

Laboratoire de Physique Subatomique et de Cosmologie

Converters R&D LPSC Grenoble

Team

- D. Dzahini, L. Gallin-Martel, F. Rarbi, J. Bouvier
- PhD Student: M. Zeloufi
- Internship students

Outline

- Physic experiments:
 - ATLAS–Larg: Phase–I
 - PEALL chips
 - ATLAS-Larg: Phase-II
 - New SAR Architecture
- Imaging Read–Out chip:
 - MASSAR
 - Ramp ADC

Outline

- Physic experiments:
 - ATLAS-Larg: Phase-I
 - PEALL chips
 - ATLAS-Larg: Phase-II
 - New SAR Architecture
- Imaging Read–Out chip:
 - MASSAR
 - Ramp ADC

ATLAS-Larg: Phase-I

Output FPGA

DAQ

Current L1Calo Processors

-1 Calorimeter System

> Feature Extractor [FEX]

ADC overview

PIPELINE vs SAR ADC

PIPELINE ADC

- Binary search algorithm following a binary-weighted capacitive DAC
- capacitive DAC
 DAC nonlinearity limits the INL and DNL of the SAR
 ADC → N-bit precision requires N-bit matching from the DAC

SAR ADC

Why moving from PIPELINE to SAR?

- Allow high speed design
- Natural important latency
- Power dissipation (amplifier)
- ΔV_{ref} means more INL
- Mismatch in capacitors (*)
- V_{ref} buffer bandwidth (*)
- Clock frequency (as sampling)
- Sampling time (large: 12.5ns)
- Total die area could be large
- Scaling to future 65nm process

- IBM 130 allows high speed
- The best latency (after a Flash)
- The best power dissipation
- ΔV_{ref} does not means INL
- Mismatch in capacitors (**)
- V_{ref} buffer bandwidth (**)
- Higher frequency clock (**)
- Sampling time brief > 3 or 4ns
- Die area very small
- Ready for scaling to 65nm

PIPELINE Architecture

SAR Architecture

PEALL ADC architecture (1)

- Power Efficient and Low Latency SAR ADC
- Main features of our PEALL ADC:
 - Asynchronous high speed clock internally generated from the 40MHz clock and the output of the comparators
 - Fully differential configuration: array of capacitors is segmented in 2
 Small area
 - Trimming feature to compensate from the capacitor mismatch

1st SAR ADC Prototype

- 2 channel version with external V_{ref} tested in May 2013
 - Local clock generator was working properly
 - The design suffers from sampling noise at the V_{ref} due to inductance problems caused by the bonding wires from the chip to the package
- A Chip on board made to reduce the inductances from 5nH to 3nH, but we were still limited at 20MSPS and ±4LSB of INL

1st Prototype: V_{ref} limitation

Measured noise on both V_{ref} nodes: V_{ref} never settles properly

		ref		0.2	5	
al franket bis de	test and the second states and	In the second second		ting on the states	-	
Section Description		ubliquente	locations and the fact	andellated of the state	shan kiring adalar	ilianal isla
						1 F. F.
For	L=5nH					
$\sigma = 1$	0.24m	V	, B×	-		
		H 10.0) µs/ 🔢 🗤 🚺	4.343119) µs	4 0 F
Measurements	Histogram Scales		and the second			
X Scale X Offset	157 hits/ 0 hits	Mean Std Dev μ±1σ μ±2σ μ±3σ	265.9829 mV 10.2362 mV 78.6% 94.5% 98.0%	Median Mode p-p Min Max	265.0 mV 263.4 mV 146.8 mV 201.3 mV 348.0 mV	

literation in the second second	nt Itul	tada na talahakar	i a din di di
Statistics of the second second second	All the sector of the sector		
and the second	antia a contrata attica	national control to tribular to	and the second second second
	SNA		
~ 0 E n	\sim		
0=9.50			
		2.6215990.up	T 625 0 mV ▲ 1
		2.0513000 ps	
Measurements Plistogram Stales	Mean 263.3521 mV	Median 263.3 mV Hi	its 40.43 khits 2
X Scale 359 hits/	Std Dev 9.4987 mV	Mode 264.9 mV Pe	eak 1.797khits
X Offset 0 hits	µ±107 /4.6% µ+207 94 7%	p-p 116.9 mV Min 206.0 mV	
	11+30 98 9%	Max 323 0 mV	

