

OMEGAPIX2

Journées VLSI – FPGA – PCB de l'IN2P3 Marseille – Juin 2014

M. Cohen-Solal², O. Le Dortz³, A. Lounis², G. Martin-Chassard¹, C. Sylvia², D. Thienpont¹, J. Tongbong¹

> ¹ OMEGA/IN2P3/CNRS – Ecole Polytechnique ² LAL/IN2P3/CNRS – Université Paris Sud ³ LPNHE/IN2P3/CNRS

Organization for Micro-Electronics desiGn and Applications

Outline

Omega

- The ATLAS experiment
- The OMEGAPIX2 integrated circuit
 - The 3D process
 - The analog tier
 - The digital tier
- Circular memory measurements
- Analog performances
- Future work
 - Irradiation, bump bonding
 - New OMEGAPIX chip in 65 nm
- Conclusion

The ATLAS inner tracker @ HL-LHC

Second upgrade: High-Luminosity LHC

- 14 TeV centre-of-mass energy
- $L = 10^{35} \text{ cm}^{-2}\text{s}^{-1} \Rightarrow \text{need new FE design}$
- Pixel damage due to neutrons and pions, exposure up to 10¹⁶ neq/cm² (1 Grad) => need new rad-hard technology
- New technology
 - 3D 130 nm techno
 - 65 nm techno

13/06/2014

Journées VLSI - OMEGAPIX2 - D. Thienpont

Pixel detector's first upgrade

- service upgrade and repairs
- Resolution: 10 μ m (r ϕ) 115 μ m (z) with FE-I3 (50x400 µm²)

Insertable b-layer

- Compensate inefficiency, radiation damage and losses of pixels/modules
- Improve precision measurement with an additional point closer to the interaction point, improve vertexing, tracking and b-tagging performance
- FE-I4 (50x250 µm²), plannar sensor and 3D sensor
- Resolution < 10 μ m (r ϕ) 80 μ m (z)

The OMEGAPIX2 chip

- 3D OMEGAPIX2 chip received in January 2014
 - Submitted in October 2011
- Goals
 - Study and validate the Global Foundries techno and the 3D process of Tezzaron
 - Tier isolation, GF techno characterization (T typical, low Vt), yield, electrical and mechanical connections
 - Explore new solutions for a pixel readout chip for the ATLAS upgrade phase II
 - Low power, small pitch (35x200 μm), low signal
 - High luminosity: keep all data before L1 trigger by storing in a circular memory the whole history of the pixel activity during a L1 latency
 - Very hard radiation level
- Future work
 - Sensor bump bonded
 - Irradiation tests
- A new OMEGAPIX chip in 65 nm techno as an alternative to the 3D chip
 - Same pixel form factor: 35x200 μm
 - TSMC 65 nm techno
 - Common PDK provided by CERN

The 3D process from Tezzaron Omega

- (1) Via first approach. Tungsten through silicon vias (TSV) are fabricated as a part of the foundry process
 - Fabricate transistors (FEOL)
 - Form via (6 micron deep)
 - Passivate vias

Silicon

Dielectric(SiO2/SiN)

Cu (M6, Top Metal)

STI (Shallow Trench Isolation) W (Tungsten contact & via)

Gate Poly

Cu (M1 - M5)

 Fill vias and connect to transistors at same time

Super-Contact"

Oxide

Silicon

Dielectric(SiO2/SiN)

STI (Shallow Trench Isolation) W (Tungsten contact & via)

Gate Poly

Cu (M1 – M5) Cu (M6, Top Metal)

- (2) Complete BEOL processing
 - Add 6 metal layers
 - 6th metal layer is used as a bond interface for Cu-Cu thermo compression

Pads for bond interface

- (3) Stack a second wafer
 - Alignment better than 1 micron
 - Thermo compression bond is formed between wafers
- (4) Thin the top wafer down to 12 microns to expose TSVs
- (5) Metal pads added for wire or bump bonding

The bond interface is critical for good yield

- Makes electrical and mechanical connections from one wafer to the other wafer

6 um

Super-Contact"

 Bond interface must be strong enough to withstand subsequent thinning process

Analog tier (1)

Targets

- Dynamic range: 0 to 40 000 electrons
- Low threshold (~1000 electrons), low noise (<100 electrons)
- Power dissipation : ~ 6 μA
- Leakage current compensation: up to 100 nA
- Time over Threshold (ToT) capability
- Preamplifier
 - Regulated followed cascode NMOS common source
 - Leakage current compensation based on an OTA circuit in Throut feedback: 0 to 100 nA
 - Constant current in feedback to discharge the gain capacitance: ToT purpose
 - Low noise: <200 e- with Cd
 - Detector capacitance: 200 300 fF
- Second gain stage
 - Regulated followed cascode PMOS common source
 - Capacitive coupling: parallel noise independent
 - Gain = ~ 1
 - Feedback structure based on an OTA to tune the DC level at the shaper output: 5-bit DAC
- Comparator
 - Classical structure
 - 3-bit DAC to fix the threshold
- Slow control DFlipFlops
 - Injection capacitance, 8-bit DAC, External Trigger
 - Triple voting, interleaved layout
- Layout
 - 96 rows, 24 columns
 - Pitch = 35x200 μm
 - Macropixel = 2 pixels with staggered analog inputs: bump bond pitch = 70 μm
 - Match with the last sensor submission

ons)	Constant current feedback	5-bit DAC		
Input bounded to the sensor pixel Signal comes from Through Silicon Via (TSV)	Preamplifier	Shaper	Comparator	Trigger goes up to the second digital tier
tance:	Leakage Current Compensation			

