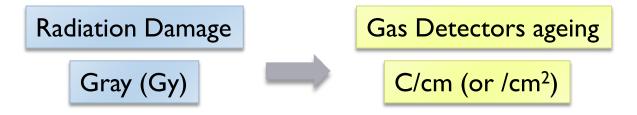


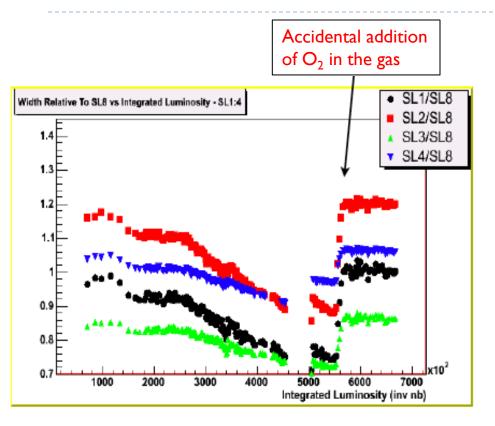
PH-DT Detector Technologies

Overview of Radiation Hardness of Gaseous Detectors

Instrumentation Days on Gaseous Detectors IPNO, Orsay, June 25-26, 2014

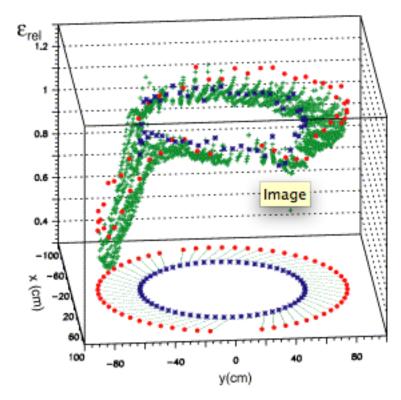

> Mar Capeans CERN

Outline


- Radiation Damage of Gas Detectors: Ageing Phenomena
- Rate of Ageing
- Factors Affecting the Ageing Rate
- Strategies to Build Radiation-Hard Gas Detectors
- Outliers
- Concluding remarks

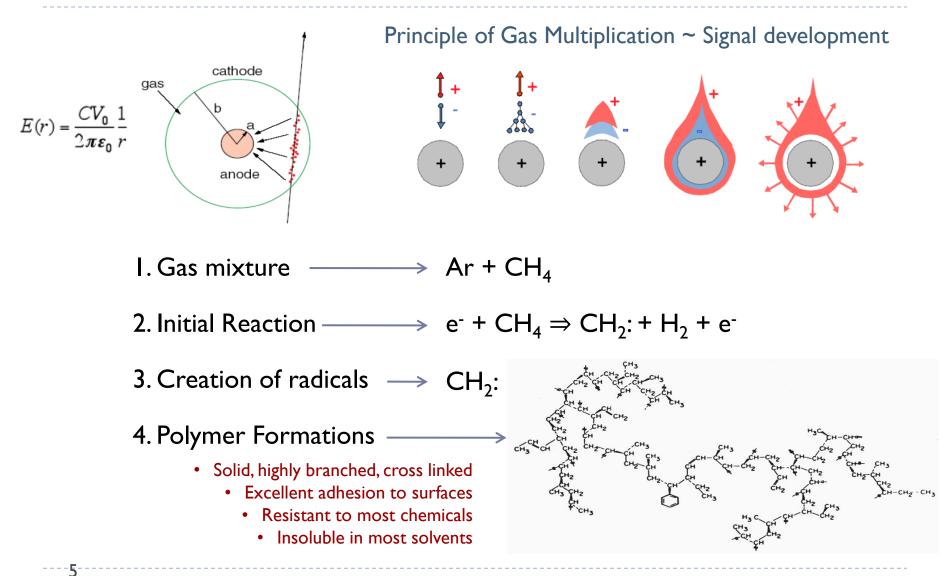
Radiation Damage of Gas Detectors

- Deterioration of performance under irradiation has been observed since development of Geiger and proportional counters (~100 years) and yet it remains one of the main limitations of Gas Detectors in high rate experiments.
- Deterioration in Performance: loss of gas gain, loss of efficiency, worsening of energy resolution, excessive currents, self-sustained discharges, sparks, loss of wires, changes of surface quality...
- In the Gas Detectors community, Radiation Damage is referred to as **ageing**

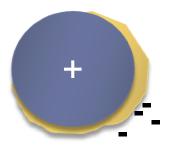


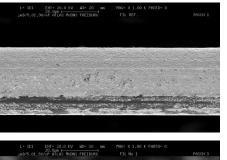
Ageing of Gas Detectors in Experiments

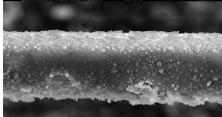
Ageing in the Central Outer Tracker of CDF Fermilab (D.Allspach et al.)


Drift chamber Ar-C₂H₆ [50-50] + 1.7% isopropanol

Ageing in the Central Jet Chamber of HI DESY (C.Niebuhr)


Radial Wire Chamber $Ar-C_2H_6$ [50-50] + water

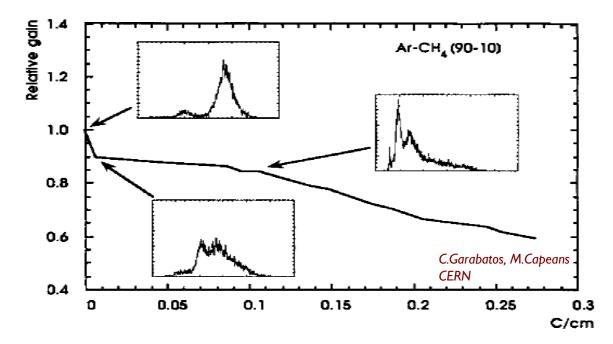

Gaseous Detectors - Principle

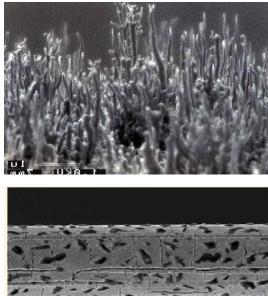


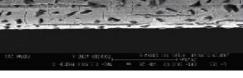
Ageing Phenomena

Anode ageing: deposits on wire

Effect of Deposits


- If deposit is **conductive**, there is a direct effect: the electric field weakens (~thicker wire)
- If deposit is insulating, there is indirect effect due to dipole charging up: the field close to the anode will be screened as new avalanches accumulate negative charges on the layer


