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EQUILIBRIUM

STATISTICAL MECHANICS
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Lars Onsager (1903-1976)

‘As in other kinds of book-keeping, the trickiest questions that arise in
the application of thermodynamics deal with the proper identification and
classification of the entries; the arithmetics is straightforward’ (Onsager,
1967).

K. Mallick Nonequilibrium Statistical Physics and the ASEP



THERMODYNAMICS is the science of ENERGY CONVERSIONS:

• IDENTIFY correctly the various forms of energy involved in a
process and WRITE a balance (First Principle).

• Different type of energies are NOT necessarily EQUIVALENT.
Converting energy from one form to another involves a compensation
fee called the ENTROPY (Second Principle, Clausius).

Classical thermodynamics deals only with equilibrium states that do not
change with time: time plays no role as a thermodynamic variable.
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FIRST PRINCIPE

∆U = W + Q

THE ENERGY OF THE UNIVERSE IS CONSTANT.
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Which Sphere is hotter?
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IRREVERSIBILITY

Whenever dissipation and heat exchanges are involved, time
reversibility seems to be lost
SOME EVENTS ARE ALLOWED BY NATURE BUT NOT THE
OTHERS!

A criterion for separating allowed processes from impossible one is
required.
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IMPOSSIBLE PROCESSES

No process is possible whose sole result is the transfer of heat from a
cooler body to a hotter body (Clausius).

No process is possible whose sole result is the absorption of heat from a
reservoir and the conversion of this heat into work (Kelvin-Planck).
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SECOND PRINCIPLE

A NEW physical concept (Clausius): ENTROPY.

S2 − S1 ≥
∫
1→2

∂Q
T

Clausius Inequality (1851)

THE ENTROPY OF THE UNIVERSE INCREASES.
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The Mistress of the World and Her Shadow

• A system wants to minimize its energy.

• A system wants to maximize its entropy.

This competition between energy and entropy is at the heart of most of
everyday physical phenomena (such as phase transitions: ice → water).

The two principles of thermodynamics can be embodied simultaneously
by the FREE ENERGY F :

F = U − TS

The decrease of free energy represents the maximal work that one can
extract from a system.
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Free energy: A physical example

Consider a gas enclosed in a chamber with a moving piston. We suppose
that the gas evolves from state A to B and that it can exchange heat
only with it environment at fixed temperature T .

A
V    

B
V    

T T

Because of irreversibility, the Work, Wuseful , that one can extract from
this system is at most equal to to the decrease of free energy:

Wuseful ≤Finitial − Ffinal = −∆F
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MOLECULAR THEORY OF HEAT

J. C. Maxwell L. Boltzmann
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The canonical Law

The statistical mechanics of a system at thermal equilibrium is encoded
in the Boltzmann-Gibbs canonical law:

Peq(C) =
e−E(C)/kT

Z

the Partition Function Z being related to the Thermodynamic Free
Energy F:

F = −kTLog Z

This provides us with a well-defined prescription to analyze systems at
equilibrium:
(i) Observables are mean values w.r.t. the canonical measure.
(ii) Statistical Mechanics predicts fluctuations (typically Gaussian) that
are out of reach of Classical Thermodynamics.
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Thermal Equilibrium: a dynamical state

Equilibrium is a dynamical concept. At the molecular scale things
constantly change and a system keeps on evolving through various
microscopic configurations:
Thermodynamic observables are nothing but average values of
fluctuating, probabilistic, microscopic quantities.

Robert Brown (1773-1858)
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Physics of Brownian Motion

The Brownian Particle is restlessly shaken by water molecules. Its
dynamics resembles that of a drunken-walker.

Suppose that the piece of pollen has a speed v . Then it experiences a
friction force −γv with γ = 6πηa, η being the viscosity of water (Stokes).

<X > = 2 D t
2

0

X(t)

The Brownian Particle diffuses around its initial position according to a
Gaussian Law: 〈X 2(t)〉 = 2Dt
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The Einstein Formula

D = RT
6πηaN

R: Perfect Gas Constant
T: Temperature

η : viscosity of water
a: diameter of the pollen
N : Avogadro Number
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‘I weighted the Hydrogen Atom’

η ∼ 10−3 a ∼ 10−7 R ∼ 8.3
D ' 1µm2/s

Mass of the Hydrogen Atom:

1.6 10−24g

Jean Perrin (1870-1942)

K. Mallick Nonequilibrium Statistical Physics and the ASEP



Fluctuation-Dissipation Relation

Suppose that the Brownian Particle is subject to a small force fext.
Balancing with the viscous force −(6πηa)v , we obtain the limiting speed

v∞ = σfext with σ =
1

6πηa

The response coefficient σ is called a susceptibility.

