Methodologies and Tools for exploring Transport Protocols in the context of Highspeed Networks

Romaric GUILLIER, PhD Student under the supervision of Pascale VICAT-BLANC PRIMET

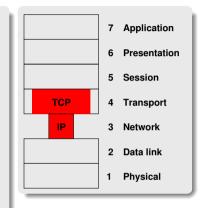
LIP, École Normale Supérieure de Lyon, INRIA, UMR 5668, France

IGTMD 2008 – June 30th, 2008

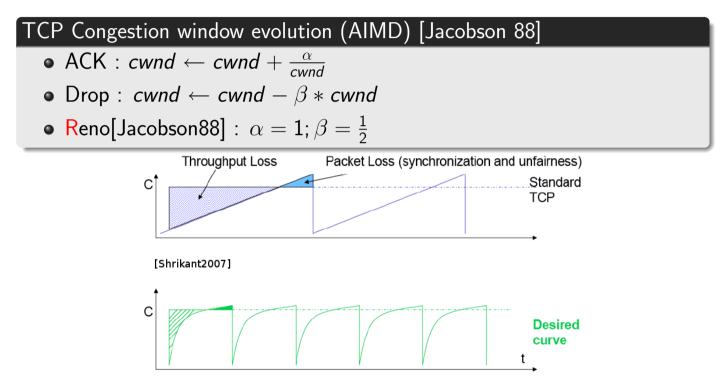
Outline

1 Problem definition

Proposal

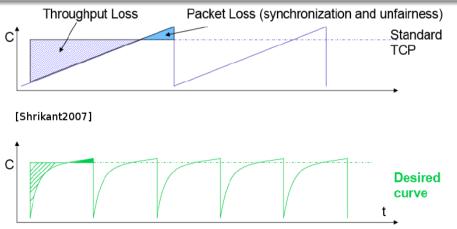


What is TCP ?


- Vital part of the networking stack, providing reliable data transfer, flow control and error control [TCP 81, Cerf 74]
- Fully distributed algorithm in the end-hosts (scalability)
- Allows fair sharing of links
- Stable [Chiu 89]
- 80% to 95% of Internet traffic is TCP

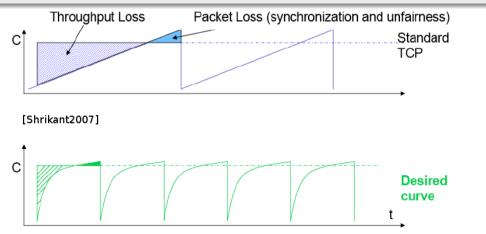
Future of the Internet

- $\bullet\,$ Technology driven: wireless networks, Fibber To The Home (DSL 5 Mbps $\rightarrow\,100Mbps$)
- Application driven: multimedia (VoD), large scale computing (low aggregation level, low multiplexing factor)
- ³ Will TCP still be "useful" in the future ?


How does TCP Congestion Control work?

How does TCP Congestion Control work?

TCP limits in specific contexts


- TCP and multimedia applications (retransmissions adding delay for the application)
- TCP and wireless networks (loss not due to congestion)
- TCP and high Bandwidth Delay Product (BDP), especially with large RTT

How does TCP Congestion Control work?

TCP limits in high BDP

- Simplified TCP model: $Rate = \frac{MSS}{RTT} \sqrt{\frac{3}{2p}}$ [Padhye 98]
- 1 packet drop every 5e9 packets for 10 Gbps steady-state throughput on 100 ms RTT with 1500-byte packets
- "Only" operates at 75% of the capacity in average (and 25% of 10 Gbps is a lot)

Changing TCP ?

