

ASIC FEERIC et cartes d'électronique front-end pour l'identificateur muon d'ALICE au LHC

Jonathan Elias, <u>Baptiste Joly</u>, Samuel Manen, Marie-Lise Mercier, Richard Vandaële Université Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire (LPC) de Clermont-Ferrand, France

Journées VLSI-FPGA-PCB de l'IN2P3, Marseille, 2014

L'expérience ALICE et le Spectromètre à Muons

L'expérience dédiée aux collisions d'ions lourds au LHC

- Central Barrel
- Forward muon spectrometer
 - Muon Tracking : 5 stations de Cathode Pad Chambers
 - Aimant dipolaire
 - > Absorbeurs
 - Muon Trigger à base de RPC
 - Muon haut p_{τ} issus de désintégrations de saveurs lourdes et quarkonia
 - 2 stations de 2 plans chacune, 6x6 m²
 - Total: 72 RPC

M. Fontana, *Performance of the ALICE muon trigger RPCs during LHC Run I*, Proceedings of RPC 2014 Conference, sumbitted to JINST

Upgrade de l'électronique du trigger muons

- Buts
 - Supporter l'accroissement de luminosité du LHC après 2019
 - > Nouvelle stratégie de lecture
 - Lecture de toutes les collisions Minimum Bias (MB) à taux élevé sans temps mort
 - Plus de coupure p_T hardware: Trigger Muon => Identificateur
 - Mais le détecteur garde un rôle crucial de sélection des traces
- Implications
 - Détecteur RPC
 - Charge intégrée jusqu'à 100 mC/cm² attendue si les conditions de fonctionnement des RPC sont maintenues (RPC le + irradié)
 - Taux de comptage jusqu'à 100 Hz/cm² (RPC le + irradié)
 - => A la limite des capacités du détecteur
 - Le détecteur doit fonctionner à plus faible gain
 - Electronique Frontale : l'amplification du signal est requise au niveau électronique pour réduire le gain du détecteur
 - Electronique de Readout : taux d'événements accru (jusqu'à 100 kHz en collisions Pb-Pb, x100 au-dessus du design actuel)

Upgrade de l'Électronique Frontale (EF)

- 20992 strips, 2384 FE cartes (+rechange)
- EF actuelle : ASIC "ADULT"
 - Conçu pour le mode streamer
 - > 2 seuils discrimination
 - Pas d'amplification
- EF future : ASIC "FEERIC"
 - "Front End Electronics Rapid Integrated Circuit"
 - > Avec amplification, pour le mode avalanche
 - Charge tot / pulse Q~10-30 pC (vs. Q~100 pC actuellement)
 - Limite le vieillissement des RPC (x3-5)
 - Augmente le taux de comptage max. de 50-100 Hz/cm² à 200 Hz/cm²
 - Seuil pour charge rapide q~100 fC
 - Programme R&D démarré en 2012

Aperçu de l'ASIC FEERIC

FEERIC main specifications		
ASIC technology	0.35 μm CMOS	
nb of channels	8	
input polarity	+/-	
power supply	3 V	
power cons.	< 100 mW/ch	
input impedance	< 50 Ω	
dynamic range	20 fC < q ¹ < 3 pC	
one shot	100 ns	
discriminator	zero-crossing	
output format	LVDS, 23±2 ns	
jitter rms for q>100 fC	< 1 ns	
time walk for 100fC <q<3pc< td=""><td colspan="2">< 2 ns</td></q<3pc<>	< 2 ns	

- Amplificateur transimpédance
- Discrimination dans les 2 polarités, zero-crossing (pour réduire le time walk)
- One-shot : pas de double déclenchement à moins de 100ns
- Sortie LVDS

1. « Fast » charge

Carte FEERIC v1

- Nbx points de tests intermédiaires (sortie ampli)
- Voir d'injection
- Seuil réglé manuellement ou piloté par bus l²C

Tests fonctionnels FEERIC v1 : seuil vs. charge

- Injection d'impulsion de charge connue (générateur créneau V \rightarrow C=1 pF)
- Seuil limite varie linéairement avec la charge, 0.33 mV / fC
- Seuil de bruit : 8 mV (24 fC)

Seuil limite de déclenchement vs. charge injectée (dans les 2 polarités)

Tests fonctionnels FEERIC v1 : time walk et jitter

Temps de réponse moyen et dispersion vs. charge injectée En polarité négative (gauche) et positive (droite). Seuil = 20 mV (~60 fC)

Mesure du temps entre l'impulsion en entrée et la sortie LVDS

- Jitter (dispersion aléatoire) < 500 ps (rms) (q > 100 fC)
- *Walk* (variation avec la charge) < 1.8 ns (200 fC < q < 3000 fC)
- Dispersion entre voies < 1.1 ns

11/06/2014

Journées VLSI-FPGA-PCB de l'IN2P3, Marseille, 2014

0

Tests en cosmiques FEERIC v1 (préliminaire)