Consequences on the detector


- Decrease of gain
- Lack of gain uniformity along wires
- Loss of energy resolution

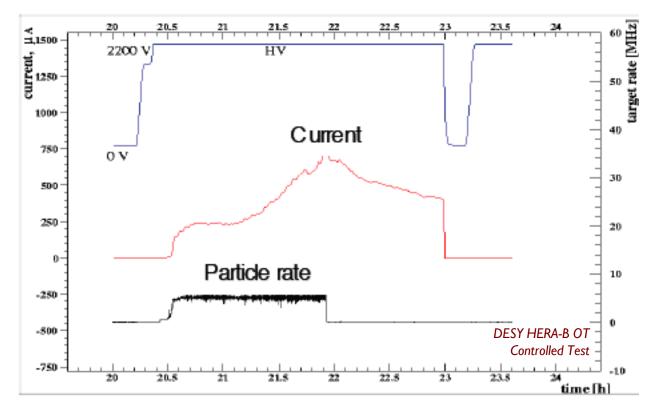
Anode Ageing

SWPC Controlled Ageing Test in Laboratory

Mar CAPEANS

Ageing Phenomena

Cathode ageing: layers on surfaces



- Charges do not reach the cathode and layer becomes positively charged. This produces a large dipole electric field which can exceed the threshold for field emission and e⁻ are ejected from the cathode producing new avalanches
- Malter effect (self-sustained currents, electrical breakdown)

Consequences on the detector

- Noise, dark currents
- Discharges

Cathode Ageing

Malter effect

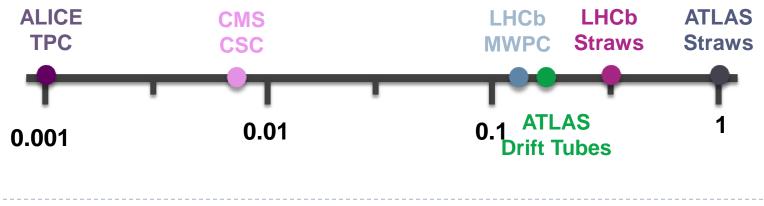
Orsay 25-26/7 2014

9

Orsay 25-26/7 2014

Rate of Ageing

• Ageing depends on the total collected charge Q:


 $Q[C] = Gain \times Rate \times Time \times Primaries$

Gain

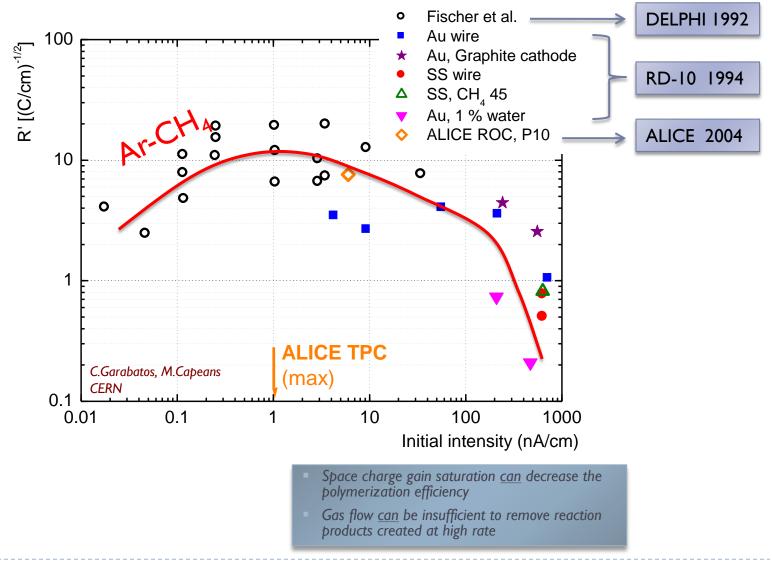
Rate of ageing: R(%) ~ slope of Gain vs. Q

 Ageing Unit depends on detector geometry: wires [C/cm], strips or continuous electrodes [C/cm²]

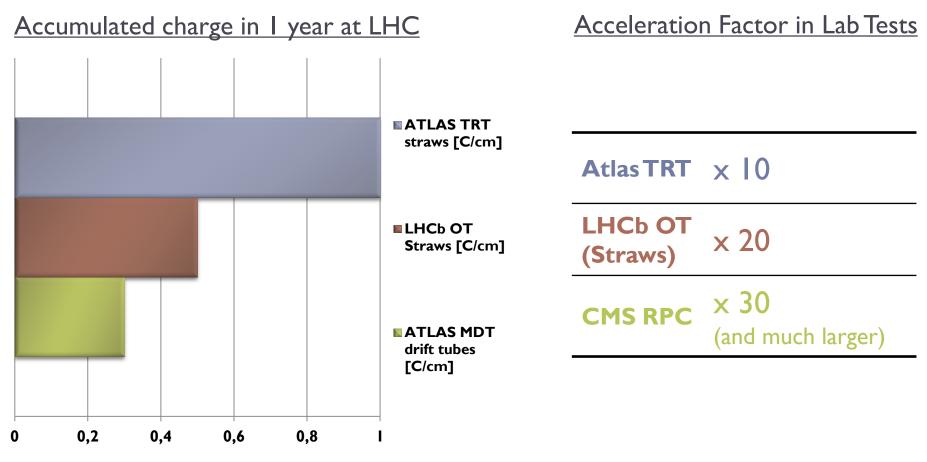
Accumulated charge (C/cm) per LHC year (diff. safety factors):

Accelerated Ageing Tests

- Needed in order to asses lifetime of a detector under irradiation in a limited amount of time
- How much can we **accelerate** the tests in the lab with respect to the real conditions?
- ...ageing depends on:


Q [C] = Gain x Primaries x Rate x Time

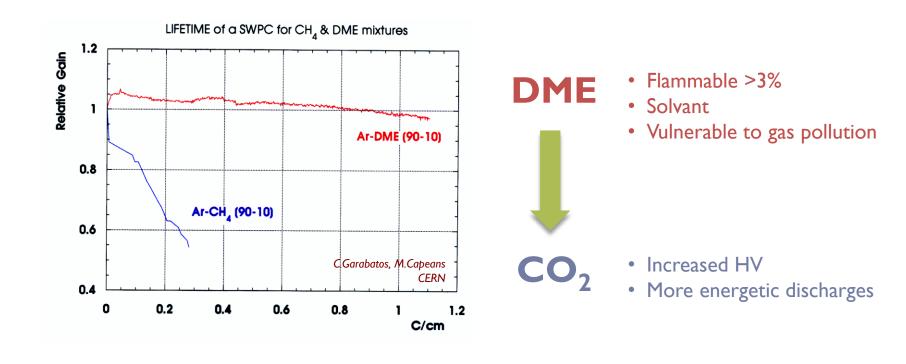
- HV
- Gas mixture
- Pressure
- Gas exchange rate
- Electrical field strength
- Detector geometry
- ...


