

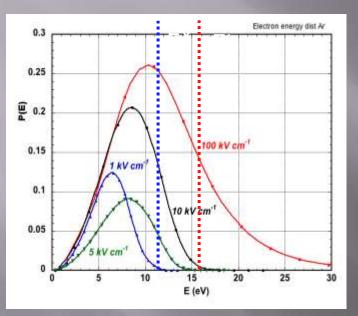
Low pressure gas detectors

Short review on low and very low pressure gas detection

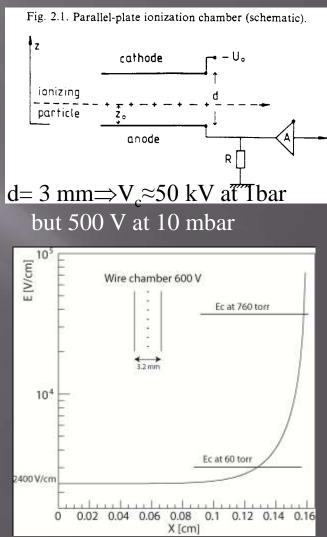
Examples of detection systems at GANIL

Julien Pancin

Instrumentation days on gaseous detector June 25/26th

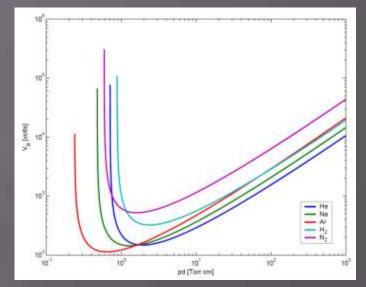


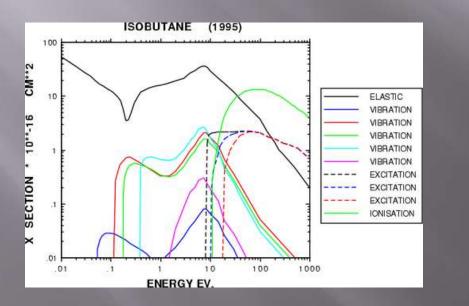
Use of low energy beam

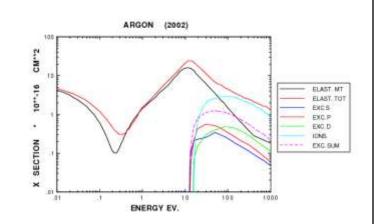

- Few materials in beam (few angular or energy straggling for medium/heavy nuclei) and operation in vaccum ⇒ low pressure gas detector
- Use of pure iC₄H₁₀ (or other quenching gas) for its low ionisation energy (100 % efficiency needed) and its high quenching power (very low pressure of several mbar)
- Mean free path of electrons much higher : high electron drift speed, early avalanche and good timing resolution
- Important gain (E/P...) even in low field region : natural spread of the avalanche, good spatial resolution with low granularity, low threshold applications
- Low drift gap and fast ion collection for high rate capabilities

Signal at low pressure (...vs NTP) A Signal

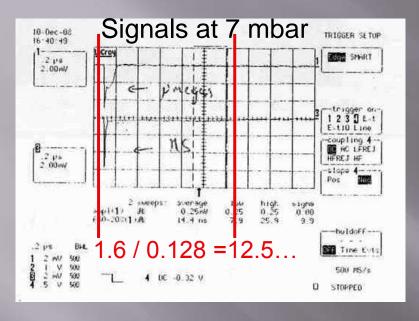
- No differences in the ionization process (apart for delta electrons...)
- Amplification process easier at low pressure: Minimum field E_c for avalanche multiplication ≈ 40 V/cm/torr

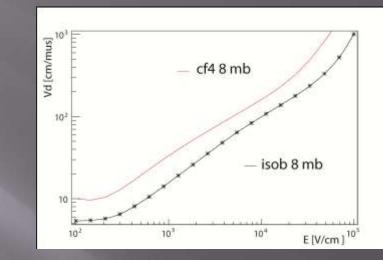



Increase E: wire chamber (α 1/r)
Decrease gaps: MPGD
(micromegas, GEMs, MSGC)
Decrease Pressure