- Banc de test en cosmiques (INFN Turin)
 - > RPC à tester entre des plans de trigger (scintillateur + tracker)
 - > Mesure d'efficacité vs HT et seuil, « cluster size » (# de strips contigus touchés)...
- Seuil limite au-dessus du bruit : 40 (70) fC mesuré sur un RPC avec des strips de 2 cm de largeur et 50 (150) cm de longueur
- HT à 80% d'efficacité
 - > ADULT, seuil=7 mV, V_RPC=10200 V
 - FEERIC, seuil = 64 mV (~200 fC), V_RPC=9800 V
 - > Diminution de HT au moins 400 V possible
 - > Courant moyen à mesurer lors des tests en caverne

FEERIC v2

• ASIC

Carte

0

- Gain transimpédance augmenté (1 mV/fC simulé)
- Anti-saturateur en entrée
- Layout amélioré

- Conçue en vue d'équiper une RPC (47 cartes) en caverne ALICE pendant le run 2 LHC (2015-2018)
- Routage : blindage pistes d'entrée, plans d'alim séparés analogique / numérique
- Injecteur de charge intégré à la carte
 - Test fonctionnel pendant l'exploitation
 - Niveau de charge réglable (au tournevis ou par I²C)
- Pilotage des seuils : deux modes au choix
 - Distribution analogique (système existant)
 - Pilotage par bus I²C chainé sur max 26 cartes (à tester)

Journées VLSI-FPGA-PCB de l'IN2P3, Marseille, 2014

Tests fonctionnels FEERIC v2

- Gain mesuré 0.57 à 0.68 mV/fC selon voie (vs. 1 mV/fC simulé)
- Seuil de bruit 23 à 40 fC
- L'impédance d'entrée « effective » pour les signaux type RPC (durée ~ns) est hors spec (estimée à 160 Ω)
 - lié à l'augmentation du gain
 - section aux interfaces strip-carte (charge transmise estimée à 30% à 50%)
 - pas rédhibitoire pour les tests à long terme en caverne
- La réponse temporelle
 - voie par voie : meilleure que les specs (jitter : 500 ps, walk : 1.1 ns)
 - dispersion entre voies <3.3 ns pour 200 fC<q<1 pC, 3.8 ns pour q=100 fC
- Piste d'explication des 2 problèmes (gain et temps de réponse inégaux) : capa parasite des pistes de longueurs inégales
- Tests prévus en couplage avec des strips de RPC
- Tests à long terme sur un RPC en caverne

Bilan tests fonctionnels

		tests	
11 minut	ASIC specs, reqs	proto 1	proto 2
dynamic range	20 fC < q ¹ < 3 pC	25 fC < q < 3pC	40 fC < q < 3pC
power cons. (supply = 3.5 V)	< 100 mW/ch	70 mW/ ch (board)	130 mW/ ch (board)
amplification		0.33 mV/fC	0.6 mV/fC
jitter rms (q>200 fC)	<1 ns	< 500 ps	< 500 ps
time walk (200 <q<1000 fc)<="" td=""><td></td><td>< 1.8 ns</td><td>< 1.1 ns</td></q<1000>		< 1.8 ns	< 1.1 ns
inter-channel time dispersion (200 <q<1000 fc)<="" td=""><td>total < 2 ns</td><td>< 1.1 ns</td><td>< 3.3ns</td></q<1000>	total < 2 ns	< 1.1 ns	< 3.3ns

1. « Fast » charge

- Résultats proches des spécifications
- Pas de problème rédhibitoire
- Points à comprendre et améliorer : impédance d'entrée, gain, dispersion temporelle entre voies
- Conditions de test différentes des conditions de fonctionnement (couplage des entrées, bruit)

Conclusions

- R&D upgrade électronique frontale Trigger (Identificateur) Muons d'ALICE débutée en 2012
- FEERIC: nouvel ASIC, 2 prototypes testés
 - Amplification, discriminateur zero-crossing fonctionnant dans les 2 polarités
 - > Les tests fonctionnels valident le circuit
 - Gamme dynamique, consommation, précision temporelle => conformes ou proches
 - Mesures systématiques commencées sur banc de test RPC en cosmiques
- Test à long terme sur 1 RPC en caverne durant le run 2 LHC (2015-2018)
- 3^{ème} fonderie prévue
 - > Comprendre les écarts de gain avec la simulation
 - Réduire gain et impédance d'entrée pour améliorer le couplage avec les strips (études en cours, simulation et mesures)
- Production ~3000 cartes en 2015-2017
- Installations pendant le Long Shutdown 2 du LHC (en ~2019).

Annexe : Bus I²C étendu

- Contrôle numérique envisagé pour l'upgrade : plus flexible et fiable
- De nb composants commerciaux (e.g. DACs) sont programmables par I²C,
- Bus série simple et robuste
- Efforts pour chaîner 26 cartes frontales (max sur un côté de RPC) sur le même bus
 - Limitation électrique
 - Capacité de la ligne trop grande et résistance trop faible selon spec standard
 - Interface ("extender") pour augmenter le courant en écriture
 - Limitation logique d'adressage
 - La plupart des CI : 3 bits d'adresse externe => chaînage de 8 cartes max
 - Interface I²C ("expander") avec 6 bits d'adresse externe