- Dose rate
- Ionization density
- Particle type

•••

Rate of Ageing

Acceleration Factors in Ageing Tests

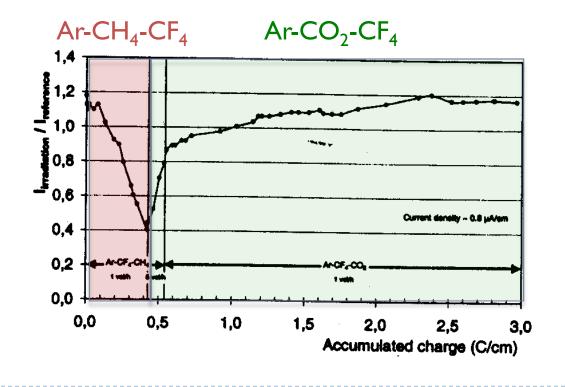


Expected accumulated charge (C/cm) in I LHC year

Influence of the Gas Mixture on Ageing

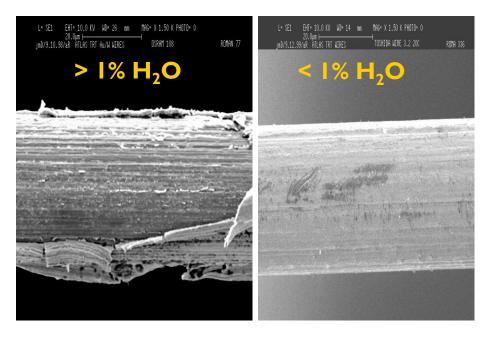
Hydrocarbons: polymerization (so, ageing) guaranteed.

- Polymer formation directly in the avalanche process.
- Effect is more pronounced under spark/discharges

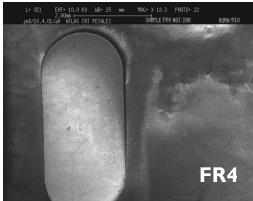

 CF_4

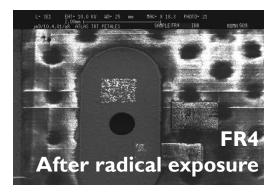
Deposition In hydrogenated environments – CH₄ Deposits on wires

Etching


If oxygenated species are added – CO₂ Wire cleaning

Can also be aggressive to some detector assembly materials, can accumulate




CF₄ Etching

ATLASTRT Straws, WIRE Au/W, Ar-CO₂-CF₄

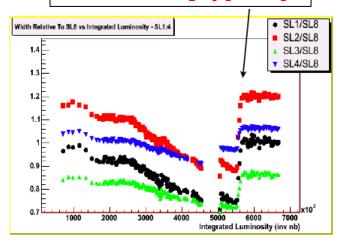
- Active species react with some metals (AI, Tin) and some insulator materials (Fiberglass)
- F species react with Si, which is distributed all around (polymerization trigger)

Additives, Emergencies

Small concentrations of O₂ or H₂O or C₂H₆O can restore aged chambers or prevent effectively the ageing process to significant accumulated charges

\triangleright O_2

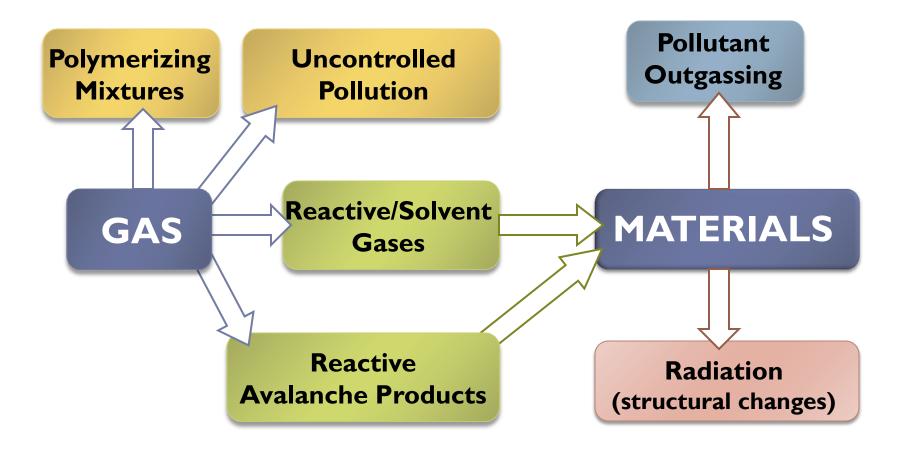
- Etching of HC-deposits
- Reacts with HC, and end products are stable and volatile

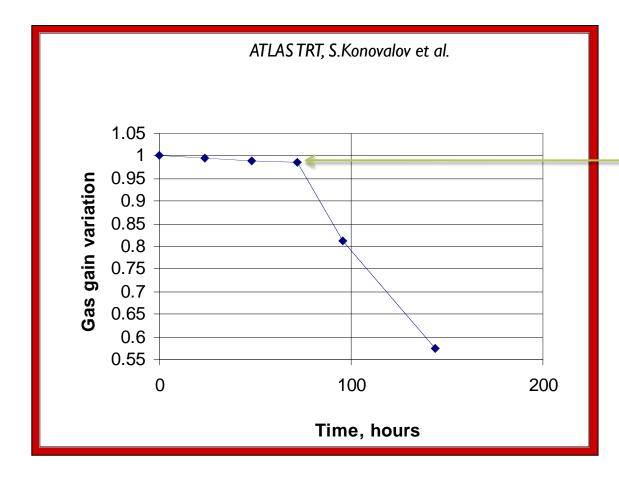

H₂O

- Reduces the polymerization rate in plasma discharges
- Makes all surfaces slightly more conductive, thus preventing the accumulation of ions on thin layers responsible for the gain degradation and Malter effect
- But, modification of the electron drift parameters or change in rate of discharges are not always acceptable

Alcohols

- Reduction of polymerization rate
- Large cross section for absorption of UV photons


Addition of O_2 in the gas mixture Ar-C₂H₆ [50-50]