The Einstein Relation can be rewritten as;

σ =
D

kT

Susceptibility (Linear Response) ≡ Fluctuations at Equilibrium

(Kubo Formula)
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Onsager’s Reciprocity Relations (1931)

∆Τ

∆Τ

∆Τ
1

2

3

Ji = −
∑3

k=1 Lik
∂T
∂xk

(Fourier Law)

The Conductivity Tensor L remains symmetric even though the crystal
does not display any special symmetry

Lik = Lki

Crucial for Thermoelectric Effects.
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Linear Response Theory

The fact that the dynamics converges towards thermodynamic
equilibrium and time-reversal invariance (detailed-balance) are the
key-properties behind Einstein and Onsager’s Relations.

Thermodynamic equilibrium is characterized by the fact that the average
values of all the fluxes exchanged between the system and its
environment (matter, charge, energy, spin...) identically vanish.

Brownian Fluctuations show that Equilibrium is a dynamical
concept.
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Microscopic Dynamics: a Probabilistic Approach

A convenient manner to model the dynamics of a complex system:

• Enumerate the Micro-states {C1, C2 . . .}
• Transition Rates from C to C′ between t and t + dt do not depend

on the previous history of the system (short time correlations are
neglected: Markovian hypothesis).

C → C′ with probability M(C′, C)dt

Evolution of Pt(C), probability of being in the micro-state C at time t:

d
dt Pt(C)=

∑
C′ 6=CM(C, C′)Pt(C′)−

{∑
C′ 6=CM(C′, C)

}
Pt(C)

MASTER EQUATION

The Master Equation is a balance equation in a network of configurations.
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Connecting to Thermodynamics

Impose that the stationary state is given by the Boltzmann-Gibbs

canonical law: Peq(C) = e−E(C)/kT

Z . This condition implies that

∑
C′ 6=CM(C, C′)e−E(C′)/kT = e−E(C)/kT

{∑
C′ 6=CM(C′, C)

}
This is a set of global constraints on the rates: Global Balance.

C

C’

M(C,C’)
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Time-reversal Invariance and Detailed Balance

The master equation can be written in the following manner:

d

dt
Pt(C) =

∑
C′
{M(C, C′) Pt(C′)−M(C′, C) Pt(C)} =

∑
C′

Jt(C, C′)

At equilibrium, the microscopic dynamics of the system is time-reversible.
This symmetry property implies that all local currents vanish (Onsager)

M(C, C′)Peq(C′) = M(C′, C)Peq(C)

DETAILED BALANCE

Detailed balance is a strong property that goes beyond the laws of
classical thermodynamics:

All local currents Jt(C, C′) between pairs of configurations vanish
at thermodynamic equilibrium.
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Physical Interpretation of Detailed Balance

We are now going to show that Detailed Balance is equivalent to
Time-Reversal Invariance.

The main idea is to construct a measure on time-trajectories of the
system.

• Probability of remaining in C during a time interval τ :

lim
dt→0

(1 + M(C, C)dt)
τ
dt = eM(C,C)τ

where M(C, C) = −
∑
C′ 6=CM(C′, C) represents the exit rate from C.

• Probability of going from C to C during dt: M(C′, C)dt
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Weight of a Trajectory

C
n

C
2

C
0

C
1

t    
1 2

t    
n

t    

TRAJECTORY  C(t)  

0 T

Probability Pr{C(t)} of observing a trajectory C(t):

Pr{C(t)} = eM(Cn,Cn)(T−tn) M(Cn, Cn−1)dtn eM(Cn−1,Cn−1)(tn−tn−1) . . .

M(C2, C1)dt2 e
M(C1,C1)(t2−t1) M(C1, C0)dt1 e

M(C0,C0)t1 Peq(C0)
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Weight of the reversed Trajectory

C
n

C
1

0
C

C
2 −T 1

t    

t    −T
2

T−t    
n

TIME−REVERSED TRAJECTORY  C(T−t)  

T0

Pr{Ĉ(t)} = eM(C0,C0)t1 M(C0, C1)dt1 eM(C1,C1)(t2−t1) . . .

eM(Cn−1,Cn−1)(tn−tn−1) M(Cn−1, Cn)dtn eM(Cn,Cn)(T−tn) Peq(Cn)
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Detailed Balance and Time Reversal

Ratio of the forward-backward Probabilities:

Pr{C(t)}
Pr{Ĉ(t)}

=
M(Cn, Cn−1)M(Cn−1, Cn−2) . . .M(C1, C0) Peq(C0)

M(C0, C1) M(C1, C2) . . . M(Cn−1, Cn) Peq(Cn)

Use recursively the detailed balance condition:

M(C1, C0)Peq(C0) = Peq(C1)M(C0, C1)

Pr{C(t)}
Pr{Ĉ(t)}

= 1

Detailed balance implies that the dynamics is time reversible.
The converse property is true.