Known Transport Protocol solutions

- Parallel streams
- UDP streams
- TCP variants

TCP variant	α	β
TCP Reno [Jacobson 88]	1	$\frac{1}{2}$
BIC [Xu 04]	1 or bin.search	$\frac{1}{8}$
CUBIC [Rhee 05]	cub(cwnd, history)	$\frac{1}{5}$
HighSpeed TCP [Floyd 03]	inc(cwnd)	decr(cwnd)
Hamilton TCP [Shorten 04]	f(last _{loss})	$1 - \frac{RTT_{min}}{RTT_{max}}$
Scalable TCP [Kelly 03]	0.01 * <i>cwnd</i>	$\frac{1}{8}$

AIMD constants of several TCP variants

TCP variant	С	d
TCP Reno	1.22	0.5
BIC	15.5	0.5
HighSpeed TCP	0.12	0.835
Hamilton TCP	0.12	0.835
Scalable	0.08	1.0

Response function parameters of several TCP variants $R = \frac{MSS}{RTT} \frac{c}{p^d}$

TCP variants

- Since 2002, more than 10 TCP variants proposed
- Changing the AIMD α and β to improve the response function
- But some have shown severe fairness/convergence problem
- Need to define the good properties they should have

TCP Performance Metrics [Flo 07]

- TCP is a very complex protocol with a lot of requirements
- TMRG workgroup is current working on these aspects [Andrew 08, Flo 07, Flo 06]

Metric of	User Perspective	Network Perspective
	Goodput G ,	Throughput X ,
Throughput	Completion time T ,	Link utilisation U ,
	Cong. window cwnd	Efficiency E
Delay	RTT	Queueing delay q
Packet loss rates	Retransmission r	Packet loss rate p
	Timeouts events t	
Response to sudden changes	Responsiveness R ,	Smoothness S
	Aggressiveness A	
Minimizing oscillations	Variance σ	Coeff. of Variation CoV
Fairness and convergence times	Jain Index J	Max-min, Proportional,
	Delta-fair convergence δ_f	Epsilon fairness
Robustness		
Deployability		Code complexity

Need for methodologies to study its behaviour

Existing Methodologies

Methodology	Wang [NS2 07]	Mascolo [Mascolo 06]	Rhee [Ha 06]	Leith [Li 06]	Kumazoe [Kumazoe 07]
Туре	Simulation	Simulation	Sw. emul.	Sw. emul.	Real
Topology	Dumbbell, Parking Lot, 4 Domain Network	Dumbbell	Dumbbell	Dumbbell	Dumbbell
Number of sources	n/a	6	4	2	2
Rate max (Mbps)	n/a	250	400	250	10000
RTT range (ms)	n/a	40,80,160	16,64,162, 324	16,22,42, 82, 162	18,180
Traffic model	FTP, Web, Voice Video streaming	FTP, Web	FTP, Web	FTP, Web	FTP
Metrics	X, q, σ_{RTT} , p, J, R, δ_f , robustness	cwnd, t	p, J, δ _f	U, G, cwnd, p, J	X

- No consensus on chosen parameters value (RTT, Rate max)
- No consensus on chosen metrics
- No consensus on the scenarios
- Small number of sources used
- What tool should be used?

Simulation vs Emulation vs Real experiment

		Simulation	Sw. Emul.	Hw. Emulation	Real
E	xamples	NS-2,	Dummynet,	AIST-GtrcNet	WanInLab, Grid'5000,
		OMNeT++	NISTNet		PlanetLab
		Simple models	Easy to setup	Easy to setup	Real equipment
	Pros	Parameter decoupling	Coarse grained control	Fine grained control	Real behavior
		Fine grained control			
		CPU intensive	CPU intensive	Cost	Cost
		Memory intensive	Memory intensive	Limited parameters	Limited range
	Cons	Disk intensive	Software overhead	Black boxes	Limited topologies
		Phase effect	Precision limitation		Black boxes
		Limited models			Bugs

- [Wei 06] shows exponentional simulation time in NS-2 with the bandwidth
- At 1 Gbps, the max packet rate is 83333 packets/s (MTU 1500 bytes), too much to be handled by current hardware at wire speed (Software emulation)
- Presence of black boxes in real networks
- Tools are complementary
- Open question: Comparaison possible between each approach ?

