} \langle p | \overline{q} \left(-\frac{1}{2} z_2 \right) \Gamma_2 q \left(\frac{1}{2} z_2 \right) \overline{q} \left(y - \frac{1}{2} z_1 \right) \Gamma_1 q \left(y + \frac{1}{2} z_1 \right) | p \rangle$$

- essential for studying factorization, scale evolution, etc.
- possibility for lattice calculations
- in $F(x_i, y)$: bilinear op's $\bar{q} \Gamma_i q$ at different transv. positions
 - ⇒ not a twist-four operator but product of two twist-two operators
- ▶ interpretation of $F(x_i, k_i, y)$ as Wigner function:
 - $m{k}_1, m{k}_2 = ext{transv.}$ parton momenta averaged over $m{\mathcal{A}}$ and $m{\mathcal{A}}^*$
 - y= transv. distance between partons averaged over ${\mathcal A}$ and ${\mathcal A}^*$

can introduce full 2 dim. Wigner function $F(x_i, \boldsymbol{k}_i, \boldsymbol{b}_i)$ with

 $oldsymbol{b}_1, oldsymbol{b}_2 = \mathsf{transv}.$ parton positons averaged over $\mathcal A$ and $\mathcal A^*$

$$F(x_i, \boldsymbol{k}_i, \boldsymbol{y}) = \int d^2 \boldsymbol{b}_1 F(x_i, \boldsymbol{k}_i, \boldsymbol{b}_i) \big|_{\boldsymbol{y} = \boldsymbol{b}_1 - \boldsymbol{b}_2}$$

Double parton distributions

define as operator matrix element (like for TMDs)

$$F(x_i, \boldsymbol{k}_i, \boldsymbol{y}) = \underset{z_i \to (x_i, \boldsymbol{k}_i)}{\mathcal{F}} \langle p | \bar{q} \left(-\frac{1}{2} z_2 \right) \Gamma_2 q \left(\frac{1}{2} z_2 \right) \bar{q} \left(y - \frac{1}{2} z_1 \right) \Gamma_1 q \left(y + \frac{1}{2} z_1 \right) | p \rangle$$

- essential for studying factorization, scale evolution, etc.
- possibility for lattice calculations
- in $F(x_i, y)$: bilinear op's $\bar{q} \Gamma_i q$ at different transv. positions
 - ⇒ not a twist-four operator but product of two twist-two operators
- ▶ interpretation of $F(x_i, k_i, y)$ as Wigner function:
 - ${m k}_1, {m k}_2 =$ transv. parton momenta averaged over ${\mathcal A}$ and ${\mathcal A}^*$
 - y= transv. distance between partons averaged over $\mathcal A$ and $\mathcal A^*$

$$\frac{d\sigma}{d\dots} = \left[\prod_{i=1}^{2} \hat{\sigma}_{i} \int d^{2}\boldsymbol{k}_{i} d^{2}\bar{\boldsymbol{k}}_{i} \, \delta(\boldsymbol{q}_{i} - \boldsymbol{k}_{i} - \bar{\boldsymbol{k}}_{i}) \right] \int d^{2}\boldsymbol{y} \, F(\boldsymbol{x}_{i}, \boldsymbol{k}_{i}, \boldsymbol{y}) \, F(\bar{\boldsymbol{x}}_{i}, \bar{\boldsymbol{k}}_{i}, \boldsymbol{y})$$

apart from "average over ${\mathcal A}$ and ${\mathcal A}^*$ "

Aside: transverse momentum vs. position

- variables related by 2d Fourier transforms, e.g.
 - quark fields $\tilde{q}(\pmb{k},z^-,z^+)=\int d^2\pmb{z}\,e^{-i\pmb{z}\pmb{k}}\,q(\pmb{z},z^-,z^+)$
 - proton states $|p^+, \boldsymbol{b}\rangle = \int d^2\boldsymbol{p} \, e^{-i\boldsymbol{b}\boldsymbol{p}} \, |p^+, \boldsymbol{p}\rangle$
- in bilinear operators

$$\begin{split} \bar{q}(\boldsymbol{k})\bar{q}(\boldsymbol{k}') &= \int d^2\boldsymbol{z} \, d^2\boldsymbol{z}' \, e^{i(\boldsymbol{z}\boldsymbol{k}-\boldsymbol{z}'\boldsymbol{k}')} \, \bar{q}(\boldsymbol{z}) \, q(\boldsymbol{z}') \\ \boldsymbol{z}\boldsymbol{k} - \boldsymbol{z}'\boldsymbol{k}' &= \frac{1}{2}(\boldsymbol{z} + \boldsymbol{z}')(\boldsymbol{k} - \boldsymbol{k}') + \frac{1}{2}(\boldsymbol{z} - \boldsymbol{z}')(\boldsymbol{k} + \boldsymbol{k}') \end{split}$$

'average' transv. momentum ↔ position difference transv. momentum transfer ↔ 'average' position

- 'average' transv. mom. and position not Fourier conjugate
- density interpretation:
 - it $\int d^2(\mathbf{k} + \mathbf{k}') \dots$ then $\mathbf{z} = \mathbf{z'} = \text{position}$
 - if $\int d^2(z+z')\dots$ then k=k'= momentum