Packaged prototype

Chip on board

1st Prototype: Testing Results

- Sampling Clock: 20MSPS
- 5mW/ch (external V_{ref})
- INL & noise measurements

<= INL=±4LSB BUT some spikes

<= RMS noise for each output code

V_{ref} settling solutions

2nd SAR ADC Prototype

2nd prototype with 4 channels and embedded V_{ref}

- Chip size: 2.8 x 3.4 mm² in a QFN 64 package.
- Power consumption: 5 mW/ch for core ADC,
 - 27 mW/ch with V_{ref} driver and output sLVDS (CERN IP)

Integrated V_{ref} Challenge

- V_{ref} define the dynamic range for the ADC
- It is built from a bandgap cell (CERN IP) followed by a very high speed (5 GHz) and low impedance amplifier designed at LPSC

- Our testing results confirms that we succeed with the bandwidth of this buffer.
- ADC works positively at 40MSPS, with the 640 MHz clock generated

V_{ref} testing results

- A reference voltage 15% lower is found
- The cause of the dispersion was identified
 - Mismatch in reference voltage generation

Chip Number	$V_{ref}(V)$
0	1.73
1	1.73
2	1.73
3	1.66
4	1.45
5	1.62
6	1.78
7	1.70
8	1.70
9	1.56
10	1.81

ADC output noise distribution

Spikes appear at regular codes

ADC INL

- Trimming feature is working
 - INL is progressively reduced
- Spikes appear at exactly same codes following the noise results

Segmentation impact on INL

- INL could be improved by a better segmentation of the capacitor array
- 3 emulated configurations:
 - Improvement in linearity with 7MSB + 5LSB conf.

1 LSB of Linearity is saved by segmentation improvement

Spike problems

- Spikes observed for specific input signal always a fraction of V_{ref}
 - It is not a random distribution
 - Obvious correlation between "noise" spikes and INL's spikes

Source & solution for spikes problem

- Source of the spikes problem:
 - Segmentation gives a 2nd order settling time for the DAC
 - Meta-stability of the comparator

Spikes could be reduced by a better amplification before the latch comparator

Dynamic specifications

- Dynamic performance of the ADC are determined from the FFT for an incoming sinus signal: 100KHz, 1MHz and 5MHz
- These results integrate all the limitations:
 - Reduce dynamic range
 - Spikes
 - Jitter (next slides)

ENOB: Source & Solutions

Source of ENOB reduction sampling clock jitter

- 1 to10 ps jitter is needed to reach expectations
- Simulation studies of 2nd prototype:
 - RMS jitter 30 ps or ±100 ps peak to peak

Solution:

 Modifying the architecture of the sampling pulse generator inside the chip

Present problem for jitter New jitter simulated

Crosstalk measurement

To determine the crosstalk between the ADC channels, a 1 and 5 MHz full scale sine-wave was applied to channel 1 while all the others (0, 2 and 3) are grounded

	F _{in CH1}	1 – 0	1 – 2	1 – 3
Crosstalk	1 MHz	- 78.9	-76.7	-86.1
(dB)	5 MHz	-66.7	-69	-77.2

INL simulation

- New prototype with all improvement:
 - Reference voltage
 - Segmented Cap.
 - Jitter

Outline

- Physic experiments:
 - ATLAS-Larg: Phase-I
 - PEALL chips
 - ATLAS-Larg: Phase-II
 - New SAR Architecture
- Imaging Read–Out chip:
 - MASSAR
 - Ramp ADC

