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Introduction

commutative spectral triple → noncommutative spectral triple

l ↓
Riemannian geometry non-commutative geometry [NCG]

Suitable framework to describe the standard model of elementary particles [SM]
together with (Euclidean) general relativity in a common geometrical framework.

Space-(time) is the product of a commutative geometry (gravitational degrees of
freedom) by a noncommutative geometry (quantum degrees of freedom).

The Lagrangian of the SM and Einstein-Hilbert action follow from a single action
formula: the SM is a gravity theory.

Bonus: the Higgs field comes out as the noncommutative part of the connection.

I 170 GeV: prediction of the Higgs mass from NCG. Ruled out by Tevratron
in August 2008.

I 126 GeV: mass of the Higgs-Brout-Englert boson, official since July 2012.



“God not only play dices, but also Russian roulette.”
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sufficiently large Higgs mass, the positive self interaction
term ∼ +λ2 is large enough to keep the beta function
positive, or only slightly negative, to avoid λ running
negative at sub-Planckian energies. For sufficiently small
Higgs mass, the negative top quark contribution ∼ −y4

t

can dominate and cause the beta function to go negative,
in turn causing λ to pass through zero at a sub-Planckian
energy, which we denote E∗. The top quark Yukawa cou-
pling itself runs toward small values at high energies with
1-loop beta function
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which is quite sensitive to the value of the strong cou-
pling gs. To compute the evolution of couplings and the
quantity E∗ = E∗(mH , yt, . . .) accurately, we do the fol-
lowing: (i) Starting with couplings defined at the Z mass,
we perform proper pole matching and running up to the
top mass, (ii) we include external leg corrections (and
the associated wavefunction renormalization), (iii) we si-
multaneously solve the 5 beta function differential equa-
tions for the 5 important couplings λ, yt, g

′, g, gs, and (iv)
we include the full 2-loop beta functions for the Stan-
dard Model; these are presented in the Appendix (see
Refs. [11, 12] for more information). In our numerics,
we use particular values of the couplings g′, g, gs, derived
from the best fit values

α(mZ) =
1

127.9
, sin2 θW = 0.2311, αs(mZ) = 0.1184.

(4)
In our final analysis, we will allow for three different val-
ues of mt =

√
2 yt vEW , namely the central value and 1-

sigma variation mt = 173.1±0.7GeV, and we will explore
a range of mH =

√
2λ vEW , with vEW = 246.22GeV.

Performing the RG evolution leads to the energy de-
pendent renormalized coupling λ(E). A plot of λ(E)
is given in Fig. 2 for three Higgs mass values, namely
mH = 116GeV (lower curve), mH = 126GeV (middle
curve), and mH = 130GeV (upper curve), with the top
mass fixed to the central value mt = 173.1GeV. This
shows clearly that for the lighter Higgs masses that the
coupling λ passes through zero at a sub-Planckian energy
scale E∗ and then remains negative. Furthermore, since
the coupling only runs logarithmically slowly with energy,
the value of E∗ can change by orders of magnitude if the
starting value of the couplings changes by relatively small
amounts. The domain E > E∗ involves a type of “attrac-
tive force” with negative potential energy density, as we
now examine in more detail.
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FIG. 2: Higgs self-coupling λ as a function of energy, for
different values of the Higgs mass from 2-loop RG evolu-
tion. Lower curve is for mH = 116 GeV, middle curve is for
mH = 126 GeV, and upper curve is for mH = 130 GeV. All
other Standard Model couplings have been fixed in this plot,
including the top mass at mt = 173.1 GeV.

III. META-STABILITY AND PROBABILITY

If we think of the field value h as being the typical
energy pushed into a scattering process at energy E, then
we can translate the RG evolution of the couplings into
an effective potential. Using λ(E) and replacing E → h,
we obtain the (RG improved) effective potential at high
energies (h% vEW )

Veff(h) =
1
4
λ(t)G(t)4 h4, (5)

where the wavefunction renormalization factor G is given
in terms of the anomalous dimension γ by G(t) =
exp(− ∫ t

0 γ(t′)dt′), and we replace t → ln h/µ. Hence
for a Higgs mass in the range observed by the LHC,
the effective potential Veff goes negative at a field value
h = E∗ that is several orders of magnitude below the
Planck scale, as can be deduced from the behavior of
λ(E) with mH = 126GeV in Fig. 2.