Signal at low pressure (...vs NTP) A spin-

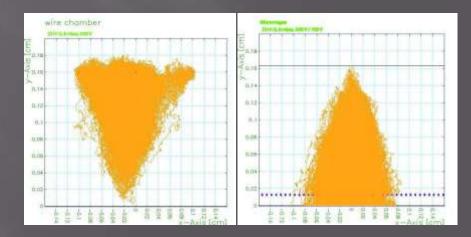

- Gas mixture at NTP but pure at low pressure
- Polyatomic gases (several vibration and rotation modes: non radiative mode)
 - Absorbe the radiated photons
 - Limit the breakdown (at low pressure!!!)
 - Low ionization energy with higher XS
 - Typical quenchers: i-C₄H₁₀, CF₄...CO₂, CH₄



Electons and ions drift speed

High electron drift speed, fast rise time (~2 ns)

- Mobility of iC_4H_{10} ion in itself: w=0.61 cm²V⁻¹s⁻¹


 $v = wEP_0/P \Rightarrow v \approx 200^*wE$ at 5 mbar, which gives $v \approx 0.2$ cm/µs at 2 kV/cm

- WC with same counting rate capabilities as MPGD at NTP

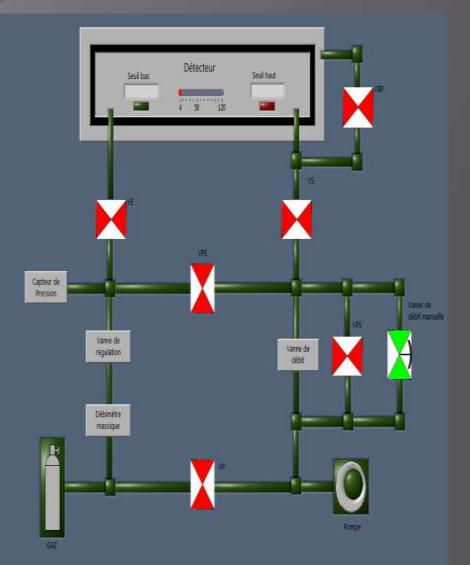
good trackers for nuclear physics

- Improve the space charge problem in TPCs for instance

 \Rightarrow high couting rate capabilities

Detection systems used at low pressure A spinz-

- □ Gas system
- Tracking (X,Y,t) with Wire Chambers or Secondary Electron Detector
- VAMOS spectrometer
- Active targets like ACTAR or MAYA