A system is in equilibrium if and only if its dynamics
satisfies detailed balance.
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OUT OF EQUILIBRIUM

In Nature, many systems are far from thermodynamic equilibrium and
keep on exchanging matter, energy, information with their surroundings.
There is no general conceptual framework to study such systems.
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Systems far from equilibrium

Consider a Stationary Driven System in contact with reservoirs at
different potentials: no microscopic theory is yet available.

R1

J

R2

• What are the relevant macroscopic parameters?

• Which functions describe the state of a system?

• Do Universal Laws exist? Can one define Universality Classes?

• Can one postulate a general form for the microscopic measure?

• What do the fluctuations look like (‘non-gaussianity’)?

In the steady state, a non-vanishing macroscopic current J flows.

What can we say about the properties of this current from the
point of view of Statistical Physics?
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Rare Events and Large Deviations

Let ε1, . . . , εN be N independent binary variables, εk = ±1, with
probability p (resp. q = 1− p). Their sum is denoted by SN =

∑N
1 εk .

• The Law of Large Numbers implies that SN/N → p − q a.s.

• The Central Limit Theorem implies that [SN − N(p − q)]/
√

N
converges towards a Gaussian Law.

One can show that for −1 < r < 1, in the large N limit,

Proba

(
SN

N
= r

)
∼ e−N Φ(r)

where the positive function Φ(r) vanishes for r = (p − q).

The function Φ(r) is a Large Deviation Function: it encodes the
probability of rare events (use Stirling’s Formula)

Φ(r) =
1 + r

2
ln

(
1 + r

2p

)
+

1− r

2
ln

(
1− r

2q

)
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Local density fluctuations in a gas at thermal
equilibrium

V, T

N

v
n

Mean Density ρ0 = N
V

In a volume v s. t. 1� v � V
〈 nv 〉 = ρ0

The local density varies around ρ0 . Typical fluctuations scale as
√

v/V .

The probability of observing large fluctuations is given by

Proba
(n

v
= ρ
)
∼ e−v Φ(ρ) with Φ(ρ0) = 0
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The Large Deviation Function for density fluctuations is given by

Φ(ρ) = β

(
f (ρ,T )− f (ρ0,T )− (ρ− ρ0)

∂f

∂ρ0

)

We can ask the more general question of the large deviation of a density
profile: cover the large box with K = V /v small boxes and calculate the
probability of having a density ρ1 in the first box, ρ2 in the second box ...

Proba (ρ1, ρ2, . . . ρK ) ' e−V F(ρ1,ρ2,...ρK )

In the limit V →∞,, we obtain

F(ρ1, ρ2, . . . ρK ) =
β

K

K∑
k=1

(f (ρi ,T )− f (ρ0,T ))

where ρ0 is the average density.
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The Free Energy as a L. D. F.

If we let the number K of boxes go to infinity, then the question we are
asking is the probability of observing a given density profile ρ(x) in the
big volume V . The large deviation function F becomes a functional of
the density profile:

F [ρ(x)] = β

∫
dx (f (ρ(x),T )− f (ρ0,T ))

f = − log Z (ρ,T ) being, as above, the free energy per unit volume.

The Free Energy of Thermodynamics can be viewed as a Large Deviation
Function

Conversely, large deviation functions may play the role of potentials in
non-equilibrium statistical mechanics. Indeed, they can be defined for
very general processes, even far from equilibrium.
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Large Deviations of the Total Current

R1

J

R2

Let Yt be the total charge transported through the system (total current)
between time 0 and time t.

In the stationary state: a non-vanishing mean-current Yt

t → J

The fluctuations of Yt obey a Large Deviation Principle:

P

(
Yt

t
= j

)
∼e−tΦ(j)

Φ(j) being the large deviation function of the total current.