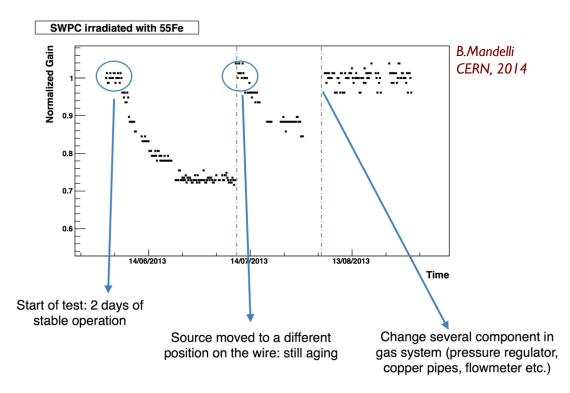

Gas Mixtures in LHC detectors

Experiment	Sub- Detector	Gas Mixture
ALICE	TPC, TRD, PMD	
ATLAS	CSC, MDT, TRT	
CMS	DT	Noble Gas (Ar, Ne, Xe) + CO₂
LHCb	OT straws	Additive: 02
TOTEM	GEM, CSC	Adom
LHCb	MWPC, GEM	
CMS	CSC	Ar - CF₄ - CO₂
	RPC	$C_2H_2F_4 - iC_4H_{10} - SF_6$
	TGC	CO ₂ – n-pentane
	RICH	CF_4 or C_4F_{10}

Other Contributions to the Ageing Process

Pollution of the Gas Mixture

Inserted a new flowmeter (Voetglin V100) in the gas system, and gas gets polluted by minute amounts of Siliconebased lubricant



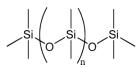
Mar CAPEANS

Orsay 25-26/7 2014

Pollution of Gas Mixture

- Targeting Super Clean System for Lab Tests

Detector Assembly Materials, Full SS SWPC

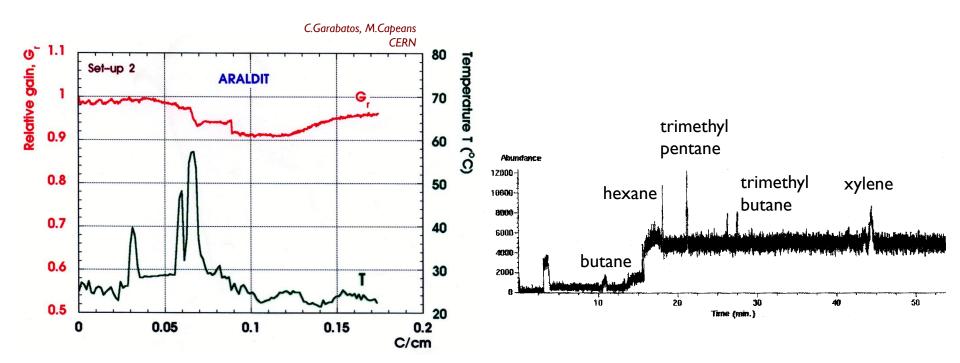

- AY103+HY991: BAD
- Soldering paste without flux: BAD for a short period

Gas system components

- Flowmeter Gilmont: OK, but flow/pressure not stable
- Flowmeter Voglin: OK if degreased
- ROTAREX (O₂-degreased) pressure regulator and valves: OK
- Std Pressure Regulator: depends on needed purity level...
- Bronkhorst MFC: OK if full metal + Kalrez-6375 joints
- SS Pipes & connectors: OK if cleaned (Ultrasonic bath)
- VITON joint: BAD
- O₂ (chemical cell) and H₂O (capacitive) sensors; after detector
- Pressure sensor "Sensortechnics": OK

http://detector-gas-systems.web.cern.ch/detector-gas-systems/Equipment/componentValidation.htm

Silicone Pollution

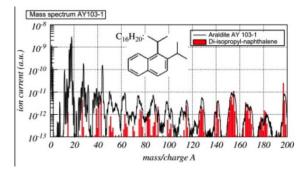


- Silicone has been systematically found coating aged chambers
- Silicone has a high natural affinity for most materials
- Silicone has the tendency to migrate
- Silicone is relatively inert chemically and unaffected by most solvents, therefore among the most difficult surface contaminants to remove
- Resistance to oxygen, ozone, and ultraviolet (UV) light
- Silicone is etched away by F-species

Possible Sources

- Silicone rubber sealants
- Silicone potting and encapsulation compounds
- Silicone adhesives
- Silicone Vacuum Grease (O-rings, mould-release agents)
- Silicone oil (bubblers, diffusion pumps)
- Polluted gas cylinders
- Detergent residues (sodium metasilicate)
- Glass and related products (glass fibres used for reinforcing resins)


Effect of Materials



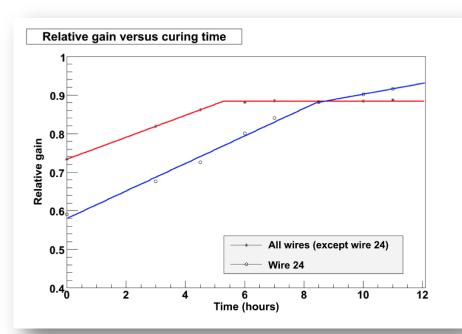
Ageing test of a SWPC counter Epoxy **Araldit 106** inserted in gas stream GC/MS analysis of the gas mixture Outgassed components of Araldit 106

LHCb Straws Tubes

- LHCb Outer Tracker
 - Straw tubes Ø 4.9mm, 25μm W/Au wire, Ar-CO₂, 30 m²
- Detected ageing (gain loss) at moderate intensities (and after chamber mass production was completed)
- Identified Culprit: plasticizer di-isopropyl-naphthalene in Araldit AY 103-1

LHCb OT Ar-CO₂ 70-30, 20 L/h, 1600 V

- Ageing upstream the source
- Depends on radiation intensity

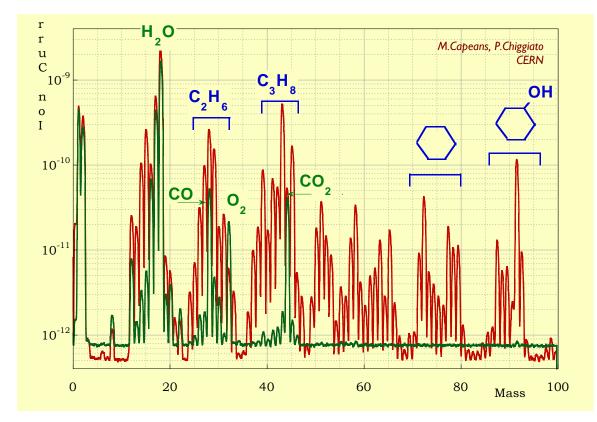

LHCb OT Ageing Remedies

Reduce risk of aging

- Adding 1.5% O₂ to Ar-CO₂ (increasing ozone concentration)
- Lowering gas flow (increasing ozone creation area)