Outline

Problem definition

Proposal

- Methodology
- Network eXperiment Engine

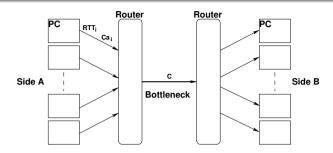
3 Results

Steps for a performance evaluation study [Jain 91]

- State the goals and define the system boundaries
- 2 List system system services
- Select performance metrics
- List system and workload parameters
- Select factors and their values
- Select evaluation techniques
- Select the workload
- Design the experiments
- Analyze and interpret the data
- Present the results

Scenario example

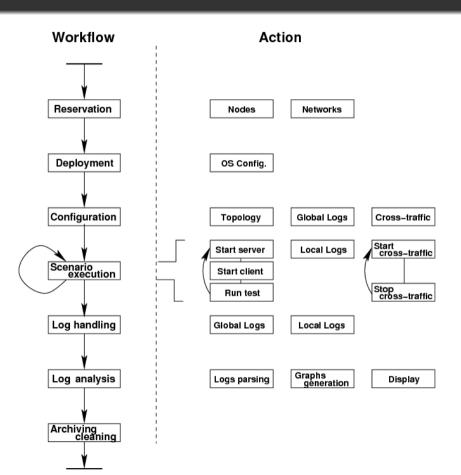
Study how a transport protocol adapts to abrupt changes in traffic conditions (heavy congestion event).


Metrics: responsiveness

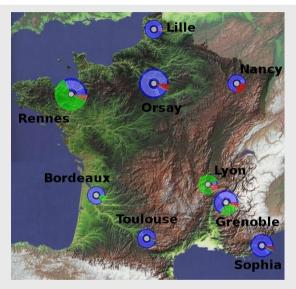
	0.5–congest	heavy congest event	0.5–congest	
0	Т	1 Т	T2 T	3

[0-T1] Stable situation, light congestion level (0.5)

- **[T1-T2]** Major change, high congestion level/change in the mix of transport protocols
- **[T2-T3]** Stable situation, light congestion level (0.5)


Parameter space

	Parameter	Description	Range
	RTT	Round Trip Time	0 to 200 ms
Infrastructure	С	Bottleneck capacity	1 or 10 Gbps
	$K = \frac{C}{C_a}$	Aggregation lvl	1 or 10
	М	Multiplexing factor	1 to 20
Workload	Ns	Parallel streams	1 to 10
	Cg	Congestion factor	0 to 2.0
	R	Reverse traffic factor	0 to 2.0

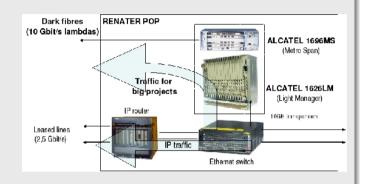

- Huge parametric space
- Experiments must be repeated several times to have a good statistical sample
- Need a tool to automatise this process

Workflow

Proposal Network eXperiment Engine

Grid5000 [Bolze 06]: Description




Site	CPU available	CPU scheduled
Bordeaux	424	500
Grenoble	270	500
Lille	198	500
Lyon	260	500
Nancy	334	500
Orsay	684	1000
Rennes	524	522
Sophia	356	500
Toulouse	276	500
Total	3326	5022

- 9 sites in France, 17 laboratories involved
- 5000 CPUs (currently 3300)
- Private 10Gbps Ethernet over DWDM network
- Experimental testbed for Networking to Application layers.

Proposal Network eXperiment Engine

Grid5000 [Bolze 06]: Description

- 9 sites in France, 17 laboratories involved
- 5000 CPUs (currently 3300)
- Private 10Gbps Ethernet over DWDM network
- Experimental testbed for Networking to Application layers.