Note that Φ(j) is positive, vanishes at j = J and is convex (in general).
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Large Deviations of a Non-Equilibrium profile

R1 R2

What is the probability of observing an atypical density profile in the
steady state? What does the functional F({ρ(x)}) look like for such a
non-equilibrium system? Recall that in the equilibrium case, this
functional is the free energy.

More generally, the probability to observe an atypical current j(x , t) and
the corresponding density profile ρ(x , t) during 0 ≤ s ≤ L2 T (L being
the size of the system) is given by

Pr{j(x , t), ρ(x , t)} ∼ e−L I(j,ρ)

Can one calculate this large deviation functional for systems out of
equilibrium?
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A Symmetry of the Large Deviation Function

Large deviation functions obey remarkable identities that remain valid far
from equilibrium: The Fluctuation Theorem of Gallavotti and Cohen.

Large deviation functions obey a symmetry that remains valid far from
equilibrium:

Φ(r)− Φ(−r) = Ar

The coefficient A is a constant, e.g. A = ln q/p in the example of the
walker above.

This Fluctuation Theorem of Gallavotti and Cohen is deep and general: it
reflects covariance properties under time-reversal.

In the vicinity of equilibrium the Fluctuation Theorem yields the
fluctuation-dissipation relation (Einstein), Onsager’s relations and linear
response theory (Kubo).
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Generalized Detailed Balance

Is there a ‘natural way’ of breaking detailed balance? What happens to
detailed balance for a system connected to different reservoirs?

For a system at contact with reservoirs at different temperatures, detailed
balance is generalized as follows:

M∆E1,∆E2 (C → C′) = M−∆E1,−∆E2 (C′ → C) e−
∆E1
kT1
−∆E2

kT2

with ∆Ei = Ei (C′)− Ei (C) .

This relation is ‘derived’ by applying detailed balance to the global system
S + R1 + R2 and tracing out the degrees of freedom of the reservoirs.

More generally, suppose that during an elementary transition C → C′, an
time-odd quantity y (charge, energy, entropy...) is transfered, and let γ0

be a constant,

M+y (C → C′) = M−y (C′ → C) eγ0y

GENERALIZED DETAILED BALANCE
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Generalized Detailed Balance versus Time Reversal

t    t    0
1 2

t    T
n

C

C

C
1

2

C
0

n

Y=0
1

TRAJECTORY  C(t)  

2
Y=y  +  y

1

1 2 n
Y=y + y + ... +y

Y=y

Pr{C(t)}
Pr{Ĉ(t)}

= eγ0Y{C(t)} Pstat(C0)

Pstat(Cn)

where Y {C(t)} = y1 + y2 + . . . yn is total charge transfered when the
system follows the trajectory C(t) between 0 and t.
By time-reversal, we have

Y {Ĉ(t)} = −Y {C(t)}
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The Gallavotti-Cohen Theorem

By summing over all trajectories, one shows that Yt has the following
statistical property:〈

e(γ−γ0)Yt

〉
'
〈
e−γYt

〉
when t →∞

A Laplace-Legendre transform yields the Gallavotti-Cohen Fluctuation
Theorem:

Φ(j) = Φ(−j)− γ0j

From the definition of the Large Deviation Function this implies

Pr
(
Yt

t = j
)

Pr
(
Yt

t = −j
)' eγ0jt

This relation is true far from equilibrium. It has been proved rigorously
in various contexts (chaotic systems, Markov/Langevin dynamics...).
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Another Surprise: The Jarzynski Identity

Remember the maximal work inequality:

〈W 〉 ≤ FA − FB = −∆F

We put brackets to emphasize that we consider the average work:
Statistical Physics has taught us that physical observables fluctuate.

It was found very recently that there exists a remarkable equality that
underlies this classical inequality.〈

e
W
kT

〉
= e−

∆F
kT
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The Jarzynski Identity

〈
e

W
kT

〉
= e−

∆F
kT

Jarzynski’s Work Theorem (1997)
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Consequences

1. Jarzynski’s identity mathematically implies the good old maximal work
inequality.

2. But, in order to have an EQUALITY, there must exist some
occurrences in which

W > −∆F

There must be instances in which the classical inequality which results
from the Entropy Principle is ‘violated’.

3. Jarzynski’s identity can be used to calculate chemical free energies of
biopolymer configurations: it has experimental applications in biophysics
or at the nanoscale.

4. The relation of Crooks: a refinement Jarzynski’s identity that allows
us to quantify precisely the ‘transient violations of the second principle’.