Gas Systems: mixer and pressure regulation

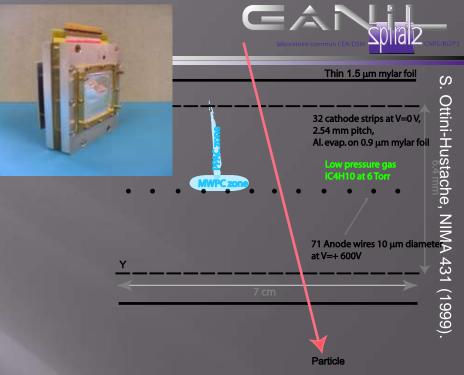
2Menocess

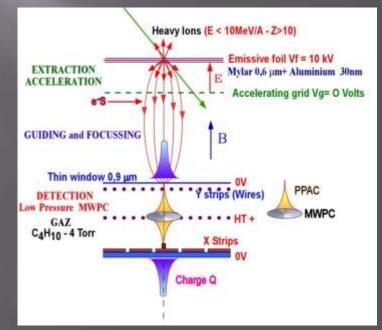
m

CENTRALE DE REGULATION DE GAZ

sse

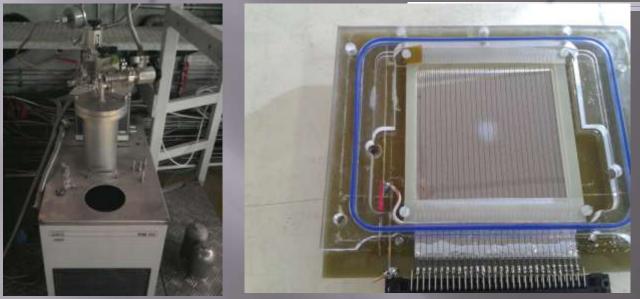
No re-circulation...no filtering.,

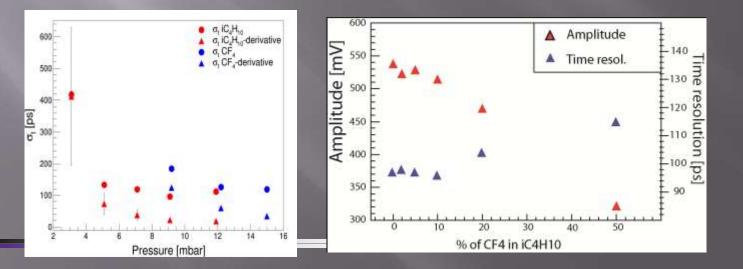

Beam Tracking Detectors (E>10 A.MeV)


CATs for E>10 A.MeV

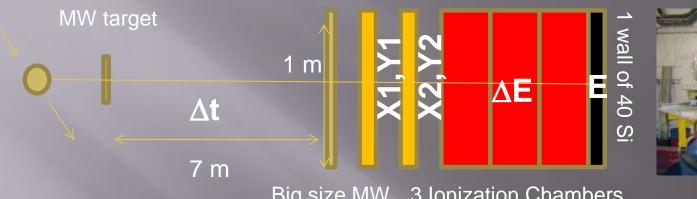
- Constant field zone: PPAC, position signal on the strips +High gradient field zone: MWPC, time signal on the wires
- \Box $\sigma_t < 200 \text{ ps}, \sigma_s < 0.5 \text{ mm}$
- Counting rate 10⁵ pps/cm²
- Material in beam 550 μg/cm²

SED for E<10 A.MeV


- For S3 or NFS/Falstaff
- $\Box \quad \sigma_t < 200 \text{ ps}, \ \sigma_s < 0.6 \text{ mm}$
- Counting rate $>10^5$ pps/cm²
- Material in beam $<150 \ \mu g/cm^2$


Gas tests performed recently

- Gas circulation at 500 cm³/min at low pressure
- Aluminized stripped get damaged at 4×10^{10} nuclei (total charge conserved)


- No improvement using isopropanol

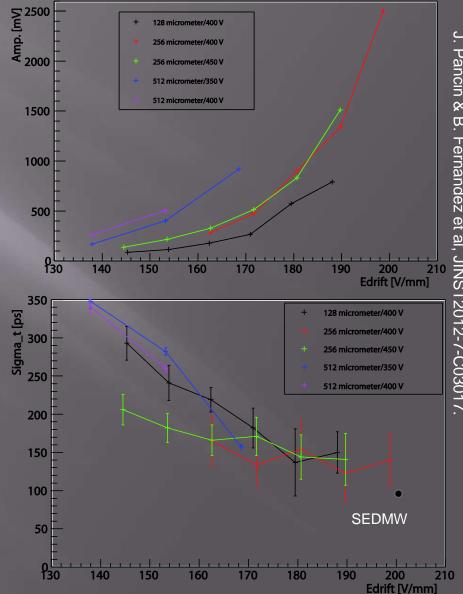
iC4H10 still the best candidate

etectors used on VAMOSII Spectrometer

2 drift chambers

Big size MW 3 Ionization Chambers

- A, Z, Q and v to measure for each nuclei entering spectrometer
- energy E=1/2 Av², with Si detectors
- Energy loss $\Delta E \approx AZ^2/E$ for Z, with Si detectors and ICs
- Magnetic rigidity $B\rho = Av/Q$ with the spectrometer and the DCs
- -Velocity v by TOF with the MW