Grid5000 [Bolze 06]: Special Features

- A high security for Grid'5000 and the Internet, despite the deep reconfiguration feature
 - → Grid'5000 is confined: communications between sites are isolated from the Internet and Vice versa (level2 MPLS, Dedicated lambda).
- A software infrastructure allowing users to access Grid'5000 from any Grid'5000 site and have simple view of the system
 - \hookrightarrow A user has a single account on Grid'5000, Grid'5000 is seen as a cluster of clusters, 9 (1 per site) unsynchronized home directories
- A reservation/scheduling tools allowing users to select nodes and schedule experiments

Reservation engine + batch scheduler (1 per site) + OAR Grid

(a co-reservation scheduling system)

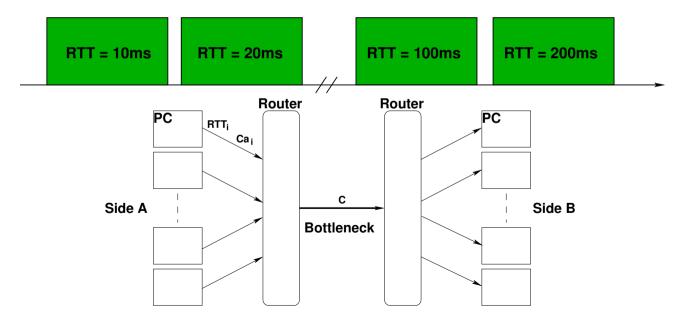
• A user toolkit to reconfigure the nodes

 \hookrightarrow KADEPLOY Software image deployment and node reconfiguration tool

Outline

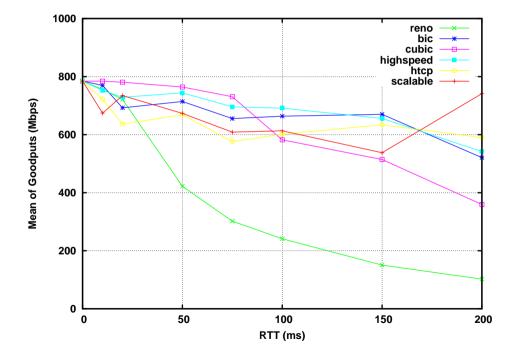
Problem definition

Proposal

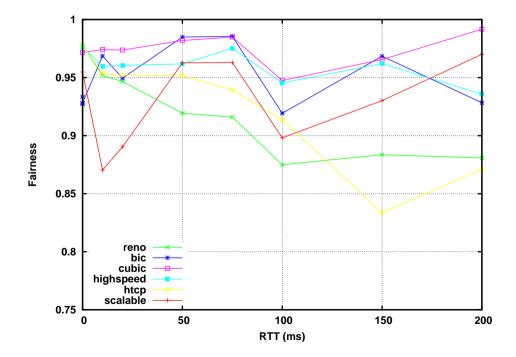

3 Results

- Influence of latency
- Influence of the multiplexing factor
- Influence of traffic conditions
- Influence of reverse traffic level

Experimental setting


Study of the impact of latency on the performance of TCP variants [Guillier 07a]

12 independant sources, transmitting continously. A new source starts every 200 s.

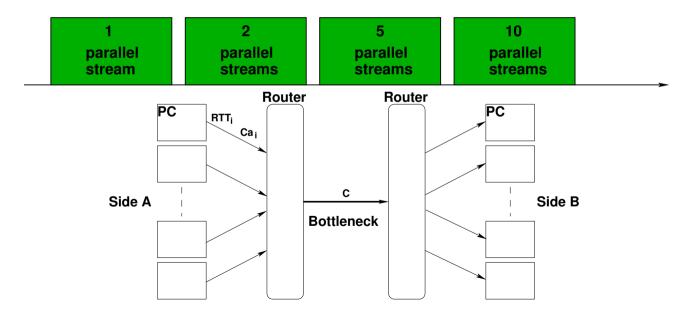

Results Influence of latency

Impact of the latency on mean goodput

Results Influence of latency

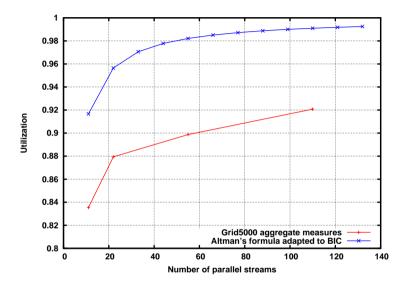
Impact of the latency on fairness

Recap table


	Flow mean goodput		Mean fairness		Normalised standard deviation	
	11.5 ms	100 ms	11.5 ms	100 ms	11.5 ms	100 ms
Reno	756.0	234.3	0.951	0.918	0.222	0.232
BIC	781.1	653.7	0.969	0.919	0.176	0.306
CUBIC	784.5	534.3	0.974	0.961	0.144	0.140
HS-TCP	753.6	671.9	0.960	0.962	0.069	0.233
H-TCP	722.2	686.1	0.953	0.926	0.230	0.256
Scalable	674.0	540.4	0.870	0.955	0.337	0.317