Recover damaged wires

- Enter in discharge mode and generate dark currents (10 μA/wire)
- Increase HV (from 1600 to 1900V)... or increase Ar concentration, and optimize procedure using ionizing radiation 'to focus' the cleaning effect


Curing of damaged wires by applying 1850 V E.L.Visser, Preventing, monitoring and curing the ageing in the LHCb Outer Tracker, CERN Thesis-2010-094

CVCM, Gas Chromatography, Ageing Test 'à la CERN'

SAMPLE	NASA data (CVCM)	CERN data (GC/MS)	CERN Ageing test (Detector response)
Stycast 1266	BAD	ОК	OK
Araldite 103	BAD	ОК	ОК
Araldite 106	BAD	BAD	BAD
Eccobond 285	OK	ОК	ОК
Nuvovern LW PUR	ОК	ОК	ОК
ULTEM	ОК	ОК	ОК
VECTRA 150	ОК	ОК	ОК
Kalrez	ОК	ОК	ОК
Epotek 905	BAD	BAD	
Dow Corning RTV	BAD	BAD	

- Consult NASA database to pre-select materials: thousands of entries for adhesives, rubbers and elastomers, potting compounds, etc...
- http://outgassing.nasa.gov

Materials

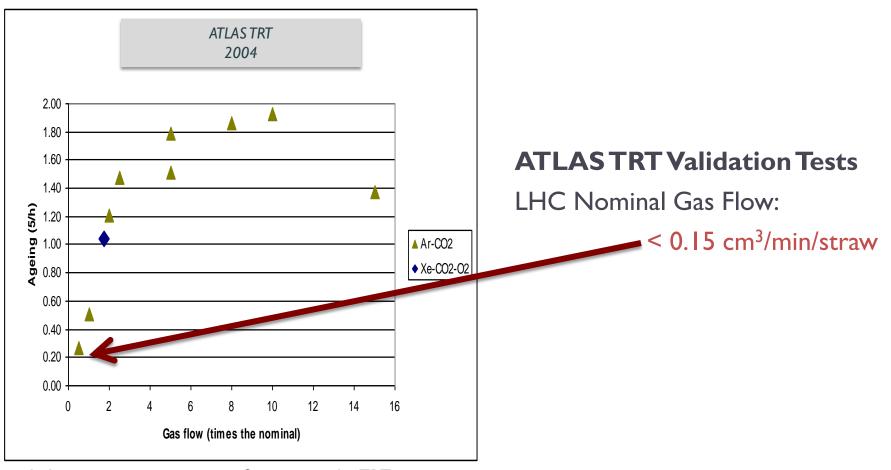
Analysis of outgassed components of a 2-component Polyurethane

- I. Green: sample treated correctly
- 2. Red: one component expired

Materials

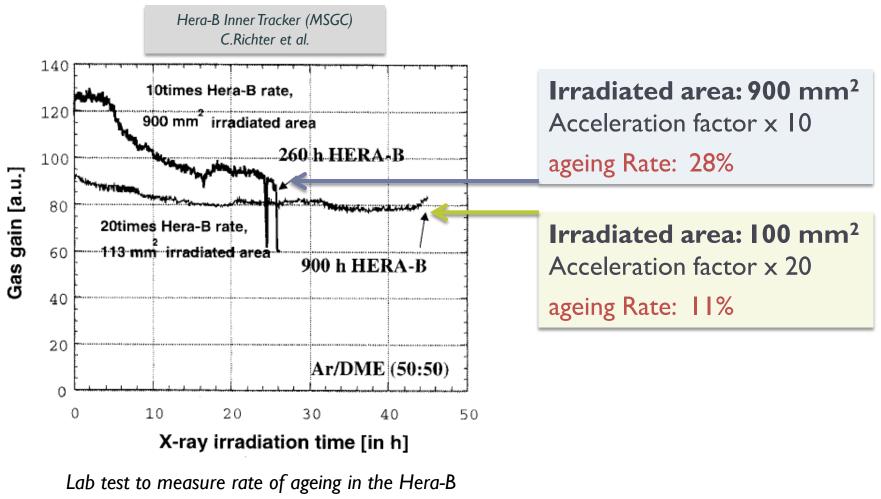
- Minor changes, big impact
- Difficult to control all parameters in large systems, at all stages
- Need validation of materials (detector assembly materials and gas systems' components), with an efficient strategy
- http://detector-gas-systems.web.cern.ch/detector-gas-systems/Equipment/outgassing.htm

Source	Name	Туре	Outgas	Effect in G.D.	Result
CERN/GDD	STESALIT 4411W	Fiberglass	YES	NO	OK
CERN/GDD	VECTRA 150	Liquid Crystal Polymer	YES	NO	OK
CERN/GDD	PEEK Crystalline	Polyeteherether ketone	NO	NO	OK
ATLAS/TRT	ULTEM	Polyetherimide	NO	-	OK
ATLAS/TRT	C-Fiber	C-fiber	NO	-	OK
ATLAS/TRT	POLYCARBONATE	C-fiber	NO	-	OK
HERA-B/ITR	FIBROLUX G10	Fiberglass	YES	-	BAD
HERA-B/ITR	HGW 2372 EP-GF	Fiberglass	YES	YES	BAD
CERN/GDD	RYTON	Polysulphur phenylene	YES	YES	BAD
CERN/GDD	PEEK Amorphous	Polyetherether ketone	YES	-	BAD


Source	Product	Curing T (°C)	Outgas	Effect in G.D.	Result
CERN/GDD	EPOTECNY E505 SIT	50	YES	NO	OK
HERA-B/ITR	ЕРОТЕК Н72	65	YES*	NO	OK*
CERN/GDD	AMICON 125	85	NO	-	OK
CERN/GDD	POLYIMIDE DUPONT 2545	65	NO	-	ОК
ATLAS/TRT	RUTAPOX L20	60	NO	-	OK
CERN/GDD	ARALDITE AW 106	70	YES		BAD
CERN/GDD	LOCTITE 330		YES	YES	BAD
CERN/GDD	EPOTECNY 503	65	YES (Silicone)		BAD
CERN/GDD	NORLAND UVS 91	50	YES	-	BAD