We could plot Veff(h) directly, however the factor of h4

makes it vary by many orders of magnitude as we explore
a large field range. Instead a schematic of the resulting
potential will be more illuminating for the present discus-
sion in order to highlight the important features, as given
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FIG. 3: Schematic of the effective potential Veff as a function
of the Higgs field h. This is not drawn to scale; for a Higgs
mass in the range indicated by LHC data, the heirarchy is
vEW ! E∗ ! MPl, where each of these 3 energy scales is
separated by several orders of magnitude.

in Fig. 3. The plot is not drawn to scale; the 3 energy
scales satisfy the hierarchy vEW ! E∗ !MPl for a Higgs
mass as indicated by LHC data mH ∼ 125 − 126GeV.
Note that the local maximum in the potential occurs at
a field value that is necessarily very close to E∗ (only
slightly smaller) and so we shall discuss these 2 field val-
ues interchangeably.

In this situation, the electroweak vacuum is only meta-
stable. Its quantum mechanical tunneling rate can be es-
timated by Euclideanizing the action and computing the
associated bounce action S0. This leads to the following
probability of decaying in time TU through a bubble of
size R [13]

p ∼ (TU/R)4e−S0. (6)

The computation of the rate is rather involved, and we
shall not pursue the details here. Suffice to say that for
the central values of Higgs mass and top mass from LHC
data, it is found that the lifetime of the electroweak vac-
uum is longer than the present age of the universe [14, 15].

It is conceivable that it is an acceptable situation for
the electroweak vacuum to be meta-stable. However, here
we would like to present an argument that such a situ-
ation is statistically disfavorable. We imagine that in
the very early universe, the Higgs field was randomly

distributed in space. For instance, during cosmological
inflation the Higgs field could have been frozen at some
value as the universe rapidly expands (if high scale in-
flation) until after inflation when the field will oscillate
and its initial value could plausibly have been random
and uniformly distributed. If this is the case, then what
is the probability that the Higgs field began in the meta-
stable region h ! E∗, rather than the unstable region
h " E∗? The answer depends on the allowed domain the
Higgs can explore. Here we estimate the allowed domain
to be Planckian, i.e., 0 < h < MPl, but our argument
only depends on the upper value being much larger than
E∗. Naively, this would lead to a probability ∼ E∗/MPl,
however we should recall that the Higgs is a complex
doublet, composed of 4 real scalars, and each one would
need to satisfy h ! E∗ in the early universe to be in the
meta-stable region. Hence, we estimate the probability
as

Prob (Higgs begins in meta-stable region) ∼
(

E∗

MPl

)4

.

(7)
For instance, for mH ≈ 125.5GeV and mt = 173.1GeV,
we have E∗ ∼ 1011 GeV, leading to a probability ∼
(1011 GeV/1019 GeV)4 = 10−32, which indicates that the
chance of randomly landing in the meta-stable region in
the early universe is exceedingly unlikely. Instead it is
far more likely to land in the unstable region indicated
in Fig. 3. Here the effective potential is negative leading
to a catastrophic runaway instability, perhaps to a new
VEV that is close to Planckian. This would in turn lead
to a plethora of problems for the formation of complex
structures, etc, so we can safely assume such a regime is
uninhabitable and irrelevant. This leads us to examine
a scenario in which new physics enters and removes this
problem.

IV. PECCEI-QUINN DYNAMICS AND
DISTRIBUTION

One of the phenomenological reasons for new physics
beyond the Standard Model is the fine tuning of the CP
violating term in the QCD Lagrangian. The following
dimension 4 operator is gauge invariant and Lorentz in-
variant and should be included in the QCD Lagrangian
with a dimensionless coefficient θ

∆L =
θ

32π2
εµναβF a

µνF a
αβ . (8)

From bounds on the electric dipole moment of the neu-
tron, this term is experimentally constrained to satisfy

M. P. Hertzberg, A correlation between the Higgs mass and dark matter, arXiv:1210.3624
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Figure 5: Regions of absolute stability, meta-stability and instability of the SM vacuum in the Mt–
Mh plane. Right: Zoom in the region of the preferred experimental range of Mh and Mt (the
gray areas denote the allowed region at 1, 2, and 3�). The three boundaries lines correspond to
↵s(MZ) = 0.1184± 0.0007, and the grading of the colors indicates the size of the theoretical error.
The dotted contour-lines show the instability scale ⇤ in GeV assuming ↵s(MZ) = 0.1184.