- "best" value, "worse" value.
- No universal solution.

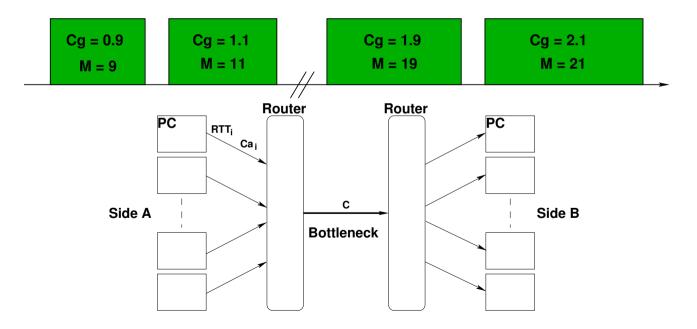
Experimental setting


Study of the impact of the number of parallel streams on the global throughput [Guillier 07a]

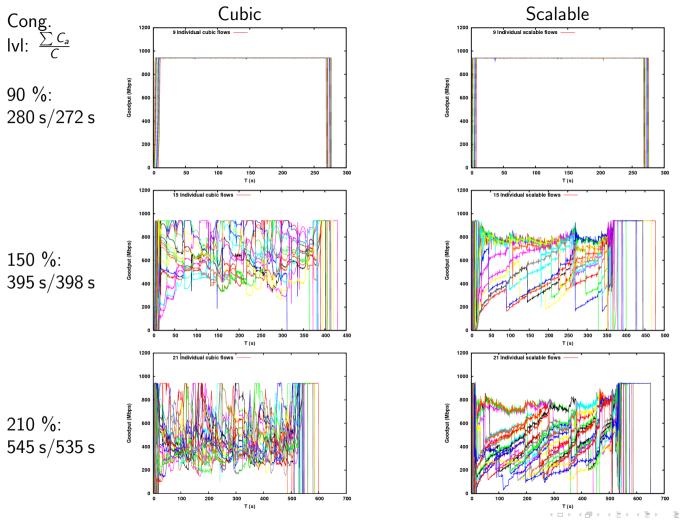
11 independant sources, transmitting continously for 600 s

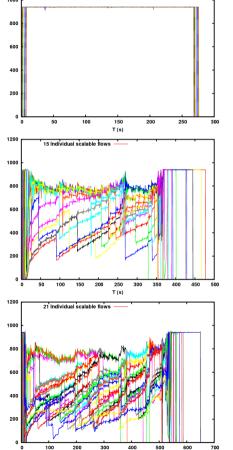
Results Influence of the multiplexing factor

BIC-TCP and Altman's model [Altman 06]



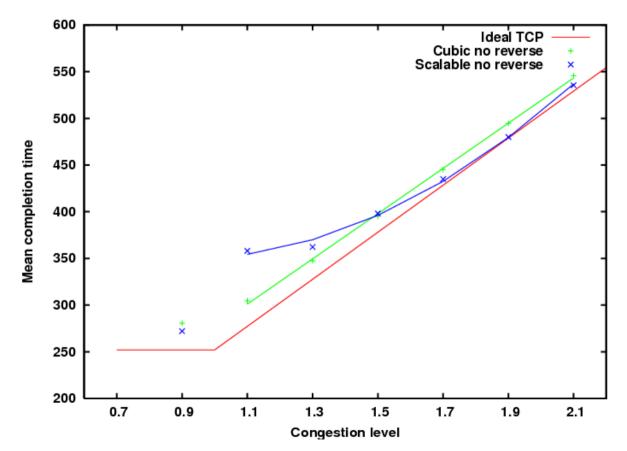
Altman's formula $\overline{x}(N) =$	C(1 –	$\left(\frac{1}{1+\frac{1+\beta}{1-\beta}N}\right)$
--------------------------------------	-------	---

