Spin structure functions and QCD fits at COMPASS

Vincent Andrieux on behalf of the COMPASS Collaboration

CEA-Saclay Irfu/SPhN

Summer school of the GDR PH-QCD 2014

GDR PH-QCD

- 2 Spin structure functions
- 3 QCD fits of g_1

< ∃⇒

크

Historically: From relativistic quarks in QM: $\Delta\Sigma \sim 0.6$ In 1988, EMC measured $\Delta\Sigma \sim 0.15 \rightarrow$ "Spin crisis"

- $\Delta\Sigma$ unexpectedly small $\rightarrow \Delta G$ surprisingly large ?
- $\Delta\Sigma \approx 0.58 + 3\Delta s \rightarrow \Delta s$ is negative and large

Covered in this talk:

- $\rightarrow~$ Measurements of spin structure functions
- \rightarrow Extraction of $\Delta\Sigma$ and ΔG via QCD fits

New era of spin physics

GDR PH-QCD

Spin structure functions

QCD fits of *g*₁ 0000 Conclusions

COMPASS Spectrometer

GDR PH-QCD

4/13

Spin structure functions

QCD fits of g

Conclusions

DIS and spin structure functions

 Q^2 : photon virtuality (hard scale)

x: fraction of nucleon mometum carried by the struck quark

DIS cross-section:

$$\frac{d^2\sigma}{dxdQ^2} = \underbrace{c_1 F_1(x,Q^2) + c_2 F_2(x,Q^2)}_{\text{spin independent}} + \underbrace{c_3 g_1(x,Q^2) + c_4 g_2(x,Q^2)}_{\text{spin dependent}}$$

Spin structure function

$$g_1^p(x, Q^2) \stackrel{=}{=} \frac{1}{2} \sum_q e_q^2 \Delta q(x)$$

 Δq : quark polarisation u, \bar{u} , d, \bar{d} , s, \bar{s}

크

★ E ► ★ E ►

• Longitudinal spin asymmetry:

$$A_{LL} = \frac{d\sigma^{\rightleftharpoons} - d\sigma^{\rightrightarrows}}{d\sigma^{\rightleftharpoons} + d\sigma^{\rightrightarrows}} \simeq DA_1$$

D: Transfert of polarisation from the beam to the photon

 $A_{LL} = \frac{1}{|P_B P_T| f} \left(\frac{N^{\neq} - N^{\Rightarrow}}{N^{\neq} + N^{\Rightarrow}} \right)$

• Photon nucleon asymmetry:

$$A_1 \simeq rac{g_1}{F_1}$$

F1: Unpolarised structure fonction

 P_B , P_T : Beam, target polarisations

f dilution factor

• Experimentaly:

COMPASS target with 3 cells

Regular reversals of the cell spin states

 \Rightarrow Reduction of acceptance differences

Vincent Andrieux (CEA-Saclay)

COMPASS legacy including latest 200 GeV (2011) data

Compared to the previous experiment SMC:

- Compatible within the same kinematic domain
- COMPASS extends the domain down in x for the proton
- Statistical precision improved by about a factor of 3

Spin structure functions

QCD fits of g

Conclusions

World data on spin structure functions g_1

COMPASS data extends high Q^2 and low x coverage

 $\begin{array}{c|c} \mbox{Introduction} & \mbox{Spin structure functions} & \mbox{QCD fits of } g_1 & \mbox{Conclusions} \\ \mbox{NLO QCD fit of } g_1^p, \ g_1^n \ \mbox{and } g_1^d \ \mbox{world} \ \mbox{data} \end{array}$

Assumptions:

- Functional forms at a Q_0^2 reference scale for: $\Delta q_S(x)$, $\Delta g(x)$ and $\Delta q_{NS}(x)$
- SU(3)_f to fix the non-singlet distribution first moments: $\int_{0}^{1} \Delta u - \Delta d \, dx = F + D$ $\int_{0}^{1} \Delta u + \Delta d - 2\Delta s \, dx = 3F - D$

with F and D the parameters describing the weak axial-vector/vector coupling constants

★ E ► ★ E ►

DGLAP equations:

Provide the evolution of the polarised PDFs to the Q^2 of the data points (680 data points with 140 from COMPASS)

Introduction
oSpin structure functions
ooooQCD fits of g1
ooooConclusionsPolarised parton distribution functions

Depending upon assumed fonctional forms, 3 categories of solutions: $\Delta G>0,\ \Delta G\sim 0 \text{ and } \Delta G<0$

- $0.26 < \Delta \Sigma < 0.34$ at $Q^2 = 3 \text{ (GeV/c)}^2 (\overline{\text{MS}})$
 - \rightarrow Largest uncertainty coming from the choice of functional forms
- ΔG not much constrained by DIS data alone

 \rightarrow Dedicated measurements needed (RHIC spin, COMPASS)

(a) < (a)

Spin structure function

QCD fits of g₁ 0000 Conclusions

Conclusion and Outlook

- Improved precision on g_1^p and g_1^d
 - a factor of ${\sim}3$ compared to the previous experiment SMC
- $\Delta\Sigma$ from NLO QCD fits ~ 0.3
 - uncertainties dominated by the choice of functional forms
- ΔG not well constrained by DIS data alone DSSV and NNPDFpol compatible with >0 and ~0 solutions
- Verification of the Bjorken sum rule at 4% better uncertainties compared to previous COMPASS publications

BACKUP

🧭 Vincent Andrieux (CEA-Saclay)

GDR PH-QCD

14/13

æ

<ロト <問ト < 国ト < 国ト

🕗 Vincent Andrieux (CEA-Saclay)

GDR PH-QCD

15/13

Introduction 00	Spin structure functions	QCD fits of g ₁ 0000	Conclusions

æ

イロト イヨト イヨト イヨト

Spin structure functions

QCD fits of g₁ 0000 Conclusions

$\Delta\Sigma$ from COMPASS NLO QCD fits

$$\Delta\Sigma \in [0.264, 0.356]$$
 at $Q^2 = 1 (GeV/c)^2$
 $\Delta\Sigma \in [0.256, 0.335]$ at $Q^2 = 3 (GeV/c)^2$
 $\Delta\Sigma \in [0.258, 0.299]$ at $Q^2 = 10 (GeV/c)^2$

イロト イヨト イヨト イヨト

크

 $\langle \Delta g/g
angle = 0.113 \pm 0.035 \pm 0.035$ (Prel.) for $x_g \in [0.04, 0.28]$

- The smallest stat.+syst. uncertainty among LO direct extractions
- In agreement with COMPASS NLO QCD fit and DSSV arχiv:1404:4293
- Favours $\Delta G{>}0$ or ~ 0
- Δg is small in the measured range

A B K A B K

Global fit results from NNPDFpol and DSSV++ also compatible