3.3 Phase diagram of the SM

The final result for the condition of absolute stability is presented in eq. (2). The central

value of the stability bound at NNLO on Mh is shifted with respect to NLO computations

(where the matching scale is fixed at µ = Mt) by about +0.5 GeV, whose main contributions

can be decomposed as follows:

+ 0.6 GeV due to the QCD threshold corrections to � (in agreement with [14]);

+ 0.2 GeV due to the Yukawa threshold corrections to �;

� 0.2 GeV from RG equation at 3 loops (from [12,13]);

� 0.1 GeV from the e↵ective potential at 2 loops.

As a result of these corrections, the instability scale is lowered by a factor ⇠ 2, for Mh ⇠ 125

GeV, after including NNLO e↵ects. The value of the instability scale is shown in fig. 4.

The phase diagram of the SM Higgs potential is shown in fig. 5 in the Mt–Mh plane,

taking into account the values for Mh favored by ATLAS and CMS data [1, 2]. The left

plot illustrates the remarkable coincidence for which the SM appears to live right at the

border between the stability and instability regions. As can be inferred from the right plot,

which zooms into the relevant region, there is significant preference for meta-stability of the

SM potential. By taking into account all uncertainties, we find that the stability region is

disfavored by present data by 2�. For Mh < 126 GeV, stability up to the Planck mass is

excluded at 98% C.L. (one sided).
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Degrassi, Di Vita, Elias-Miro, Espinosa, Guidice, Isidori and A. Sturmia, Higgs mass and Vacuum Stability in the SM at NNLO, arXiv:1205.6497



The instability of the electroweak vacuum can be cured by introducing a new
scalar field σ:†

V (H, σ) =
1

4
(λH4 + λσσ

4 + 2λHσH
2σ2).

Incidentally, in the description of the SM in NCG, the field σ allows to pull mH

back to 126 GeV. Resilience of the spectral SM, Chamseddine, Connes 2012

Is σ natural in NCG, or is it just an artifact for saving the model ?

†
Elias-Miro, Espinosa, Guidice, Lee and Sturmia, Stabilization of the Electroweak Vacuum by a Scalar Threshold effect, JHEP 1206 (2012) 031;

Degrassi, Di Vita, Elias-Miro, Espinosa, Guidice, Isidori and A. Sturmia, Higgs mass and Vacuum Stability in the SM at NNLO, arXiv:1205.6497;
Chian-Shu Chen and Yong Tang, Vacuum Stability, Neutrinos and Dark matter, JHEP 1204 (2012) 019;
Oleg Lebedev, On Stability of the Higgs Potential and the Higgs Portal, JHEP, arXiv:1203.0156.



I. Higgs mass in NCG: state of the art
• the spectral triple of the standard model
• spectral action and the 170 Gev prediction
• a new hope: field σ versus the first order condition ?

II. The grand algebra
• mixing of spinor and internal degrees of freedom

III. Reduction to the standard model
• the field σ
• emergence of geometry



I. State of the art (till 2012)

Spectral triple

A ∗-algebra A, faithful representation on H, operator D on H such that [D, a] is
bounded and a[D − λI]−1 is compact for all a ∈ A and λ /∈ Spec D.

With extra-conditions (dimension, regularity, finitude, first order, orientability,
reality, Poincaré duality ):

Theorem Connes 1996-2008-2013

M compact Riemann spin manifold, then (C∞(M), L2(M,S), ∂/) is a spectral
triple.

(A,H,D) a spectral triple with A unital commutative, then there exists a
compact Riemannian spin manifold M such that A = C∞(M).



The spectral triple of the standard model: product of a manifold by

Asm = C⊕H⊕M3(C), HF = C96=N×2×2×8 = HR ⊕HL ⊕Hc
R ⊕HC

L ,

DF =


08N M MR 08N

M† 08N 08N 08N

M†R 08N 08N M̄
08N 08N MT 08N

 N = 3 = ] generations.

I M contains the quarks, leptons, neutrinos (Dirac) Yukawa couplings, as well
as the quarks and neutrinos mixing parameters;

I MR contains the Majorana neutrinos mass.

The total spectral triple of the SM is

A = C∞ (M)⊗Asm, H = L2(M,S)⊗HF , D = ∂/⊗ I96 + γ5 ⊗ DF

Γ = γ5 ⊗ γF , J = J ⊗ JF

where J is the charge conjugation and

γF =


I8N

−I8N

−I8N

I8N

 , JF =

(
016N I16N

I16N 016N

)
.