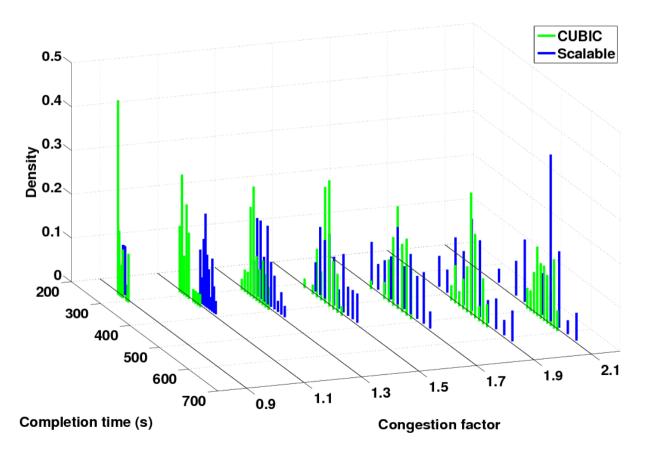

		$1-\beta$	
1	2	5	10
8353.66	8793.92	8987.49	9207.78
761.70	399.83	163.53	83.71
0.9993	0.9979	0.9960	0.9973
/	4.9%	7.3%	9.8%
	761.70	761.70399.830.99930.9979	1258353.668793.928987.49761.70399.83163.530.99930.99790.9960


Experimental setting

Study of the impact of traffic conditions (congestion factor, reverse traffic factor) on the completion time of 3000 MB file transfers [Guillier 07c]. Up to 42 independent sources, emitting simultaneously.