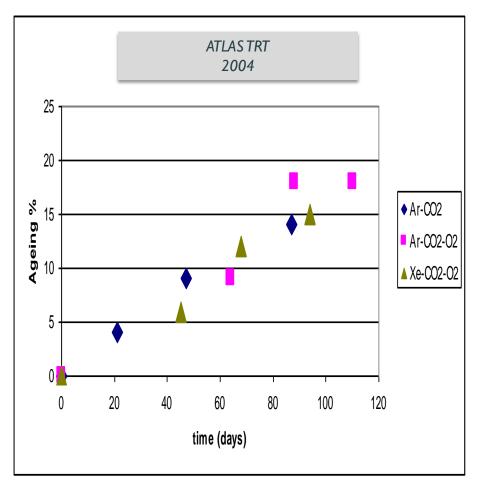
Rigid Materials

Epoxies (C.Garabatos, M.Capeans)


Mar CAPEANS

Ageing Rate for different Gas Flows

Lab test to measure rate of ageing in the TRT straws when the mixture is contaminated intentionally


Ageing Rate for different Beam Size

MSGCs with X-rays beams of different areas

Orsay 25-26/7 2014

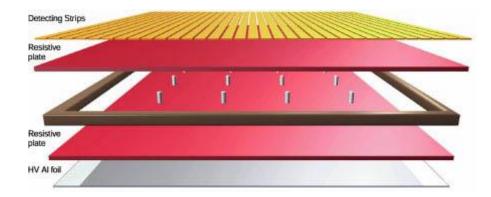
Ageing Rate for different Gas Mixtures

Lab test to measure rate of ageing in ATLAS TRT straws when the gas mixture is <u>contaminated intentionally</u>

ATLAS TRT Validation Tests

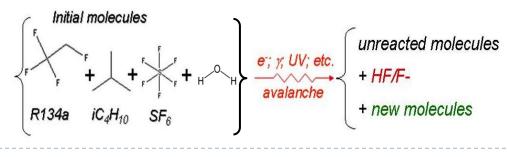
LHC Gas Mixture: Xe-CO₂-O₂

Lab tests: Ar-CO₂

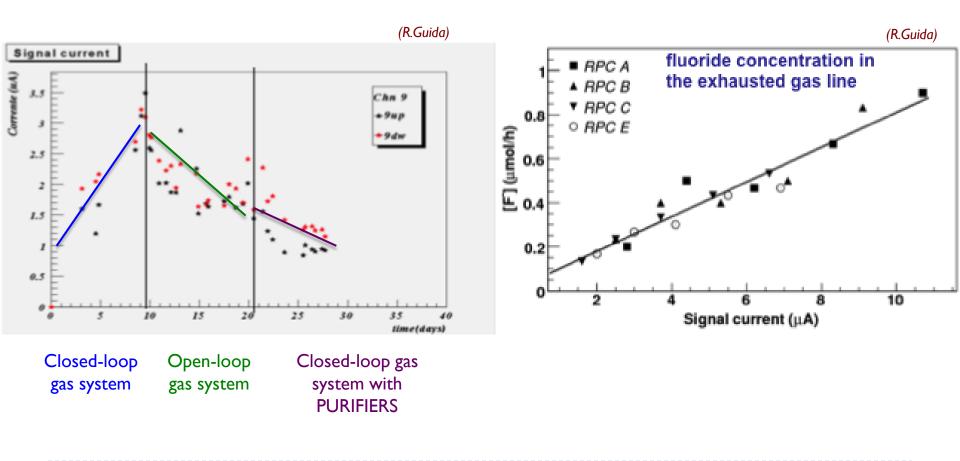

Cheaper mixture, simpler set-ups

Mar CAPEANS

Non Classical ageing, Ex: RPC systems

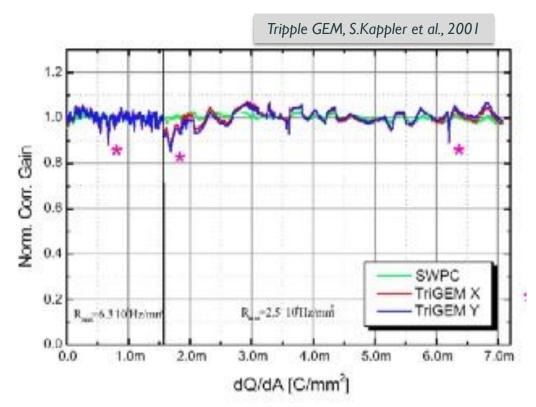

Resistive Plate Chambers (RPCs) at LHC:

- Large areas at low production cost
- High time resolution (~1 ns)
- Suitable spatial resolution (~1 cm)


• Gas mixture:

- C₂H₂F₄ *i*C₄H₁₀ SF₆ [95-5-0.3 %] +0.1% water vapour
- The large detector volume (~16 m³ in ATLAS and CMS) and the use of a relatively expensive gas mixture make a closed-loop circulation system unavoidable.