Spectral action

S = Tr f ( DA

Λ ) yields the bosonic SM Lagrangian coupled with Einstein-Hilbert
action (f is a smooth approximation of Ξ[0,Λ], with Λ a parameter fixing the mass scale).

Requiring a unique unification scale,

g2
3 f0

2π2
=

1

4
, g2

3 = g2
2 =

5

3
g2

1

(fβ =
R∞

0
f (v)vβ−1dv), the asymptotic expansion of S yields∫

M

√
gd4x (

1

κ2
0

R + α0CµνρσC
µνρσ + γ0 + τ0R

∗R∗

+
1

4
G i
µνḠ

µν
i +

1

4
Fαµν F̄

µν
α +

1

4
BµνB̄

µν

+
1

2
|DµH|2 − µ2

0|H|2−
1

12
R|H|2 + λ0|H|4 )

where

1

κ2
0

∼ (f2Λ2, f0), µ2
0 ∼ (

f2Λ2

f0
, 1), α0 ∼ τ0 ∼ f0, γ0 ∼ (f4Λ4, f2Λ2, f0), λ0 ∼ 1

f0

I From the top mass, one gets the boundary condition λ0 = 0.356 at
Λ = 1017GeV. Under the big desert hypothesis, this yields λ(MZ ) ' 0.241
hence mH =

√
2λ vEW = 246

√
2× 0.241 = 170.8 GeV.



A new hope

By turning the entry of the neutrino Majorana mass in DF into a field,

kR → kRσ

(one generation (kt , kν) only) one gets the potential

V =
1

4

(
λh̄4 + 2λhσh̄

2 + λσσ̄
4
)− 2g2

π2
f2Λ2

(
h̄2 + σ̄2

)
where H =

(
0
h

)
, h̄ = |kt |, σ̄ = |kR |σ and, defining kν =

√
nkt ,

λ =
n2 + 3

(n + 3)2
(4g2), λhσ =

2n

n + 3
(4g2), λσ = 2(4g2).

One finds, for u = ln Λ
MZ

, Resilience of the spectral SM, Chamseddine, Connes JHEP (2012)

mH (u = 0) = 246

√
2λ(0)

(
1− λhσ(0)

λh(0)λσ(0)

)
.



Higgs mass as a function of n and the unification scale u ∈ [25, 35], i.e.

mZ e25 = 6.55245× 1012GeV to mZ e35 = 1.44327× 1017Gev.

variable n

Unification scale u

125.5 GeV

1.6 1.8 2.0 2.2 2.4

26

28

30

32

34

FIG. 2: Higgs mass as a function of n and of the unification scale u ∈ (25, 35), the thick doted

line is where mH = 125.5 Gev. The thin dotted lines correspond to mH = 124 Gev and mH = 127

Gev.

IV. CONCLUSIONS

Now that the Brout-Englert-Higgs [12] field has been discovered experimentally, it begs

for a conceptual explanation of the Lagrangian of the Standard Model coupled to gravity,

which would unify its juxtaposed fragmented pieces. The spectral model provides such an

explanation based on two ingredients:

• An extension of the geometric paradigm treating the continuum and the discrete on

the same footing.

• A principle of utmost simplicity, the spectral action principle, asserting that the action

9

I For any unification scale u, there exists n such that 125 ≤ mH ≤ 126GeV.

I No instability: λ2
hσ < λh λσ.



Gauge fields and the first order condition

The gauge fields of the SM (including the Higgs) are obtained by fluctuation of
the metric

[D, a] = [∂/⊗ I + γ5 ⊗ DF , f
i ⊗mi ],

allowing to turn the constant components of DF into fields on the manifold M.

Unfortunately, the first order conditon

[[D, a], JbJ−1] = 0 ∀a, b ∈ A

prevents to do so for the field σ. Indeed, for DR the Dirac with only the neutrino
mass (DF = D0 + DR ),

[[DR , a], JbJ−1] = 0 ∀a, b ∈ Asm =⇒ [DR , a] = 0.

I No way to obtain σ as the other bosonic fields within the spectral triple of
the standard model, following the NCG rules.



II.The grand algebra

Connes, Chamseddine, Marcolli: the finite dimensional algebra is of the form

Ma(H)⊕M2a(C) a ∈ N

and acts on an Hilbert space of dimension d = 2× (2× a)2.

I a = 1: too small to get the gauge group as unitaries of M(H)⊕M2(C).
I a = 2 yields d = 32 = #particles per generation.