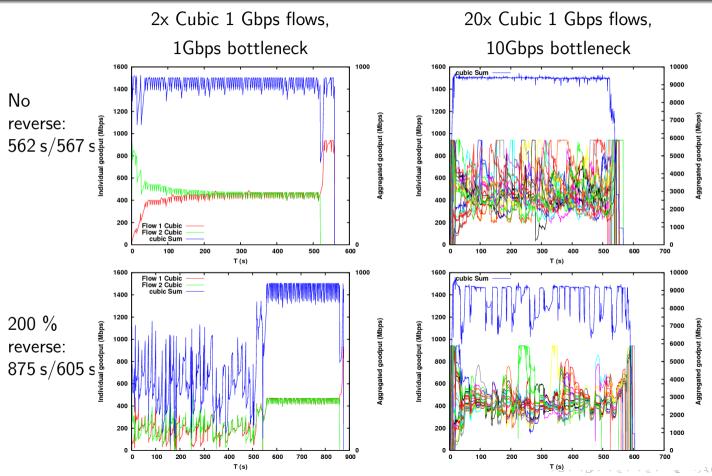
Results Influence of traffic conditions



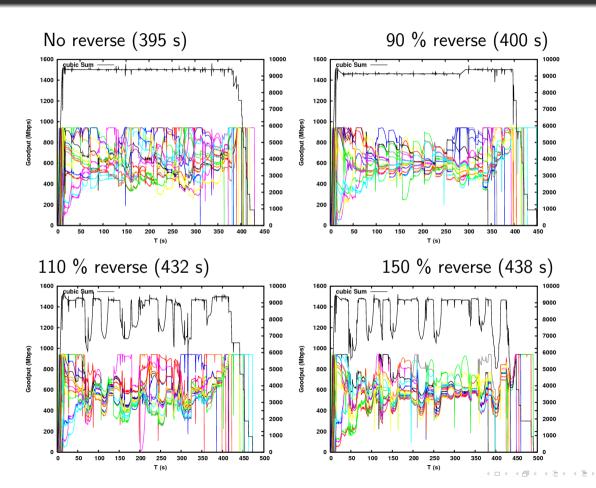

500

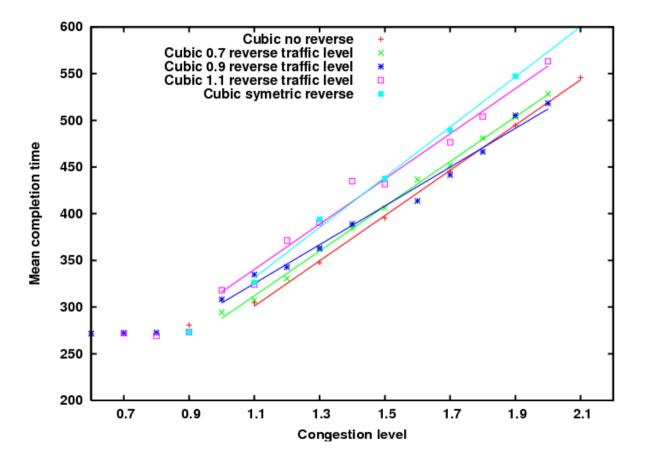
Results Influence of traffic conditions

Mean completion time of Cubic and Scalable

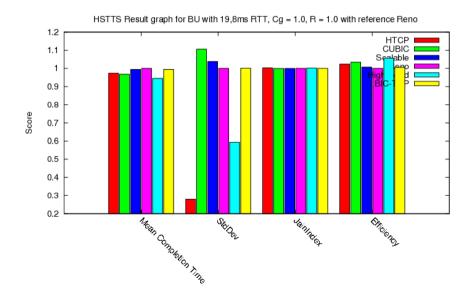


Completion Time distribution


Results Influence of reverse traffic level


The multiplexing factor (200 % congestion level)

Results Influence of reverse traffic level


Influence of reverse traffic on Cubic (150 % cong. lvl)

Results Influence of reverse traffic level

Towards a Transport Protocol Benchmark [Guillier 07b]

Conclusion

- Evaluation of transport protocols in high-speed networks
- NXE, a tool to automate real experiments
- Some experimental results in high speed networks

Future and Current Works

- Contribution to TMRG transport protocol benchmark design [Andrew 08]
- Building bridges between simulation and real experiment worlds (automatic scenarios converter)
- Validation of the NXE tool
- Creating realistic scenarios of user usage
- Helping users assess their networking environment and optimize its usage
- Comparaison of the results from several tools.

Conclusion

Questions?

Thanks for your attention...

References I

Eitan Altman, Dhiman Barman, Bruno Tuffin & Milan Vojnovic. Parallel TCP Sockets: Simple Model, Throughput and Validation. In Proceedings of the IEEE INFOCOM, 2006.

Lachlan Andrew, Cesar Marcondes, Sally Floyd, Lawrence Dunn, Romaric Guillier, Wang Gang, Lars Eggert, Sangtae Ha & Injong Rhee.

Towards a Common TCP Evaluation Suite. In PFLDNet, march 2008.

Raphaël Bolze, Franck Cappello, Eddy Caron, Michel Daydé, Frederic Desprez, Emmanuel Jeannot, Yvon Jégou, Stéphane Lanteri, Julien Leduc, Noredine Melab, Guillaume Mornet, Raymond Namyst, Pascale Vicat-Blanc Primet, Benjamin Quetier, Olivier Richard, El-Ghazali Talbi & Touché Irena. *Grid'5000: a large scale and highly reconfigurable experimental Grid testbed.* International Journal of High Performance Computing Applications, vol. 20, no. 4, pages 481–494, November 2006.

🚺 V. Cerf & R. Kahn.

A Protocol for Packet Network Intercommunication.

In IEEE Transactions on Communications, volume 22, pages 637-648, may 1974.

D. Chiu & R. Jain.

"Analysis of the Increase/Decrease Algorithms for Congestion Avoidance in Computer Networks. Journal of Computer Networks and ISDN, vol. 17, no. 1, pages 1–14, June 1989.