Non Classical ageing, Ex: RPC systems

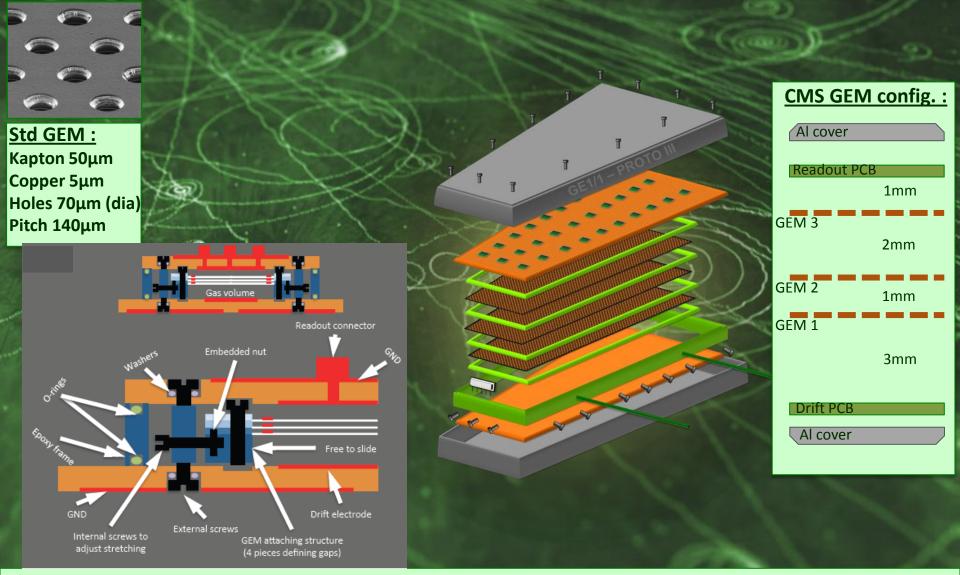

RPCs under irradiation at GIF, effect of impurities on chamber currents


Ageing tests

Parameter	Proven Influence on the result of test		
Gas Mixture	Yes	There are polymerizing mixtures (CH_x) , non polymerizing mixtures (CO_2) , and cleaning mixtures $(CF_4, O_2, H_2O)!$ Polluted Mixtures 'pollute' all results	
Gas Flow	Yes	 Effect depends on: if pollutant comes with gas flow if pollutant is inside the detector (assembly material) if gas etches away the pollutant 	
Ionization Current Density	Yes	Less ageing is usually measured at very large current densities	
Irradiation Area	Yes	Small areas do not show the whole picture.	
Irradiation Time (acceleration factor)	Yes	A reasonable compromise can be found	
Irradiation type	Yes	Specially for Malter currents	
Chamber geometry	Yes	Can generic studies be applicable to all gas detectors types?	

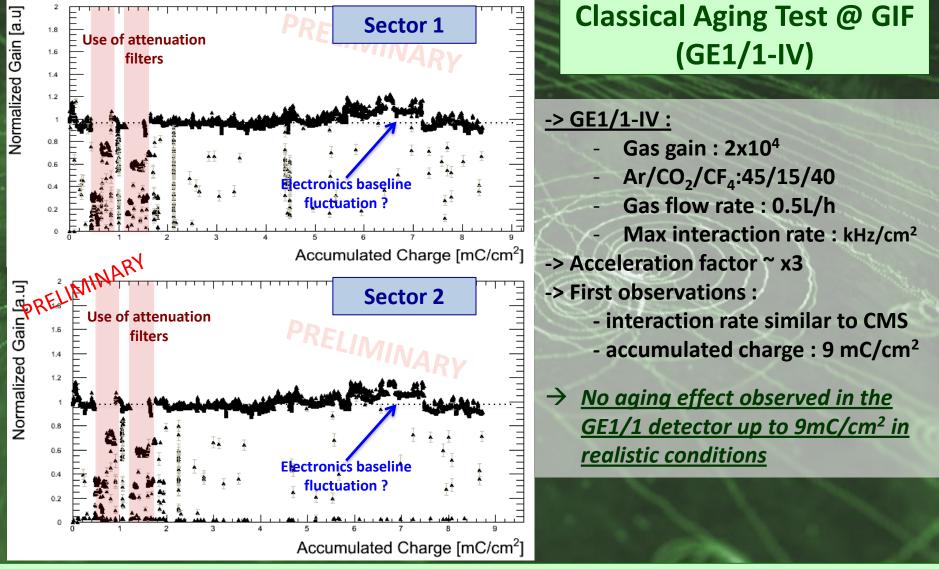
Radiation Hard Detectors, Ex. GEM

Planar wireless devices where multiplication is obtained over extended regions in relatively moderate field appear to age at much slower pace

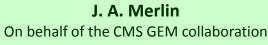


- 'Good' gas mixture: Ar-CO₂ 70-30
- Absence of thin anodes
- Gas amplification inside holes, rather far from signal electrodes and walls
- Field shape and strength possibly not affected by polymerization deposits, if any