Grading condition [Γ, a] = 0 (coming from the orientability axiom) imposes

AF = M2(H)⊕M4(C) −→ ALR = HL ⊕HR ⊕M4(C).

1st-order condition without neutrino mass further imposes

ALR −→ HL ⊕HR ⊕M3(C)⊕ C.

1st-order condition with neutrino mass finally gives

HL ⊕HR ⊕M3(C)⊕ C. −→ HL ⊕ C′ ⊕M3(C)⊕ C

with C = C′. Hence the the reduction

AF → Asm = C⊕H⊕M3(C).

I a=3: d = 72. No obvious relation with 32 particles/generation.



I a=4: d = 128 = dimension 4× 32 of the total Hilbert space for 1 generation:

H = L2(M,S)⊗HF = L2(M)⊗ HF

where
HF = C4 ⊗HF = C4 ⊗ C32 = C128.

By mixing the spin
s = l , r , ṡ = 0̇, 1̇

and the internal

C = p, a α = uR , dR , uL, dL (I = 1, 2, 3), eR , νR , eL, νL (I = 0)

degrees of freedom, the Hilbert space H of the standard model allows to
represent the grand algebra

C∞ (M)⊗AG where AG = M4(H)⊕M8(C)

without touching the particle contents of the SM.



Representation: a spinor in H is ΨCI
sṡα

I Both Q ∈ M2(H) and M ∈ M4(C) are viewed as 4× 4 complex matrices:

Qβ
α M I

J

A = (Q,M) ∈ C∞ (M)⊗ (M2(H)⊕M4(C)) acts trivially on the spin
indices:

AtṫCIβ
sṡDJα = δt

sδ
ṫ
ṡ (δC

0 δ
I
JQ

β
α + δC

1 M I
Jδ
β
α)

I Both Q ∈ M4(H) and M ∈ M8(C) are viewed as 2× 2 block matrices, with
block 4× 4 complex matrices:

Q ṫβ
ṡα =

(
Q 0̇β

0̇α
Q 1̇β

0̇α

Q 0̇β

1̇α
Q 1̇β

1̇α

)
, M tI

sJ =

(
M rI

rJ M lI
rJ

M rI
lJ M lI

lJ

)
.

A = (Q,M) ∈ C∞ (M)⊗ (M2(H)⊕M4(C)) has a non-diagonal action on
the spin indices s, ṡ:

AtṫCIβ
sṡDJα =

(
δC

0 δ
t
sδ

I
JQ

ṫβ
ṡα + δC

1 M tI
sJδ

ṫ
ṡδ
β
α

)



The Dirac matrices are

γµ =

(
02 σµ ṫ

ṡ

σµ ṫ
ṡ 02

)
st

γ5 =

(
I2 02

02 −I2

)
st

where for µ = 0, 1, 2, 3 one defines σµ = {I2,−iσi} , σ̄µ = {I2, iσi}.

The chirality is
Γ = γ5 ⊗ γF = ηC

D η
t
s δ

I
J δ

ṫ
ṡ η

β
α

where η =

(
1 0
0 −1

)
.

The Dirac operator on L2(M,S)⊗HF = L2(M)⊗ HF is unchanged

D = ∂/⊗ IHF
+ γ5 IL2(M,S) ⊗ DF

= ∂µ ⊗ γµ ṫt
ṡs δ

CIβ
DJα + IL2(M) ⊗ γ5 ṫt

ṡs DF
CIβ
DJα.



III. Reduction to the standard model

The grading condition [Γ, a] = 0 imposes the reduction

AG = M4(H)⊕M8(C) −→ A′G = (M2(H)L ⊕M2(H)R )⊕ (M4(C)l ⊕M4(C)r ).

Solution of the 1st-order condition of the Majorana Dirac operator IL2(M)⊗ γ5DR :

A′G −→ A′′G = (HL ⊕H′L ⊕ CR ⊕ C′R )⊕ (Cl ⊕M3(C)l ⊕ Cr ⊕M3(C)r )

with CR = Cr = Cl .

Proposition Devastato, Lizzi, Martinetti 2013

For a ∈ A′′G , [IL2(M) ⊗ γ5DR , a] is not necessarily zero.

The further reduction C′R = CR , H′L = HL, M3(C)l = M3(C)r , that is

A′′G → Asm = C⊕H⊕M3(C),

then satisfies the 1st order condition for the full Dirac operator

D = ∂/⊗ IHF
+ γ5 IL2(M,S) ⊗ DF DF = D0 + DR .