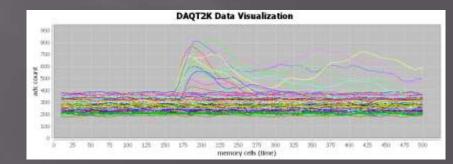

Dedicated to energy below 10 A.MeV : use of low pressure to minimize material in beam for all detectors: isobutane for MW and DC and CF4 for CHIOs Big volume of about 1001, renewal every 1 h Plan to use C3F8 for CHIOs to increase stopping power No re-circulation or filtering: to be studied

> M. Rejmund et al., Performance of the improved larger acceptance spectrometer: VAMOS++, Nucl. Inst. And Meth. A, 646 (2011), p 184-191.

Micromegas results < 10 mbar

3 micromegas prototypes tested so far: 128, 256 and 512 µm amplification gap

- Not really used at low pressure Counting rate: same advantages than at NP ??
- S/N ratio
- Time and spatial resolutions
 - Good S/N ratio (efficiency with alphas around 40 %), much better than simple PPAC or WC, working in preamp mode
 - Poor energy resolution
 - Clear influence from ampl. gaps
 - No so sensitive to ampl. Voltage for low gaps: α saturation at VLP
 - Sparking limit due to bulk process and LP: no real gain at high counting rate...
 - Good time resolution (2 mm gap)
 - PPAC behavior
 - Spatial resolution to measure



Active targets: MAYA and ACTAR CAN

Beam/Energy [MeV/u]	Date	Reaction	Gas	Mixture [%]	Pressure [mbar]	—	⁹ Li	25 mm	Csl (5x5 cm Si (5×5 cm ²
⁸ He @ 3.9	2003	⁸ He(p,p')	C_4H_{10}	100	1000		³ H Moveab		
⁸ He @ 3.5	2003	⁸ He(p,d) ⁷ He	$\mathrm{C_4H_{10}}$	100	525		G /		Si Strij
25.24 A a 50.	$A_{\mathbf{R}}$	²⁵ F(d, ³ He) ²⁴ O	D_2	100	2200		Source		Detecto
⁵⁶ Ni @ 50.0	2005	⁵⁶ N'i(d,d')	D_2	100	1050	T T			
⁸ He @ 15.4	2005	³ He(¹ -C, ⁻³ N) ⁷ H	C4H10	100	30	20	1cm		
¹¹ Li @ 3 5	2096	¹¹ Li(p,d) ¹⁰ Li	$C_{4}H_{10}$	100	150	20 cm			8.5 mm 10 mm
		¹¹ Li(p,t) ⁹ Li	$C_{A}H_{10}$	100	664				
⁶ He @ 3.5	2097	"He(p,n)'L.	C.L.	ILC	107	Field			Frisch Grid
⁶⁸ Ni @ 50.0	2010	⁶⁸ Ni(d,d')	D ₂	10)	^{10#0} Li bear	GA	lane ₅ 1		Sentrai
		⁶⁸ Ni(α,α')	$He + CF_4$	98/2	500	PPAG	NO NO		
56Ni @ 10.0	21/1	⁵⁶ Ni(a,a')	He + CF ₄	98/2	1200	Pad P	lane 2	4	
⁸ He @ 15.4	2011	8He(19F, 20No)7H	He + CF	10/90	175				Électro
¹² Be @ 3.0	2012	¹² Be(p,p')	C_4H_{10}	100	100				

 $|mm^2)$

- Final detector for end 2016 (Financed with an ERC grant ,G. Grinyer)

Light emission in He+CF₄ at 300 mbar

Conclusion

Big flow at low pressure: no gas pollution
 We have to think to re-circulation and gas exhaust storage
 Still come studies to do on detector aging

Still some studies to do on detector aging