- Tools for the Evaluation of Simulation and Testbed Scenarios. In Sally Floyd & E Kohler, editeurs, http://www.icir.org/tmrg/draft-irtf-tmrg-tools-03.txt, December 2006.
- Metrics for the evaluation of Congestion Control Mechanisms. In Sally Floyd, editeur, http://www.icir.org/tmrg/draft-irtf-tmrg-metrics-11.txt, October 2007.

Extras

References II

Sally Floyd. <i>RFC 3649: HighSpeed TCP for Large Congestion Windows</i> . RFC 3649, December 2003. experimental.
Romaric Guillier, Ludovic Hablot, Yuetsu Kodama, Tomohiro Kudoh, Fumihiro Okazaki, Ryousei Takano, Pascale Vicat-Blanc Primet & Sebastien Soudan. <i>A study of large flow interactions in high-speed shared networks with Grid5000 and GtrcNET-1</i> . In PFLDnet'07, February 2007.
Romaric Guillier, Ludovic Hablot & Pascale Vicat-Blanc Primet. <i>Towards a User-Oriented Benchmark for Transport Protocols Comparison in very High Speed Networks.</i> Research Report 6244, INRIA, 07 2007. Also available as LIP Research Report RR2007-35.
Romaric Guillier, Sebastien Soudan & Pascale Vicat-Blanc Primet. <i>TCP variants and transfer time predictability in very high speed networks.</i> In Infocom 2007 High Speed Networks Workshop, May 2007.
Sangtae Ha, Long Le, Injong Rhee & Lisong Xu. <i>A Step toward Realistic Performance Evaluation of High-Speed TCP Variants.</i> Elsevier Computer Networks (COMNET) Journal, Special issue on "Hot topics in transport protocols for very fast and very long distance networks", 2006.
Van Jacobson. <i>Congestion Avoidance and Control.</i> In SIGCOMM'88, 1988.

Extras

References III

🔋 R. Jain.

The art of computer systems performance analysis: Techniques for experimental design, measurement, simulation, and modeling.

Wiley- Interscience, April 1991.

Tom Kelly.

Scalable TCP: Improving Performance in Highspeed Wide Area Networks. In Computer Communication Review, volume 32, April 2003.

- Kazumi Kumazoe, Masato Tsuru & Yuji Oie. Performance of high-speed transport protocols coexisting on a long distance 10Gbps testbed network. In GridNets, october 2007.
- Yee-Ting Li, Douglas Leith & Robert N. Shorten. *Experimental Evaluation of TCP Protocols for High-Speed Networks*. In Transactions on Networking, June 2006.
- Saverio Mascolo & Francesco Vacirca. The effect of reverse traffic on the performance of new TCP congestion control algorithm. In PFLDnet'06, February 2006.
- An NS2 TCP Evaluation Tool Suite. In G. Wang, Y. Xia & D. Harrison, editeurs, http://www.icir.org/tmrg/draft-irtf-tmrg-ns2-tcp-tool-00.txt, April 2007.
- J. Padhye, V. Firoiu, D. Towsley & J. Kurose. *Modeling TCP Throughput: A Simple Model and its Empirical Validation*. In ACM SIGCOMM '98, 1998.
- Injong Rhee & Lisong Xu. CUBIC: A New TCP-Friendly High-Speed TCP Variants. In PFLDnet, 2005.

References IV

- R.N. Shorten & Doug Leith.
 H-TCP: TCP for high-speed and long-distance networks.
 In PFLDnet'04, Argonne, Illinois USA, February 2004.
- Transmission Control Protocol. RFC 793, september 1981.
- David X. Wei & Pei Cao. NS-2 TCP-Linux: an NS-2 TCP implementation with congestion control algorithms from Linux. In WNS2 '06: Proceeding from the 2006 workshop on ns-2: the IP network simulator, page 9, New York, NY, USA, 2006. ACM Press.
- Lisong Xu, Khaled Harfoush & Injong Rhee. Binary Increase congestion Control for Fast Long-Distance Networks. In INFOCOM, 2004.