I Starting with the grand algebra

AG = M4(H)⊕M8(C)

(reduced to A′G = (M2(H)L ⊕M2(H)R )⊕ (M4(C)l ⊕M4(C)r ) by the
grading condition) one generates the field σ by a fluctuation of the Majorana
Dirac operator DR , respecting the 1st-order condition imposed by DR . The
latter yields the reduction to

A′′G = (HL ⊕H′L ⊕ CR ⊕ C′R )⊕ (Cl ⊕M3(C)l ⊕ Cr ⊕M3(C)r ).

I σ does not satisfy the 1st-order condition imposed by the free Dirac ∂/. The
latter yields the reduction of A′′G to the algebra of the standard model

Asm = C⊕H⊕M3(C).

I Hopefully the reduction A′′G → Asm might be understood dynamically, as a
minimum of the spectral action for the free Dirac operator. σ would then be
the “Higgs field” corresponding to this breaking.

I Almost simultaneously, Chamseddine, Connes and van Suijlekom proposed a
definition of inner fluctuation without first order condition.

Starting with M2(H)⊕M4(C), they generate the field σ, and retrieve the
1st-order condition dynamically, by minimizing the spectral action.



Conclusion

NCG proposes a description of the SM as a pure gravity theory, on a slightly
noncommutative version of space(-time). Compatible with mH = 126GeV as soon
as one makes the first-order condition flexible. So far, two proposals:

I CCvS: no problem with the continuous part but with the finite part.

I Grand algebra: no problem with the finite part, but with the continuous part.

The fluctuation of the Dirac Majorana only might suggest a cosmological model
where the right neutrino is a “primordial particle” that generates σ, then the
smooth structure (∂/) emerges. But any cosmological interpretation of the
spectral action is plagued by the Euclidean signature:

I put causal structure into the game,
I time comes from the noncommutativity: thermal-time of Connes-Rovelli.

The Higgs field acquires a metric interpretation: it gives the distance between two
copies of the manifold, indexed by the pure state of C and the pure state of H.

Grand symmetry, spectral action and the Higgs mass,
Devastato, Lizzi, P. M., JHEP 01 (2014) 042 arXiv:1304.0415 [hep-th]
Inner fluctuations in NCG without first order condition,
Chamseddine, Connes, Suijlekom, J. Geo. Phys. 73 (2013) arXiv: 1304.7583 [math-ph]
Beyond the spectral standard model: emergence of Pati-Salam unification,
Chamseddine, Connes, Suijlekom, JHEP 132 (2013) 11 arXiv: 1304.8050 [hep-th]



Covariant Dirac operator

DA = D + A

with
A = Σ

i
ai [D, bi ] = A∗ ai , bi ∈ A.

I DA is called the covariant Dirac operator.

A = C∞0 (M)⊗AF

H = L2(M,S)⊗HF

D = ∂/⊗ II + γ5 ⊗ DF

 =⇒ A = H − iγµAµ.

I H: scalar field on M with value in AI → Higgs.

I Aµ: 1-form field with value in Lie(U(AF )) → gauge field.



1. Dimension: D−1 is an infinitesimal of order 1
m .

2. Regularity: for any a ∈ A, a and [D, a] belong to the intersection of the
domains of all the powers δk of the derivation δ(b)

.
= [|D|, b], where b belongs to

the algebra generated by A and [D,A].

3. Finitude: A is a pre-C∗-algebra and the set H∞ .
= ∩

k∈N
Dom Dk of smooth

vectors of H is a finite projective module.

4. First order: the representation of A◦ commutes with [D,A]

[[D, a], Jb∗J−1] = 0 for all a, b ∈ A.

5. Orientability: there exists a Hochschild cycle c ∈ Zn(A,A⊗A◦) such that
π(c) = Γ.



6. Reality (A⊗A◦,H,D, Γ, J) is aKRn-cycle with [a, Jb∗J−1] = 0. J is called the
real structure. That is

I J is a anti-unitary bijection on H that implements the involution, i.e.
JaJ−1 = a∗ for all a ∈ A;

I if n is even, there is a graduation Γ of H that commutes with A and
anticommutes with D;

I the following table holds

n mod 8 0 1 2 3 4 5 6 7
J2 = ±I + + - - - - + +

JD = ±DJ + - + + + - + +
JΓ = ±ΓJ + - + -

For odd n, one sets Γ = I.

7. Poincaré duality: the additive coupling on K∗(A) coming from the index of the
Dirac operator is non-degenerated.
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