Pixel	35x200 µm ² in omegapix2		
Pixel Capacitance	200 – 300 fF		
Threshold	1000 electrons (0.16 fC)		
Rms noise	< 200 electrons		
Charge measurement	ToT (3 bits,)		
Leakage current max.	100 nA		
Power dissipation	6 μW/pixel		

Analog tier (2)

- Slow control shift register
 - Injection capacitance
 - 5-bit shaper DAC and 3-bit local DAC
 - 4-bit preamplifier feedback current
- Rad_hard shift register
 - SEU immune: triple voting and interleaved layout

Digital tier

- Circular memory
 - 60-deep circular memory: keep an image of the pixel activity for 3 μs (BC period = 50 ns) or 1,5 μs (BC period = 25 ns)
 - Memorizing cell performed by the parasitic Cgs capacitance of NMOS
 - 6 different types of memory cell: 5/1 typ, 15/1 typ, 5/1 3P3, 15/1 low Vt, 5/1 typ + capa
 - Output data after L1: 3-bit ToT in gray

Digital measurements (1)

Clk_write = 40 MHz Clk_read = 10 MHz

Firmware and software designed by O. Le Dortz (LPNHE Paris) Measurements done by M. Cohen-Solal and C. Sylvia (LAL Orsay) 9

 \otimes

Digital measurements (2)

clk_write = 40 MHz, clk_read = 10 MHz

mega

clk_write = 40 MHz, clk_read = 40 MHz

R bias memdyn = 22k => ibias x3,5 = \sim 35 μ A

Digital measurements (3)

Digital measurements (4)

15/1 typ 5/1 + capa 15/1 lvt 5/1 lvt 3p3 typ 5/1 typ

Sans R bias memdyn

Avec R bias memdyn

Digital measurements (5)

Injection via digital tier

Injection vi analog tier

Analog performances (1)

- Premières mesures analogiques
 - Réalisée sur une seule voie
 - Time over Threshold
 - Réglable par dacFB<0:3>
 - Latence
 - Plus grande que prévue, peut-être due à la façon d'injecter
 - Deuxième coude problématique
- Difficultés
 - Capa d'injection mal connue car faite avec un transistor et non une vraie capa (estimée à 15 fF)
 - Beaucoup de dispersion du gain est attendue

Analog performances (2)

- Gain: ~ 50 70 mV/fC
 - Mesuré par le trigger (S curve) et non par probe
 - Plus faible que prévu (130 mV/fC)
 - Mesure faite sur une voie
 - Les Dacs doivent être mieux caractérisés
 - Valeurs des capas (en fait des transistors) peut-être mal modélisés
- Enveloppe du bruit

- ~ 10 mV => ~ 100 électrons rms

Omega

- Sensor
 - CIS slimedge, VTT slimedge and edgless
 - 35x200 μm , compatible with OMEGAPIX2 chip
- Interconnection with the CEA LETI
 - Pitch 70 μm ^{35 μm}

- Post-process, die to wafer
- I/Os

- Sensor side: wire bonding as described in figure
- Back side: via last process from LETI to reach pads from digital tier (all the I/O pads of OMEGAPIX2 pass through the 2 tiers)

Irradiation

- **O**mega
- New dedicated boards designed @ LPNHE (O. Le Dortz)
 - Monitoring board based on the Kit Altera Nios II Stratix II
 - Custom irradiated board

Conclusion

- Circular memory works well
 - Writing operation at 40 MHz
 - Memorization time is very good
 - But limitation to read at 40 MHz
 - Increase bias current leads to decrease the memorization time => trade-off
- Analog performances
 - Time over Threshold OK
 - Slightly too long latency
 - Injection has to be checked
 - Preamp and shaper bias can be increased
 - Gain smaller than expected: to be understood
 - Noise higher than expected: to be understood
- Irradiation
 - Board, firmware : on going
- Bump bond: project on going with the CEA-LETI
- Future
 - 3D or 65 nm ?

Backup

New OMEGAPIX in 65 nm (1) Omega

• Due to very long fabrication delay of the 3D chips, we plan to submit a new 2D prototype in 65 nm

Journées VLSI - OMEGAPIX2 - D. Thienpont

190 mV

350

14

450 mV

770

31

16 mV

60

3

Shaper gain

ToT (ns)

ToT (BC)

New OMEGAPIX in 65 nm (2) Omega

- Typical Low Power transistor
 - Cf = 15 fF => 66 mV/fC
 - With Cd = 300 fF, ENC from 80 to 120 electrons when leakage current varies from 0 to 100 nA
 - Preamplifier open loop gain = 90 dB
 - Global power consumption: vdd = 1,2 V and i + 8 uA => 9,6 uW
 - Dynamic range: 450 mV max.
- Local 5-bit DAC
 - Low power => relatively high resistor value in each pixel

	Vdd (V)	DC gain (dB ₂₀)	GBWP	Consomption
Preampli	1.2	90	250M	3.4uA
Shaper	1.2	77	90M	2.5uA
Discri	1.2	NA	NA	2.2uA