Aging study of large triple-GEM detectors for the high rate environment in CMS

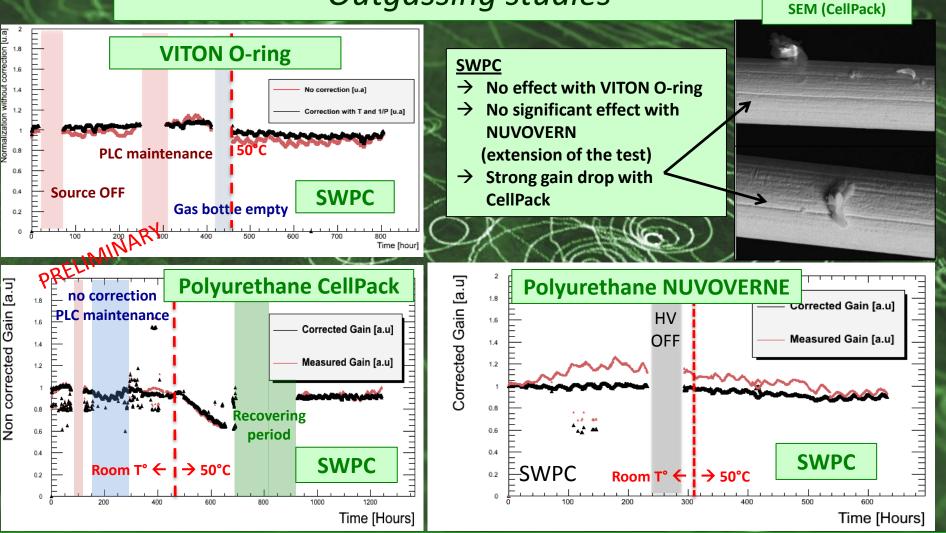


RD51 miniweek 16/06/2014



Aging study of large triple-GEM detectors for the high rate environment in CMS

RD51 miniweek 16/06/2014


Aging study of large triple-GEM detectors for the high rate environment in CMS

RDS

CMS GEM Long term stability

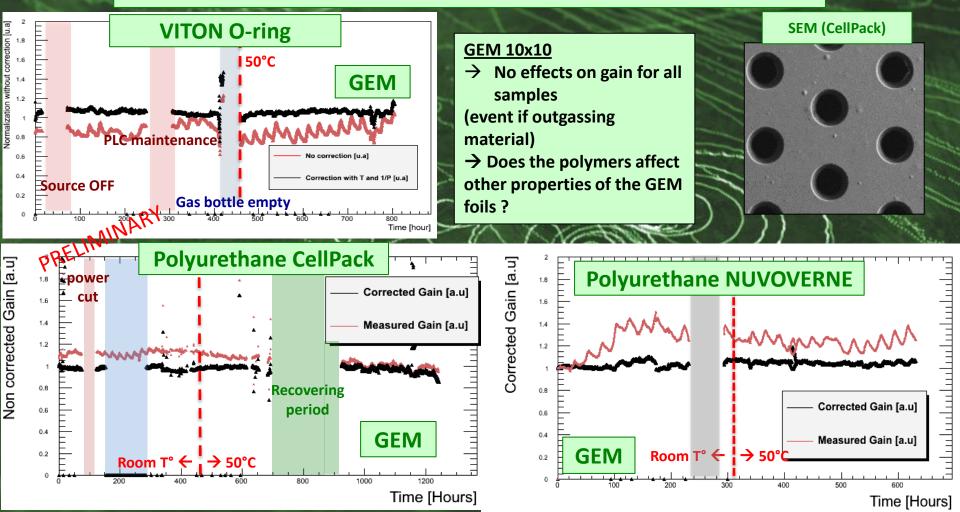
Outgassing studies

RD51 miniweek 16/06/2014

iridisciplinaire Hubert CURIEN

J. A. Merlin On behalf of the CMS GEM collaboration

HC UNIVERSITÉ DE STRASBOURG


lubert CURIEN

Aging study of large triple-GEM detectors for the high rate environment in CMS

CMS GEM Long term stability

Outgassing studies

RD51 miniweek 16/06/2014

J. A. Merlin On behalf of the CMS GEM collaboration

Concluding remarks

- Gaseous detectors are still the first choice whenever large area particle detection and medium space resolution is required
- New gas detector developments (the MPGD family) extend the capability of gas detectors to applications where very high rate capabilities are required
- Long-term operation in the high-intensity experiments of the LHC- and HL-LHC-era not only demands extraordinary radiation hardness of construction materials and gas mixtures but also very specific and appropriate assembly procedures and quality checks during detector construction and testing
- Intensive research in this field has demonstrated that when properly designed, constructed and operated, gaseous detectors are robust and stable
 - Use good gases: noble gas with CO_2 and maybe a small concentration of CF_4 or small amounts of additives like water, O_2 ...
 - Avoid contaminating the gas:
 - > Use outgassing-free detector assembly materials
 - Control all components in contact with the gas (gas system, piping, etc).
 - > Do careful quality assurance during detector production
 - Review existing knowledge!
 - **Test well:** select carefully the operating conditions in the lab (gas mix, gas flow, gain, rate, beam size, etc.)
 - Monitor anomalous behaviour of detectors. If ageing is detected soon enough, detector can probably be recovered (using additives in the gas, varying the gas mixture, reversing HV for some time, flushing with large amounts of clean gas...)

Compilations

• Ageing:

Wire chamber ageing, J.A. Kadyk (LBL, Berkeley) Nucl. Instrum. Meth. A300:436-479 (1991)

 Proceedings of the International Workshop on ageing Phenomena in Gaseous Detectors, M.Holhman et al. (DESY)

Nucl. Instrum. Meth. 515, Issues 1-2, (2003)

- Fundamental understanding of aging processes: review of the workshop results, F.Sauli (CERN)
- Ageing and materials: lessons for detectors and gas systems, M.Capeans (CERN)
- Materials Properties for Gas Detectors and Gas systems:
 - http://cern.ch/detector-gas-systems/Equipment/componentValidation.htm

BACK UP SLIDES

Radiation Hardness of Particle Detectors

For silicon, bulk radiation damage results from non-ionizing energy loss (NIEL) displacements, so total neutral and charged particle fluence is normalized to flux of particles of fixed type and energy needed to produce the same amount of displacement damage, conventionally I MeV neutrons (I MeV n/cm²/year)

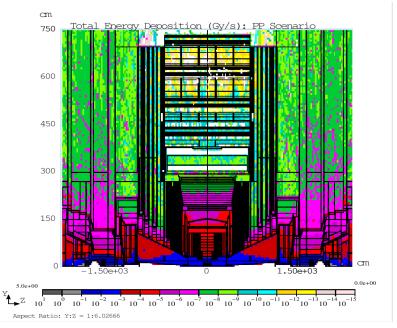
- Add Safety factors (x2, x5...)
- Radiation Hardness Tests
 - Expose detectors and components to very large particle rates to attain large doses in a very accelerated manner
 - Typical test lasts between days and weeks (time needed to achieve target dose)
 - Detector is powered and monitored; performance is tested before/after irradiation

For gas detectors, we consider amount of charge deposited on electrodes due to avalanches (C/cm per unit time) as the relevant magnitude

- Add Safety factors (x2, x5...)
- Radiation Hardness Tests
 - Expose detectors and components to very large particle rates to attain large doses in a accelerated manner
 - Good tests are done <u>as slow as possible</u> (months) and irradiating areas as large as possible
 - Detector performance is monitored <u>during irradiation</u>

Radiation levels and Safety Factors

Estimates:

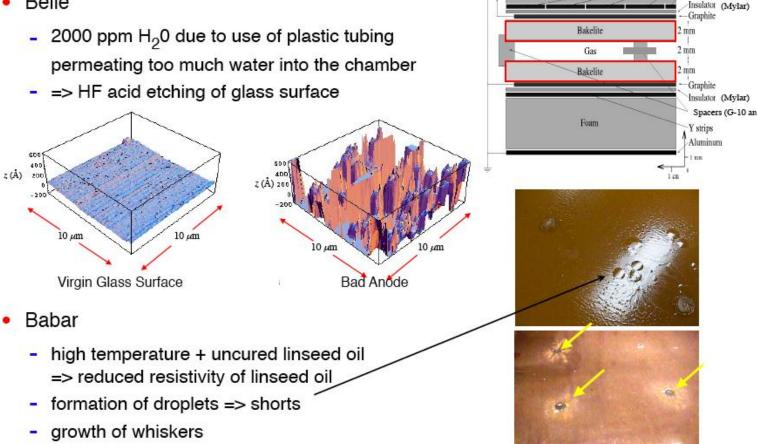

- Simulation of number and momentum spectra of particles arriving to detectors at LHC reference luminosities (and machine-induced backgrounds).
- Get radiation dose maps, particle fluxes and energy spectra (photons, neutrons, charged particles).

With magnets on:

- They affect the low momentum particles which may loop and hit some of the detectors many times.
- With detector materials (location and quantity) as close as possible to reality.

Simulated radiation dose (Gy/s) map in CMS

P.Bhat, A.Singh, N.Mokhov



Note that radiation simulation may be wrong by some factors and long-term effects may not be fully predictable. SAFETY FACTORS ARE ADDED TO ALL ESTIMATES

Non Classical ageing Processes

Non classical aging problems have been observed in

Belle

Aluminum

X strips

Foam