PF (W )

PR (−W )
= e

W−∆F
kT (Crooks,1999)
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Graphical representation of the Crooks’relation

Crooks’ Relation allows us to quantify precisely the ‘transient violations’
of the Second Principle and can be checked experimentally on single
RNA folding/unfolding experiments (Bustamante et al.)
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FLUCTUATIONS

FAR FROM EQUILIBRIUM
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A Paradigm: The Exclusion Process

The fundamental non-equilibrium system

R1

J

R2

A paradigm: The asymmetric exclusion model with open boundaries
(ASEP)

q 1

γ δ

1 L

RESERVOIRRESERVOIR

α β

Thousands of articles devoted to this model in the last 20 years.

Statistical properties of the total charge transported from the left to the
right reservoir?
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The Periodic Ring

L

N )(Ω =

N  PARTICLES

L SITES

x  asymmetry parameter

1

x

CONFIGURATIONS

Total current Yt , total distance covered by all the N particles, hopping
on a ring of size L, between time 0 and time t.

WHAT IS THE STATISTICS of Yt?

The moment-generating function defined as〈
eµYt

〉
' eE(µ)t

is the Legendre Transform of the Large Deviation Function.
On a ring, E (µ) can be calculated by Bethe Ansatz (XXZ model).
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General Solution on a ring (S. Prolhac, K.M.)

E (µ) is found in a parametric form:

µ = −
∑
k≥1

Ck
Bk

k
and E = −(1− q)

∑
k≥1

Dk
Bk

k

Ck and Dk are combinatorial factors enumerating some tree structures.
They are given by complex integrals along a small contour encircling 0:

Ck =

∮
C

dz

2 i π

φk(z)

z
and Dk =

∮
C

dz

2 i π

φk(z)

(z + 1)2

The auxiliary function WB(z) defined as

WB(z) =
∑
k≥1

φk(z)
Bk

k

contains all information about the current statistics.
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The function WB(z) is the solution of a functional Bethe equation:

WB(z) = − ln
(

1− BF (z)eX [WB ](z)
)

where

F (z) = (1+z)L

zN

The operator X is a integral operator

X [WB ](z1) =

∮
C

dz2

ı2π z2
WB(z2)K (z1, z2)

with the kernel

K (z1, z2) = 2
∑∞

k=1
qk

1−qk

{(
z1

z2

)k
+
(

z2

z1

)k}
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Full large deviation function (weak asymmetry)

Non-analytical points of the large deviation function correspond to phase
transitions in the system.
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The Open ASEP case (A. Lazarescu, KM)

q 1

γ δ

1 L

RESERVOIRRESERVOIR

α β

The observable Yt now counts the total number of particles exchanged
between the system and the left reservoir between times 0 and t: this is
the total (integrated) current.

The cumulant-generating function E (µ) defined as
〈
eµYt

〉
' eE(µ)t ,

when t →∞, was not obtained by Bethe Ansatz for the open system.

We developed an algebraic method based on the Matrix Product
Representation of the eigenstates (cf Derrida et al.).
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Structure of the solution I

For arbitrary values of q and (α, β, γ, δ), and for any system size L the
parametric representation of E (µ) is given by

µ = −
∞∑
k=1

Ck(q;α, β, γ, δ, L)
Bk

2k

E = −
∞∑
k=1

Dk(q;α, β, γ, δ, L)
Bk

2k

The coefficients Ck and Dk are given by contour integrals in the complex
plane:

Ck =

∮
C

dz

2 i π

φk(z)

z
and Dk =

∮
C

dz

2 i π

φk(z)

(z + 1)2

There exists an auxiliary function

WB(z) =
∑
k≥1

φk(z)
Bk

k

that contains the full information about the statistics of the current.
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Structure of the solution II

This auxiliary function WB(z) solves a functional Bethe equation:

WB(z) = − ln
(

1− BF (z)eX [WB ](z)
)

• The operator X is a integral operator

X [WB ](z1) =

∮
C

dz2

ı2π z2
WB(z2)K

(
z1

z2

)

with kernel K (z) = 2
∑∞

k=1
qk

1−qk

{
zk + z−k

}
• The function F (z) is given by

F (z) = (1+z)L(1+z−1)L(z2)∞(z−2)∞
(a+z)∞(a+z−1)∞(a−z)∞(a−z−1)∞(b+z)∞(b+z−1)∞(b−z)∞(b−z−1)∞

where (x)∞ =
∏∞

k=0(1− qkx) and a±, b± depend on the boundary rates.
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Current Large Deviation Function:

In the limit of large size systems, the following exact expression is found
for the Large Deviation Function of the current:

Φ(j) = (1− q)
{
ρa − r + r(1− r) ln

(
1−ρa
ρa

r
1−r

)}
where the current j is parametrized as j = (1− q)r(1− r).
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A special TASEP case

In the case α = β = 1, a parametric representation of the cumulant
generating function E (µ):

µ = −
∞∑
k=1

(2k)!

k!