ATLAS-Larg: Phase-II

New SAR development

- Binary search is sensitive to intermediate errors made during search:
 - Comparator offset must be constant
 - $^{\circ}$ DAC must settle into $\pm \frac{1}{2}$ LSB bound within the time allowed (T_{clk} /2)
 - Conversion speed is limited
 - The consumption of the V_{ref} buffers is high
- Solution: Non-binary search algorithm can be used => redundancy
- CMOS130/CMOS 65nm

SAR with redundancy

- By using overlapped search range:
 - Redundancy increases the tolerance to errors
 - Redundancy helps to reduce the settling time
 - The power consumption of the V_{ref} buffers is reduced
 - Possibility to calibrate the capacitor mismatch
- Algorithm based on a radix $r=2^{N/M}$

Robustness for redundancy SAR

Binary search vs redundancy architecture

Conclusions

- SAR architecture is a challenging but a good choice, fully compatible with easy scaling to 65nm
- We positively reach the 40MSPS with V_{ref} fully embedded
- This asynchronous 12 bits 40MSPS is a record
- The latency time, power & chip area are optimal
- Minor problems identified and solutions found
- Plans for phase 2 with a redundancy version and digital correction

Outline

- Physic experiments:
 - ATLAS-Larg: Phase-I
 - PEALL chips
 - ATLAS-Larg: Phase-II
 - New SAR Architecture
- Imaging Read-Out chip:
 - MASSAR
 - Ramp ADC

Application

- Gravit
- New patent SAR architecture
- IR, bolometer, X-ray
- Medical application

MASSAR Prototype

- Converters array based on a new SAR architecture
- 14 bit resolution
- Speed of .5MSPS/column
- CIN \approx 3pF
- Power Consumption:
 - $\circ < 500 \mu W / column$
- CMOS 130nm
 - Analog power supply: 1.5V
 - Digital power supply: 1.2V
- Pitch: 30µm (length <2mm)</p>

MASSAR Chip

Pitch about 30µm x 1.93mm Chip: 2.7 x 2.06 mm²

Digital serial outputs

MASSAR: DC testing results

- Noise superimposed to the nonlinearity
 - \circ Linearity about ± 13 LSB
 - Improvement by integrating Ref. voltages

Outline

- Physic experiments:
 - ATLAS-Larg: Phase-I
 - PEALL chips
 - ATLAS-Larg: Phase-II
 - New SAR Architecture
- Imaging Read-Out chip:
 - MASSAR
 - Ramp ADC

"High-Speed" ramp ADC

- TDI: Technology that captures the image of a moving object with high speed and high sensitivity (HAMAMATSU©)
- TDI imaging with CMOS image sensors
 - Time Delayed Integration or TDI imaging is used to image moving objects
 - Implementations in CMOS have traditionally been difficult because of the lack of a charge addition circuit
- Applied in earth observation instruments

TDI architecture

Digital

Integration

Summation)