[2k(L + 1)]!

[k(L + 1)]! [k(L + 2)]!

Bk

2k
,

E = −
∞∑
k=1

(2k)!

k!

[2k(L + 1)− 2]!

[k(L + 1)− 1]! [k(L + 2)− 1]!

Bk

2k
.

First cumulants of the current

Mean Value : J = L+2
2(2L+1)

Variance : ∆ = 3
2

(4L+1)![L!(L+2)!]2

[(2L+1)!]3(2L+3)!

Skewness :
E3 = 12 [(L+1)!]2[(L+2)!]4

(2L+1)[(2L+2)!]3

{
9 (L+1)!(L+2)!(4L+2)!(4L+4)!

(2L+1)![(2L+2)!]2[(2L+4)!]2 − 20 (6L+4)!
(3L+2)!(3L+6)!

}
For large systems: E3 → 2187−1280

√
3

10368 π ∼ −0.0090978...
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A Macroscopic Point of View

E = ν/2L

ρ ρ
21

L

Starting from the microscopic level, define local density ρ(x , t) and
current j(x , t) with macroscopic space-time variables x = i/L, t = s/L2

(diffusive scaling).
The typical evolution of the system is given by the hydrodynamic
behaviour:

∂ρ =
1

2
∇2ρ− ν∇σ(ρ) with σ(ρ) = ρ(1− ρ)

(Lebowitz, Spohn, Varadhan)
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Large Deviations at the Hydrodynamic Level

The probability to observe an atypical current j(x , t) and the
corresponding density profile ρ(x , t) during a time L2T (L being the size
of the system) is given by

Pr{j(x , t), ρ(x , t)} ∼ e−L I(j,ρ)

A general principle has been found, the macroscopic fluctuation theory
(Jona-Lasinio et al.), to express this large deviation functional I(j , ρ) as
an optimal path problem:

I(j , ρ) = min
ρ,j

{∫ T

0

dt

∫ 1

0

dx
(j − νσ(ρ) + D(ρ)∇ρ)2

2σ(ρ)

}

Knowing I(j , ρ), one could derive the large deviations of the current and
of the density profile. For instance, Φ(j) = minρ{I(j , ρ)}

However, at present, the available results for this variational theory are
precisely the ones given by exact solutions of the ASEP.
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Equations of Macroscopic Fluctuation Theory

Mathematically, one has to solve the corresponding Euler-Lagrange
equations. After some transformations, one obtains a set of coupled
PDE’s (here, we take ν = 0):

∂tq = ∂x [D(q)∂xq]− ∂x [σ(q)∂xp]

∂tp = −D(q)∂xxp − 1

2
σ′(q)(∂xp)2

where q(x , t) is the density-field and p(x , t) is a conjugate field.
The physical content is encoded in the ’transport coefficients’ D(q)(= 1)
and σ(q)(= 2q(1− q)) that contain the information of the microscopic
dynamics relevant at the macroscopic scale.
Do note that these equations have a Hamiltonian structure.

A general framework but these non-linear MFT equations are very
difficult to solve in general. By using them one can in principle
calculate large deviation functions directly at the macroscopic level.

The analysis of this new set of ‘hydrodynamic equations’ has just
begun!
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Conclusion

Systems out of equilibrium are ubiquitous in nature. They break time
reversal invariance. Often, they are characterized by non-vanishing
stationary currents (fluxes).

Large deviation functions (LDF) appear as the right generalization of the
thermodynamic potentials: convex, optimized at the stationary state, and
non-analytic features can be interpreted as phase transitions. Besides,
they satisfy remarkable relations (Gallavotti-Cohen, Jarzynski-Crooks).

The LDF’s are very likely to play a key-role in constructing a general
theory of non-equilibrium statistical mechanics. Currently, the prominent
candidate for such a theory is The Macroscopic Fluctuation Theory of G.
Jona-Lasinio et al.

Finding Large Deviation Functions is a very important current issue. This
can be achieved through experimental, mathematical or computational
techniques.

The results given here are one of very few exact analytically exact
formulae known for Large Deviation Functions.
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