(Accumulation/

$\label{eq:result} \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-	Directio	on acros	s track		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	t	Pixel (1,1)	Pixel (2,1)	Pixel (,1)	Pixel (x-1,1)	Pixel (x,1)]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$) track	Pixel (1,2)	Pixel (2,2)	Pixel (,2)	Pixel (x-1,2)	Pixel (x,2)	<u>s</u>
$\begin{array}{ c c c c c c c c } \hline Pixel & Pixel & Pixel & Pixel & Pixel \\ \hline Pixel & Pixel & Pixel & Pixel & Pixel \\ \hline (1,y-1) & (2,y-1) & (,y-1) & (x-1)y-0 & (x,y-1) \\ \hline Pixel & Pixel & Pixel & Pixel \\ \hline (1,y) & (2,y) & (,y) & (x-1,y) & (x,y) \\ \hline Pixel & (1,y) & (2,y) & (,y) & (x-1,y) & (x,y) \\ \hline Pixel & (1,y) & (2,y) & (,y) & (x-1,y) & (x,y) \\ \hline Pixel & Pixel & Pixel & Pixel \\ \hline (1,y) & (2,y) & (,y) & (x-1,y) & (x,y) \\ \hline Pixel & Pixel & Pixel & Pixel \\ \hline (1,y) & (2,y) & (,y) & (x-1,y) & (x,y) \\ \hline Pixel & (1,y) & (2,y) & (,y) & (x-1,y) & (x,y) \\ \hline Pixel & Pixel & Pixel & Pixel \\ \hline (1,y) & (2,y) & (,y) & (x-1,y) & (x,y) \\ \hline Pixel & (1,y) & (2,y) & (,y) & (x-1,y) & (x,y) \\ \hline \hline Pixel & Pixel & Pixel & Pixel & Pixel \\ \hline \hline Pixel & (1,y) & (2,y) & (,y) & (x-1,y) & (x,y) \\ \hline \hline Pixel & (1,y) & (2,y) & (,y) & (x-1,y) & (x,y) \\ \hline \hline Pixel & (1,y) & (2,y) & (,y) & (x-1,y) & (x,y) \\ \hline \hline \hline \hline Pixel & (1,y) & (2,y) & (,y) & (x-1,y) & (x,y) \\ \hline \hline \hline \hline Pixel & (1,y) & (x,y) & (x,y) & (x,y) & (x,y) \\ \hline $	on along	Pixel (1,)	Pixel (2,)	Pixel (,)	Pixel (x-1,)	Pixel (x,)	trix of pi
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Directi	Pixel (1,y-1)	Pixel (2,y-1)	P ixel (,y-1)	Pixel (t-1γ-1)	Pixel (x,y-1)	Mat
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ļ	Pixel (1,y)	Pixel (2,y)	Pixel (,y)	Pixel (x-1,y)	Pixel (x,y)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			ADC 2	Ý	ADC/ X-1		Mathix of ADC
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Σ (1,1)	Σ (2,1)	Σ (,1)	Σ (x-1,1)	Σ (×,1)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Σ (1,2)	Σ (2,2)	Σ (,2)	Σ (x-1,2)	Σ (×,2)	
$\begin{array}{c c} \Sigma & \Sigma & \Sigma & \Sigma & \Sigma \\ (1,z-1) & (2,z-1) & (\dots,z-1) & (x-1,z-1) & (x-1,z-1) \\ \hline \Sigma & \Sigma & \Sigma & \Sigma & \Sigma \\ (1,z) & (2,z) & (\dots,z) & (x-1,z) & (x,z) \end{array}$		Σ (1,)	Σ (2,)	Σ (,)	Σ (x-1 ,)	Σ (×,)	Memory
$\begin{array}{c c} \Sigma & \Sigma & \Sigma & \Sigma & \Sigma \\ (1,z) & (2,z) & (\dots,z) & (\times-1,z) & (\times,z) \end{array}$		Σ (1,z-1)	Σ (2,z-1)	Σ (,z-1)	Σ (t-1,z-1)	Σ (x,z-1)	
│ ┌ ╵╷╵╷╵╷╵╷╵╻ ╲ _┱		Σ (1,z)	Σ (2,z)	Σ (,z)	Σ (x-1,z)	Σ (×,z)	
· · · · · · · · · · · · · · · · · · ·							\wedge

Object moves past imager			
TDI Line Scan			
	multiple, cumulative exposures		
Single Line Scan	single exposure		
Object moves past imager			
TDI Line Scan			
Single Line Scan	multiple, cumulative exposures		
	single exposure		
Object moves past imager	•		
TDI Line Scan			
	multiple, cumulative exposures		
Single Line Scan	single exposure		
Object moves past imager	•		
TDI Line Scan			
	multiple, cumulative exposures		
Single Line Scan	single exposure		

TDI imagers combine multiple exposures synchronized with object motion

"High-Speed" ramp ADC

- Spatial applications (Time Delay Integrator)
- 12b ADC
- 250ksps
- 10µm pitch
- ▶ 250µW/ch
- CMOS 130nm
- 100 channels (1st prototype)

Ramp ADC: INL simulation

Laboratoire de Physique Subatomique et de Cosmologie

Thank you for your attention Questions?